JPH0134444B2 - - Google Patents

Info

Publication number
JPH0134444B2
JPH0134444B2 JP230782A JP230782A JPH0134444B2 JP H0134444 B2 JPH0134444 B2 JP H0134444B2 JP 230782 A JP230782 A JP 230782A JP 230782 A JP230782 A JP 230782A JP H0134444 B2 JPH0134444 B2 JP H0134444B2
Authority
JP
Japan
Prior art keywords
reaction vessel
polymerization
liquid
double helical
stirring blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP230782A
Other languages
Japanese (ja)
Other versions
JPS58120604A (en
Inventor
Tetsuyuki Matsubara
Noribumi Ito
Susumu Fukawa
Koichi Arahari
Tetsuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP230782A priority Critical patent/JPS58120604A/en
Publication of JPS58120604A publication Critical patent/JPS58120604A/en
Publication of JPH0134444B2 publication Critical patent/JPH0134444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は、連続的に重合体を製造する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously producing a polymer.

重合体の製造方法には、乳化重合方法、懸濁重
合方法、溶液重合方法及び塊状重合方法が知られ
ているが、これらの重合方法は得られる重合体の
性質が若干異ることから、製造目的とする重合体
に応じ適宜選択採用されている。重合反応プロセ
スとしてみた場合、省資源、省エネルギーであり
且つクローズドプロセス化による公害問題の解決
も可能なことから、連続塊状重合方法が好ましい
方法として指摘される。しかしながら、現情では
連続塊状重合法においては、重合系の不安定性、
重合の進行とともに増大する粘度、規模の増大と
ともに反応容積に対して相対的に減少する除熱面
積等に関連する種々の問題を解決する必要が残さ
れている。
Emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization are known methods for producing polymers, but these polymerization methods have slightly different properties of the resulting polymers, so they are difficult to manufacture. They are selected and adopted as appropriate depending on the target polymer. When viewed as a polymerization reaction process, a continuous bulk polymerization method is pointed out as a preferable method because it saves resources and energy, and can solve the problem of pollution by making it a closed process. However, at present, in continuous bulk polymerization, instability of the polymerization system,
There remains a need to solve various problems related to the viscosity, which increases with the progress of polymerization, and the heat removal area, which decreases relative to the reaction volume as the scale increases.

一般に、塊状重合においては重合反応が進むに
つれて反応系内の粘度が指数的に増大する。この
様な場合、反応系内のある部分にいつまでも動か
ない、いわゆる異常滞留部分が成長しやすい。こ
の異常滞留部分は高温で長く滞留するため、この
部分で生成するポリマーは劣化したりゲル化した
りしやすく、これが正常なポリマーに混入すると
生成ポリマーの品質を著しく損ねる。
Generally, in bulk polymerization, the viscosity within the reaction system increases exponentially as the polymerization reaction progresses. In such a case, a so-called abnormal stagnation part, which does not move forever, tends to grow in a certain part of the reaction system. Since this abnormal retention area remains at high temperature for a long time, the polymer produced in this area is likely to deteriorate or gel, and if this is mixed into normal polymer, the quality of the produced polymer will be significantly impaired.

このような異常滞留部分をなくすために、従来
種々の方法が提案されている。その一つに、最終
の重合率を上げずに重合液の粘度が低い状態で重
合を終了させるか、ある程度の溶剤を混入して重
合を行なう方法がある。この方法によると取り扱
う重合液が低粘度になるので異常滞留部分はでき
にくいが、装置の稼動率が悪くなるという欠点が
ある。
Various methods have been proposed in the past to eliminate such abnormal retention areas. One of these methods is to terminate the polymerization in a state where the viscosity of the polymerization solution is low without increasing the final polymerization rate, or to carry out the polymerization by mixing a certain amount of solvent. According to this method, the viscosity of the polymerization liquid to be handled becomes low, so that abnormal stagnation areas are less likely to occur, but there is a drawback that the operating rate of the apparatus decreases.

もう一つの方法として、重合液にシエアーをか
けて反応容器の壁面近傍における該液のシエアレ
ートをできるだけ上げることのできるスクリユー
タイプの撹拌翼等を利用する方法がある。しか
し、この場合は動力を著るしく消費するばかりで
なく、撹拌熱で系内の温度を上昇させる結果にな
る。またポリマーによつては強いシエアーを受け
ることによつて得られる製品の物性が悪くなる場
合もある。
Another method is to use a screw-type stirring blade or the like that can apply shear to the polymerization liquid and increase the shear rate of the liquid near the wall of the reaction vessel as much as possible. However, in this case, not only is a significant amount of power consumed, but the heat of stirring results in an increase in the temperature within the system. Further, depending on the polymer, the physical properties of the product obtained may deteriorate when subjected to strong shearing.

一般に、連続重合装置には微分型反応器である
完全混合槽型反応器と積分型反応器である管型あ
るいは塔型反応器とがある。完全混合槽型反応器
を用いて連続塊状重合を行なう場合には、反応系
内を均一にする必要があるので、高粘性液体中で
撹拌を激しくしなければならず、先に述べた動力
の増大と共に重合液はシエアーを受けやすくな
り、なおかつ反応系内での液の滞留時間分布は広
いものになる。一方管型あるいは塔型反応器を用
いて連続塊状重合を行なう場合には、異常滞留部
分が生じない様に工夫できれば、反応系内を全て
均一にする必要はないのでそれ程激しく撹拌する
必要もなく、また系内での液の滞留時間分布は極
めて狭くピストンフローに近いものになるので、
この様な管型あるいは塔型反応器は連続塊状重合
に適した反応器と言える。
Generally, continuous polymerization apparatuses include a complete mixing tank reactor, which is a differential reactor, and a tube or tower reactor, which is an integral reactor. When carrying out continuous bulk polymerization using a complete mixing tank reactor, it is necessary to make the inside of the reaction system uniform, so vigorous stirring is required in a highly viscous liquid, and the above-mentioned power consumption is required. As the amount increases, the polymerization liquid becomes more susceptible to shear, and the residence time distribution of the liquid within the reaction system becomes wider. On the other hand, when carrying out continuous bulk polymerization using a tubular or tower reactor, if measures can be taken to prevent abnormal stagnation, it is not necessary to make the entire reaction system homogeneous, so there is no need to stir as vigorously. , and the residence time distribution of the liquid in the system is extremely narrow and close to piston flow, so
Such a tube-type or column-type reactor can be said to be a reactor suitable for continuous bulk polymerization.

しかし、従来用いられている管型あるいは塔型
反応器には、異常滞留部分の存在、ピストンフロ
ー性、装置製作上等の点で問題がある。例えば特
開昭53−99290に記載されている塔型反応器によ
る場合は、異常滞留部分の存在及び装置製作の面
においてはそれ程問題はないが、ピストンフロー
性が悪く、滞留時間分布は狭いものとは言えな
い。
However, conventionally used tubular or tower reactors have problems such as the presence of abnormal stagnation, piston flow characteristics, and equipment manufacturing. For example, in the case of using a tower reactor as described in JP-A-53-99290, there are no problems in terms of the existence of abnormal stagnation parts and equipment fabrication, but the piston flow is poor and the residence time distribution is narrow. It can not be said.

かかる状況に鑑み、本発明者らは連続塊状重合
に適した異常滞留部分を生ぜず、滞留時間分布も
狭く、製作も簡単な塔式反応装置を開発すべく鋭
意研究した結果、本発明に到達したものである。
In view of this situation, the present inventors conducted intensive research to develop a column-type reactor suitable for continuous bulk polymerization that does not produce abnormal retention areas, has a narrow residence time distribution, and is easy to manufacture, and as a result, the present invention was achieved. This is what I did.

すなわち、本発明は液流入口と液流出口とを備
えた液の流れ方向に長い構造を有する円筒型反応
容器と該反応容器の内部に付設した回転軸及び1
若しくはそれ以上のサイドフイードノズルとから
なり、該回転軸には複数個の2重らせん帯型の撹
拌翼がその大部分が同一方向を向くよう配設さ
れ、該撹拌翼と撹拌翼との間には仕切効果を有す
る1若しくはそれ以上の邪魔板が付設され、前記
サイドフイードノズルは邪魔板と邪魔板とにより
仕切られその内部に前記2重らせん型の撹拌翼を
有さない混合室に臨んで付設されていることを特
徴とする連続塊状重合装置である。
That is, the present invention provides a cylindrical reaction vessel having a structure elongated in the flow direction of the liquid and provided with a liquid inlet and a liquid outlet, a rotating shaft attached to the inside of the reaction vessel, and a
or more side feed nozzles, and a plurality of double helical band type stirring blades are arranged on the rotating shaft so that most of them face the same direction, and the stirring blades are connected to each other. One or more baffle plates having a partitioning effect are provided between the side feed nozzles, and the side feed nozzle is partitioned by the baffle plates, and the mixing chamber does not have the double-helix type stirring blades therein. This continuous bulk polymerization apparatus is characterized in that it is attached facing the.

本発明の連続重合装置で塊状重合を行なえるモ
ノマーとしては、スチレン、α―メチルスチレ
ン、ベンゼン環がアルキル置換されたスチレン、
例えばO―,m―,P―メチルスチレン、O―,
m―,P―エチルビニルベンゼン及びベンゼン環
がハロゲン化されたスチレン例えばO―,m―,
P―クロル若しくはブロムスチレン等のアルケニ
ル芳香族化合物がある。これらは単独又は混合物
でモノマーとして使用できる。またこれらのアル
ケニル芳香族モノマーにアクリロニトリル、メタ
クリル酸エステル等の共重合可能な単量体を添加
してもよい。更にゴム状重合体、例えばポリブタ
ジエン、ブタジエンとスチレン、アクリロニトリ
ル、メタクリル酸メチル等の各共重合体、天然ゴ
ム、ポリクロロプレン、エチレン―プロピレン共
重合体、エチレン―プロピレン―ジエンモノマー
共重合体等を前述の一種又は数種のモノマーに溶
解した溶液も使用できる。
Monomers that can be bulk polymerized in the continuous polymerization apparatus of the present invention include styrene, α-methylstyrene, styrene in which the benzene ring is substituted with alkyl,
For example, O-, m-, P-methylstyrene, O-,
m-, P-ethylvinylbenzene and styrene in which the benzene ring is halogenated, such as O-, m-,
Examples include alkenyl aromatic compounds such as p-chlor or bromstyrene. These can be used alone or in mixtures as monomers. Further, copolymerizable monomers such as acrylonitrile and methacrylic acid esters may be added to these alkenyl aromatic monomers. Furthermore, rubber-like polymers such as polybutadiene, copolymers of butadiene and styrene, acrylonitrile, methyl methacrylate, natural rubber, polychloroprene, ethylene-propylene copolymers, ethylene-propylene-diene monomer copolymers, etc. Solutions in one or more of the monomers can also be used.

本発明の連続重合装置で塊状重合反応を行なえ
るモノマーは上述の通りであるが、それ以外にも
付加重合反応を起こすもの及びナイロン、ポリエ
ステル等のような縮合重合反応を起こすものにも
適用し得る。なおここでいう塊状重合とは、30重
量%以下の溶剤を使用する溶液重合をも含むもの
である。
Monomers that can be subjected to bulk polymerization reactions in the continuous polymerization apparatus of the present invention are as described above, but they can also be applied to those that cause addition polymerization reactions and those that cause condensation polymerization reactions such as nylon and polyester. obtain. The term "bulk polymerization" as used herein also includes solution polymerization using 30% by weight or less of a solvent.

重合は熱的に開始することができ、あるいは分
解した際にフリーラジカルを放出する公知の開始
剤、例えばアゾビスイソブチロニトリルのような
アゾ化合物又はベンゾイルパーオキシドのような
過酸化物によつて開始することができる。
Polymerization can be initiated thermally or by known initiators that release free radicals upon decomposition, such as azo compounds such as azobisisobutyronitrile or peroxides such as benzoyl peroxide. Then you can start.

第1図及び第3図に本発明による連続塊状重合
装置の一例を示し、第2図によつて本発明の効果
を説明する。
An example of a continuous bulk polymerization apparatus according to the present invention is shown in FIGS. 1 and 3, and the effects of the present invention will be explained with reference to FIG.

図において1は液の流れ方向に長い円筒型の重
合反応容器で、ジヤケツト2を備え、このジヤケ
ツトにより適宜加熱、保温若しくは冷却が可能な
構造になつている。ジヤケツトは1つでもかまわ
ないが数個に分割されていてもよい。12,13
は熱媒の入口及び出口である。3は回転軸で、こ
の回転軸には2重らせん帯型撹拌翼4、邪魔板
5、8及び補助撹拌翼7が付設されている。
In the figure, reference numeral 1 denotes a cylindrical polymerization reaction vessel that is long in the direction of flow of the liquid, and is equipped with a jacket 2, which allows heating, heat retention, or cooling as appropriate. The jacket may be one, or may be divided into several pieces. 12,13
are the inlet and outlet of the heating medium. Reference numeral 3 denotes a rotating shaft, and a double helical band type stirring blade 4, baffle plates 5, 8, and an auxiliary stirring blade 7 are attached to this rotating shaft.

反応容器内は邪魔板によつて2重らせん帯型撹
拌翼1つを含む各セル及び補助撹拌翼1つを含む
サイドフイード液を混合する混合室6に仕切られ
ている。9,10はメインフイード液の入口及び
出口である。11はサイドフイードノズルで混合
室に臨んで付設されており、ノズルから出たサイ
ドフイード液は混合室でメインフイード液と混合
される。
The interior of the reaction vessel is partitioned by a baffle plate into a mixing chamber 6 for mixing the side feed liquid, each cell containing one double helical band type stirring blade and one auxiliary stirring blade. 9 and 10 are the main feed liquid inlet and outlet. A side feed nozzle 11 is attached facing the mixing chamber, and the side feed liquid coming out of the nozzle is mixed with the main feed liquid in the mixing chamber.

各セル内の撹拌翼は全て同一方向に取りつけら
れており、翼の回転により各セル内での液の流動
状態はほぼ同一となる。なお、図中撹拌翼部分に
矢印で示した循環流は液の部分的な流動方向であ
る。回転方向はどちらでもかまわないが、好まし
くは第1図あるいは第4図の様に、翼が回転した
ときに反応容器壁面近傍での液の流れが反応容器
全体の液の流れ方向と逆になる様に回転させた方
がよい。壁面近傍での液の流れが反応容器全体の
液の流れ方向と同一になる様に回転させた場合に
は、邪魔板が存在しても液のシヨートパスが起り
やすく、ピストンフロー性が悪くなる。
The stirring blades in each cell are all attached in the same direction, and the rotation of the blades makes the liquid flow state in each cell almost the same. Note that the circulation flow indicated by the arrow in the stirring blade portion in the figure is the partial flow direction of the liquid. The direction of rotation can be either direction, but preferably, as shown in Figure 1 or Figure 4, when the blades rotate, the flow of liquid near the wall of the reaction vessel is opposite to the direction of flow of liquid throughout the reaction vessel. It is better to rotate it accordingly. If the reaction vessel is rotated so that the flow of the liquid near the wall surface is the same as the flow direction of the liquid throughout the reaction vessel, short passes of the liquid are likely to occur even if a baffle plate is present, and the piston flow properties will deteriorate.

各セル内の撹拌翼の向きは全て同一方向である
ことが好ましく、少なくともその80%以上が同一
方向を向いていることが望ましい。例えば特開昭
53−99290に記載されている様に、撹拌翼が交互
の向きあるいは不規則な向きに取りつけられた場
合には、各セル間の液の移動はある程度妨げら
れ、反応器内全体が均一になることはないが、ほ
ぼ同一方向に取りつけた場合に比べると滞留時間
分布が広いものとなり、、本発明の目的からする
と採用できない。
It is preferable that all stirring blades in each cell are oriented in the same direction, and it is desirable that at least 80% or more of the stirring blades are oriented in the same direction. For example, Tokukai Akira
53-99290, if the stirring blades are installed in alternating or irregular orientations, the movement of liquid between each cell will be hindered to some extent, resulting in uniformity throughout the reactor. Although this is not the case, the residence time distribution becomes wider than when they are attached in substantially the same direction, and this cannot be adopted from the perspective of the purpose of the present invention.

第2図に流体のピストンフロー性をみるために
第1図の装置を用いて測定した滞留時間分布曲線
を示す。θは時間、は平均滞留時間でψ=θ/
θは無次元化した時間、E(ψ)は滞留時間分布
関数である。図中、曲線Aは撹拌翼を全て同一方
向に取りつけた場合、曲線Bは撹拌翼を交互の向
きに取りつけた場合の滞留時間分布曲線である。
曲線Bに比べると曲線Aは滞留時間分布は狭く、
ピストンフロー性が改良されている。曲線Cは8
枚の撹拌翼のうち1枚だけを異なる方向に取りつ
けた場合の滞留時間分布曲線で、曲線Aと殆んど
同じ曲線になる。
FIG. 2 shows a residence time distribution curve measured using the apparatus shown in FIG. 1 to examine the piston flow properties of fluid. θ is time, is average residence time, and ψ=θ/
θ is a dimensionless time, and E(ψ) is a residence time distribution function. In the figure, curve A is the residence time distribution curve when the stirring blades are all attached in the same direction, and curve B is the residence time distribution curve when the stirring blades are attached in alternate directions.
Compared to curve B, curve A has a narrower residence time distribution;
Improved piston flow. Curve C is 8
This is a residence time distribution curve when only one of the stirring blades is attached in a different direction, and is almost the same as curve A.

本発明装置の撹拌翼としては、半ピツチの2重
らせん帯翼が好ましいが、それ以外の2重らせん
帯翼、例えば一ピツチの2重らせん帯翼等でもよ
い。あるいは、2重らせん帯翼にスクリユー等を
組み合わせてもよい。
The stirring blades of the apparatus of the present invention are preferably half-pitch double helical band blades, but other double helical band blades such as one-pitch double helical band blades may also be used. Alternatively, a screw or the like may be combined with the double helical band blade.

本発明の連続塊状重合装置で用いる2重らせん
帯型撹拌翼及びサイドフイード液を混合する混合
室の模式図を第3図に示す。
FIG. 3 shows a schematic diagram of the double helical band stirring blade and the mixing chamber for mixing the side feed liquid used in the continuous bulk polymerization apparatus of the present invention.

2重らせん帯型撹拌翼の翼幅bについては、反
応容器の内径Dに対してその比が0.05≦b/D≦
0.3の関係をを満たすものを使用するのが好まし
い。b/Dが0.05より小さい場合は、翼による液
の送出量が少ないため異常滞留部分の生成原因と
なり、一方b/Dが0.3より大きい場合は、翼に
よる液の送出量が多過ぎて各セル間の液の移動が
多くなり狭い滞留時間分布が得られないと同時
に、撹拌翼の回転に要する動力が増大し好ましく
ない。
Regarding the blade width b of the double helical band stirring blade, its ratio to the inner diameter D of the reaction vessel is 0.05≦b/D≦
It is preferable to use one that satisfies the relationship of 0.3. If b/D is smaller than 0.05, the amount of liquid sent out by the blades is small, which causes abnormal stagnation. On the other hand, if b/D is larger than 0.3, the amount of liquid sent out by the blades is too large and each cell This is undesirable because the movement of the liquid between the stirring blades increases, making it impossible to obtain a narrow residence time distribution, and at the same time, the power required to rotate the stirring blades increases.

2重らせん帯型撹拌翼の外径dについては、反
応容器内壁とのクリアランス(δ=D−d/2)が 1mm<δ<30mmになる様にするのが好ましい。δ
が1mm以下の場合、装置の製作が極めて困難で撹
拌翼と反応容器とが接触することも生じ得るので
好ましくなく、またδが30mm以上の場合、反応容
器内の壁面近傍が異常滞留部分の生成原因となり
好ましくない。
The outer diameter d of the double helical band type stirring blade is preferably set so that the clearance (δ=D−d/2) with the inner wall of the reaction vessel satisfies 1 mm<δ<30 mm. δ
If δ is less than 1 mm, it is undesirable because it is extremely difficult to manufacture the device and contact between the stirring blade and the reaction vessel may occur, and if δ is more than 30 mm, abnormal stagnation may occur near the walls of the reaction vessel. This is not desirable because it causes

2重らせん帯型撹拌翼の軸長hについては、各
撹拌翼のあるセルの軸方向の長さLに対しh/L
≧0.5であるのが好ましい。h/Lが0.5より小さ
い場合は、撹拌翼と邪魔板との間の空間が広くな
り、そこに異常滞留部分が生ずる原因となり好ま
しくない。
The axial length h of the double helical band stirring blade is h/L relative to the axial length L of the cell with each stirring blade.
It is preferable that it is ≧0.5. If h/L is less than 0.5, the space between the stirring blade and the baffle plate becomes wide, which is not preferable because it causes an abnormal stagnation part to occur there.

本発明装置を用いて重合体を製造する場合の撹
拌翼の回転数については特に制限はなく、1rpm
以上であれば反応容器内壁近傍等での異常滞留の
防止効果がある。しかし30rpm以上にすると各セ
ル間での液の移動が激しくなり、狭い滞留時間分
布が得られず、また撹拌に要する動力が増大し、
一般には好ましくない。
There is no particular restriction on the rotation speed of the stirring blade when producing a polymer using the apparatus of the present invention, and it is 1 rpm.
If it is above, there is an effect of preventing abnormal retention near the inner wall of the reaction vessel. However, if the rpm is higher than 30 rpm, the movement of liquid between each cell will be rapid, making it impossible to obtain a narrow residence time distribution, and the power required for stirring will increase.
Generally undesirable.

本発明装置においては、撹拌翼と撹拌翼の間に
仕切り効果を有する邪魔板が存在することによつ
て初めて各セル間の液の自由な移動が妨げられ、
ピストンフローに近い滞留時間分布の狭いものが
得られるのであり、仕切り効果を有する邪魔板が
なければ反応容器内の液の流れは各セル内で区切
られず反応容器全体が均一になり、極めて滞留時
間分布の広いものとなる。第2図の曲線Dは、第
1図の装置において撹拌翼は全て同一方向に取り
つけたが邪魔板を付設しなかつた場合の滞留時間
分布曲線を示したもので、完全混合槽型反応槽に
近い滞留時間分布が極て広いものが得られてい
る。
In the device of the present invention, free movement of liquid between each cell is prevented only by the presence of a baffle plate having a partitioning effect between the stirring blades.
A narrow residence time distribution similar to that of a piston flow can be obtained, and if there is no baffle plate that has a partitioning effect, the flow of liquid in the reaction vessel will not be separated in each cell and will be uniform throughout the reaction vessel, resulting in an extremely short residence time distribution. The distribution is wide. Curve D in Figure 2 shows the residence time distribution curve in the apparatus shown in Figure 1 when all the stirring blades are installed in the same direction but no baffle plates are attached. An extremely wide distribution of similar residence times was obtained.

前記の撹拌翼と撹拌翼との間に付設する仕切り
効果を有する邪魔板については、その開口面積比
を5〜40%、好ましくは7〜30%の範囲におさめ
るのがよい。開口面積比が5%未満のものを用い
た場合には、重合液の粘度が上昇すると邪魔板に
ポリマーが付着するため好ましくなく、また40%
を超すものを用いた場合には、隣接セル間の液の
移動が多くなり仕切り効果がなくなる。
Regarding the baffle plate having a partitioning effect and provided between the stirring blades, the opening area ratio thereof is preferably in the range of 5 to 40%, preferably 7 to 30%. If an opening area ratio of less than 5% is used, it is undesirable because the polymer will adhere to the baffle plate as the viscosity of the polymerization solution increases;
If more than 200 ml of liquid is used, the movement of liquid between adjacent cells will increase and the partitioning effect will be lost.

なお、ここにいう開口面積比とは、邪魔板上の
開孔部の面積並びに邪魔板と反応容器内壁との間
のクリアランス部の面積の和の、回転軸に垂直な
重合反応容器断面積に対する比で示される値であ
る。但し、多管式熱交換基を邪魔板として使用す
る場合には、開口面積比は邪魔板上の開口部の面
積及び邪魔板と回転軸との間のクリアランス部の
面積の和の、回転軸に垂直な反応容器断面積に対
する比で示される値で示される。
The opening area ratio here refers to the sum of the area of the openings on the baffle plate and the area of the clearance between the baffle plate and the inner wall of the reaction vessel, relative to the cross-sectional area of the polymerization reaction vessel perpendicular to the rotation axis. It is a value expressed as a ratio. However, when using a multi-tubular heat exchanger as a baffle plate, the opening area ratio is the sum of the area of the opening on the baffle plate and the area of the clearance between the baffle plate and the rotating shaft. It is expressed as a ratio to the cross-sectional area of the reaction vessel perpendicular to .

仕切り効果を有する邪魔板としては、軸ととも
に回転する前述の開口面積比をもつデイスク状多
孔板の邪魔板が適しているが、特にこれに限定さ
れるものではない。例えばその他の邪魔板として
は、前述の開口面積比を有する多管式熱交換器あ
るいはその他の熱交換器等がある。これらの熱交
換器を用いた場合、開口面積比を前述の範囲にお
さめれば仕切り効果をもたせることができると同
時に、単量体が重合する時に発生する多量の重合
熱も除去でき、重合装置をスケールアツプした時
に問題になる重合熱の除去の問題もこれによつて
解決できる。
As the baffle plate having a partitioning effect, a baffle plate of a disc-shaped perforated plate having the above-mentioned opening area ratio that rotates with the shaft is suitable, but the baffle plate is not particularly limited thereto. For example, other baffles include shell-and-tube heat exchangers or other heat exchangers having the above-mentioned opening area ratio. When using these heat exchangers, if the opening area ratio is kept within the above range, it is possible to have a partitioning effect, and at the same time, a large amount of polymerization heat generated when monomers are polymerized can be removed, and the polymerization equipment This also solves the problem of removing polymerization heat when scaled up.

第4図は仕切り効果のある邪魔板として、前述
の軸とともに回転するデイスク状多孔板と多管式
熱交換器とを同時に用いた連続塊状重合装置の一
例を示した。1は液の流れ方向に長い円筒型の重
合反応容器で、2つをフランジ18で重ねて使用
する様になつている。この装置には、回転するデ
イスク状多孔板5と多管式熱交換器17が仕切り
効果を有する邪魔板として用いられている。多管
式熱交換器17は、仕切り効果をもつと同時に、
12から13へ熱媒を流すことによつて重合熱の
除去もできる。すなわち本装置においては、ジヤ
ケツト2及び多管式熱交換器17で重合熱を除去
できる。装置をスケールアツプした場合、ジヤケ
ツト2だけでは重合熱の除去は不充分となるが、
不足の重合熱除熱面積は、多管式熱交換器17の
大きさを適当に調節することにより解決できる。
FIG. 4 shows an example of a continuous bulk polymerization apparatus in which a disk-shaped perforated plate rotating with the aforementioned shaft and a multi-tubular heat exchanger are simultaneously used as baffles having a partitioning effect. Reference numeral 1 denotes a cylindrical polymerization reaction vessel that is long in the flow direction of the liquid, and two of them are stacked on top of each other at a flange 18 for use. In this device, a rotating disc-shaped perforated plate 5 and a multi-tubular heat exchanger 17 are used as baffle plates having a partitioning effect. The multi-tubular heat exchanger 17 has a partitioning effect and at the same time,
Polymerization heat can also be removed by flowing a heat medium from 12 to 13. That is, in this apparatus, the jacket 2 and the shell-and-tube heat exchanger 17 can remove the polymerization heat. When the equipment is scaled up, jacket 2 alone will not be sufficient to remove the polymerization heat, but
The insufficient polymerization heat removal area can be solved by appropriately adjusting the size of the multi-tubular heat exchanger 17.

サイドフイード液をメインフイード液に混合す
る混合室6は、仕切り効果を有する邪魔板で他の
セルと区切られており、そこにはサイドフイード
ノズル11及び1つあるいは2つの補助撹拌翼7
が付設されている。
The mixing chamber 6 in which the side feed liquid is mixed with the main feed liquid is separated from other cells by a baffle plate having a partitioning effect, and includes a side feed nozzle 11 and one or two auxiliary stirring blades 7.
is attached.

サイドフイードノズルはサイドフイード液の供
給口としての役割が第1であるため、特にその形
状は限定されず、例えば単なる円管のようなもの
でもよいが、該ノズルの先端が反応容器内壁より
も内側に突出していることが好ましい。サイドフ
イードノズルの先端が反応容器内壁と同じ位置あ
るいはその近傍の場合には、サイドフイード液と
メインフイード液の粘度あるいは密度が異なる
と、サイドフイード液が混合室でメインフイード
液と充分混合されないうちに反応容器内壁に沿つ
て混合室を出てしまうため好ましくない。サイド
フイード液を混合する混合室と他のセルとを区切
る邪魔板としては、前述の邪魔板と同様なものが
用いられる。
Since the primary role of the side feed nozzle is as a supply port for the side feed liquid, its shape is not particularly limited. For example, it may be a simple circular tube, but the tip of the nozzle is lower than the inner wall of the reaction vessel. Preferably, it protrudes inward. When the tip of the side feed nozzle is at the same position as or near the inner wall of the reaction vessel, if the viscosity or density of the side feed liquid and the main feed liquid are different, the side feed liquid may be mixed with the main feed liquid in the mixing chamber before the reaction vessel This is undesirable because it exits the mixing chamber along the inner wall. As the baffle plate that separates the mixing chamber for mixing the side feed liquid from other cells, a baffle plate similar to the baffle plate described above is used.

サイドフイード液を混合する混合室の大きさに
ついては、その軸方向の長さlが2重らせん帯型
撹拌翼のあるセルの軸方向の長さLに対してその
比がl/L≦0.5であるのが好ましい。l/L>
0.5の場合、混合室でサイドフイード液が充分混
合され混合室内の液が均一になれば問題ないが、
混合室が大きくなると均一にするのに強撹拌をす
る必要があるため、撹拌の動力をそれだけ要し、
好ましくない。
Regarding the size of the mixing chamber in which the side feed liquid is mixed, the ratio of its axial length l to the axial length L of the cell with double helical band stirring blades is l/L≦0.5. It is preferable to have one. l/L>
In the case of 0.5, there is no problem if the side feed liquid is sufficiently mixed in the mixing chamber and the liquid in the mixing chamber is uniform.
As the mixing chamber becomes larger, it is necessary to use strong stirring to achieve uniformity, which requires more power for stirring.
Undesirable.

サイドフイード液を混合する混合室内には補助
撹拌翼を付設することが好ましく、補助撹拌翼と
しては、ここでは軸に垂直な方向の混合をよくす
る必要があるので翼が複数枚の、例えば4枚ある
いは8枚のパトル翼が適している。補助撹拌翼
は、第4図に示したようにサイドフイードノズル
のすぐ近傍でメインフイード液の流れ方向の下流
にとりつけるのがよいが、サイドフイードノズル
をはさんで2ケ所にとりつけてもよい。補助撹拌
翼の大きさについては特に制限はないが、パドル
翼の場合、翼長d′は翼先端がサイドフイードノズ
ルの先端よりも反応容器内壁に近くなるようにす
るのがよく、より好ましくは反応容器内壁とのク
リアランスは、前述した2重らせん帯撹拌翼と反
応容器内壁とのタリアランスδと同じ程度にする
のがよい。また補助撹拌翼の翼幅b′は大きい程よ
く、混合室の軸方向の長さlに対してb′/l≧
1/3が好ましい。
It is preferable to install an auxiliary stirring blade in the mixing chamber where the side feed liquid is mixed, and as the auxiliary stirring blade, it is necessary to improve the mixing in the direction perpendicular to the axis, so it is necessary to use a plurality of blades, for example, four blades. Alternatively, eight patru wings are suitable. As shown in Figure 4, it is best to install the auxiliary stirring blades immediately downstream of the main feed liquid in the flow direction of the side feed nozzle, but it is also possible to install them at two locations across the side feed nozzle. . There is no particular restriction on the size of the auxiliary stirring blade, but in the case of paddle blades, the blade length d′ is preferably such that the blade tip is closer to the inner wall of the reaction vessel than the tip of the side feed nozzle. The clearance between the stirring blade and the inner wall of the reaction vessel is preferably set to be approximately the same as the above-mentioned clearance δ between the double helical band stirring blade and the inner wall of the reaction vessel. In addition, the larger the blade width b' of the auxiliary stirring blade is, the better; b'/l ≥
1/3 is preferable.

サイドフイードノズルからは、モノマー、溶剤
あるいは種々の添加剤等のサイドフイード液を連
続的に注入することができるが、必ずしもそこか
らサイドフイード液を注入する必要はない。サイ
ドフイード液を注入しない場合でも、サイドフイ
ードノズル及び混合室の存在が、本発明による重
合装置の特徴を損ねることはない。
A side feed liquid such as a monomer, a solvent, or various additives can be continuously injected from the side feed nozzle, but it is not necessarily necessary to inject the side feed liquid from there. Even if no side feed liquid is injected, the presence of the side feed nozzle and the mixing chamber does not impair the features of the polymerization apparatus according to the invention.

本発明による連続塊状重合装置を用いて連続重
合を行なうに際し、重合液の粘度は1ポイズ〜
30000ポイズが適当である。1ポイズ以下の低粘
度重合液に対しては、本装置をあえて用いる必要
はなく、30000ポイズ以上の高粘度重合液に対し
ては、撹拌動力の増大、異常滞留部の発生等の問
題で、本装置を用いる場合においても、本発明に
よる以外の工夫が必要となる。
When performing continuous polymerization using the continuous bulk polymerization apparatus according to the present invention, the viscosity of the polymerization solution is 1 poise to 1 poise.
30000 poise is appropriate. There is no need to use this device for low-viscosity polymerization liquids of 1 poise or less, but for high-viscosity polymerization liquids of 30,000 poise or more, there are problems such as increased stirring power and the occurrence of abnormal stagnation. Even when using this device, measures other than those according to the present invention are required.

以上の様に本発明の装置を用いることによつて
初めて、異常滞留部分を生ぜず、少ない動力で、
ピストンフローに近い極めて狭い滞留時間分布の
連続塊状重合が実施される。同時に本装置は一般
の工業装置で使われている2重らせん帯翼等をそ
のまま使用し得るという点で装置の製造も極めて
簡単である。
By using the device of the present invention as described above, for the first time, no abnormal stagnation occurs and with less power,
A continuous bulk polymerization with a very narrow residence time distribution close to the piston flow is carried out. At the same time, this device is extremely simple to manufacture in that double helical band blades and the like used in general industrial equipment can be used as they are.

また、本装置は完全混合槽型の連続塊状重合装
置に比べ、撹拌翼の回転数が少なくてすむので動
力をそれ程要せず、そ分重合液の粘度の高い状態
で運転できるので、溶剤量を少なくでき、あるい
は最終重合率を高くでき、ポリマー製造プロセス
としては効率のよいものとなる。
In addition, compared to a complete mixing tank type continuous bulk polymerization device, this device requires less rotation speed of the stirring blade, so it does not require as much power, and it can be operated in a state where the polymerization liquid has a high viscosity. This makes it possible to reduce the amount of polymerization or increase the final polymerization rate, resulting in an efficient polymer production process.

さらに本装置は水平に設置しても垂直に設置し
ても使用できる。
Furthermore, the device can be used either horizontally or vertically.

これらの点から本発明は極めて汎用性が高く明
細書中の限定された図例に限定されるものでな
く、特許請求の範囲に記載された内容を満たす装
置は全て本発明に包含されるものである。
From these points, the present invention is extremely versatile and is not limited to the limited illustrations in the specification, and any device that satisfies the contents described in the claims is included in the present invention. It is.

以下に実施例を示す。 Examples are shown below.

実施例 1 95重量%のスチレン単量体、5重量%の市販の
ポリブタジエン(例えば旭化成社製のジエン55)
よりなる単量体組成物を混合溶解後、スクリユー
及びドラフトチユーブを備えた3.0の完全混合
槽型反応器にその混合物を連続的に3.0/Hrで
供給し、135℃で予備重合を行なつた。この重合
液を該反応器から連続的にとり出し、主重合反応
器に連続的に供給して引き続き重合を行なつた。
Example 1 95% by weight styrene monomer, 5% by weight commercially available polybutadiene (e.g. Diene 55 from Asahi Kasei)
After mixing and dissolving the monomer composition, the mixture was continuously fed at 3.0/Hr into a 3.0 complete mixing tank reactor equipped with a screw and a draft tube, and prepolymerization was carried out at 135°C. . This polymerization liquid was continuously taken out from the reactor and continuously supplied to the main polymerization reactor for subsequent polymerization.

主重合反応器としては、第1図に示した本発明
の円筒型反応器を使用した。この反応器は内径10
cm、長さ40cmの円筒型反応器でジヤケツト及び液
出入口を備えている。この反応容器には中心に回
転軸がついており、その回転軸には8個の半ピツ
チの2重らせん帯型撹拌翼及びそれらの撹拌翼と
撹拌翼の間に、軸とともに回転するデイスク状多
孔板がとりつけられて、反応容器内が8つのセル
に分割されている。またこの反応容器には第4セ
ルと第5セルの間にサイドフイード液を混合する
混合室が設けられており、混合室に臨んでサイド
フイードノズルが設置されている。2重らせん帯
型撹拌翼は、翼幅2cm、翼軸長4cm、翼の外径
9.5cmのものを用い、反応容器内壁と撹拌翼との
クリアランスは2.5mmである。撹拌翼の向きは、
全て同一方向で、回転方向は液の流れが第1図の
様になる方向である。デイスク状多孔板は、直径
9.5cm厚さ2mmの大きさで、直径4mmの孔が軸を
中心に放射線状に8方向に計24個あいている(開
口面積比14%)、サイドフイード液を混合する混
合室は前述のデイスク状多孔板と同型の軸ととも
に回転する邪魔板で他のセルと区切られており、
その回転軸方向の長さは2cmである。混合室の中
には外径6mmでその先端が重合反応容器の内壁よ
り2cm内側へ突出したサイドフイードノズル及び
翼長9.5cm、翼幅8mmの4枚パトル翼の補助撹拌
翼が一つ設置されている。この様な反応器を3つ
直列に接続して主重合反応を行なつた。
As the main polymerization reactor, the cylindrical reactor of the present invention shown in FIG. 1 was used. This reactor has an inner diameter of 10
A cylindrical reactor with a length of 40 cm and a jacket and a liquid inlet and outlet. This reaction vessel has a rotating shaft in the center, and on the rotating shaft are eight half-pitch double helical band stirring blades, and between the stirring blades are disc-shaped porous holes that rotate with the shaft. A plate is attached to divide the inside of the reaction vessel into eight cells. Further, this reaction vessel is provided with a mixing chamber for mixing the side feed liquid between the fourth cell and the fifth cell, and a side feed nozzle is installed facing the mixing chamber. The double helical band stirring blade has a blade width of 2cm, a blade shaft length of 4cm, and an outer diameter of the blade.
A 9.5 cm one was used, and the clearance between the inner wall of the reaction vessel and the stirring blade was 2.5 mm. The direction of the stirring blade is
All are in the same direction, and the direction of rotation is such that the liquid flows as shown in FIG. The disc-shaped perforated plate has a diameter
The size is 9.5 cm and 2 mm thick, and a total of 24 holes with a diameter of 4 mm are opened in 8 directions radially around the shaft (opening area ratio 14%).The mixing chamber for mixing the side feed liquid is the aforementioned disk. It is separated from other cells by a baffle plate that rotates with a shaft of the same type as the perforated plate.
Its length in the rotation axis direction is 2 cm. Inside the mixing chamber, a side feed nozzle with an outer diameter of 6 mm and its tip protruding 2 cm inward from the inner wall of the polymerization reaction vessel, and one auxiliary stirring blade consisting of four pawl blades with a blade length of 9.5 cm and a blade width of 8 mm are installed. has been done. Three such reactors were connected in series to carry out the main polymerization reaction.

前述の予備重合した重合液を第1の主重合反応
器に連続的に供給し、ジヤケツトによつて130℃
に加熱して10rpmで撹拌をして重合を行なわせ
た。また、第1の主重合反応器のサイドフイード
ノズルより、溶剤及び添加剤としてエチルベンセ
ンと白色鉱物油2対1の混合物を0.2/Hrで連
続的に供給し混合室で混合した。第1の主重合反
応器で重合された重合液は、次いで第2の主重合
反応器に供給した。第2の主重合反応器ではジヤ
ケツトを135℃に加熱して10rpmで撹拌すると同
時にサイドフイードノズルから溶剤及び添加剤と
してエチルベンゼンと白色鉱物油2対1の混合物
を0.1/Hrで連続的に供給し、混合室で混合し
て重合を行なわせた。さらにその重合液を第3の
主重合反応器に連続的に供給した。第3の主重合
反応器ではジヤケツトを155℃に加熱し、5rpmの
撹拌で重合を完結させた。第3の主重合反応器の
サイドフイードノズルについてはそこから何のサ
イドフイードも行わなかつた。
The prepolymerized polymer solution described above was continuously supplied to the first main polymerization reactor and heated to 130°C through a jacket.
Polymerization was carried out by heating at 10 rpm and stirring at 10 rpm. Further, a mixture of ethylbenzene and white mineral oil in a ratio of 2:1 as a solvent and an additive was continuously fed at a rate of 0.2/hr from the side feed nozzle of the first main polymerization reactor and mixed in the mixing chamber. The polymerization liquid polymerized in the first main polymerization reactor was then supplied to the second main polymerization reactor. In the second main polymerization reactor, the jacket was heated to 135°C and stirred at 10 rpm, and at the same time, a 2:1 mixture of ethylbenzene and white mineral oil was continuously fed from a side feed nozzle as a solvent and an additive at a rate of 0.1/hr. The mixture was mixed in a mixing chamber to carry out polymerization. Furthermore, the polymerization liquid was continuously supplied to the third main polymerization reactor. In the third main polymerization reactor, the jacket was heated to 155°C and the polymerization was completed with stirring at 5 rpm. No side feed was performed from the side feed nozzle of the third main polymerization reactor.

第3の主重合反応器を出て来た重合液での単量
体転化率は86重量パーセントであつた。またその
重合液の温度は165℃であつた。
The monomer conversion rate in the polymerization liquid exiting the third main polymerization reactor was 86% by weight. The temperature of the polymerization solution was 165°C.

第3の主重合反応器から連続的に搬出される重
合液は、従来から知られている脱揮発分法で未反
応モノマー及び溶剤を除去した後、押出機を用い
てペレツト化し、耐衝撃性ポリスチレンの製品を
得た。
The polymerization liquid continuously discharged from the third main polymerization reactor is subjected to a conventionally known devolatilization method to remove unreacted monomers and solvents, and then pelletized using an extruder to improve impact resistance. A polystyrene product was obtained.

こうして得られた最終生成物は以下の性質を示
す。
The final product thus obtained exhibits the following properties.

ゴム含有率 5.8重量% 軟質相の極限粘度 0.74 (トルエン中30℃で測定) メルトフローインデツクス(190℃)
0.91g/10min アイゾツト衝撃強度 9.5Kg・cm/cm (ノツチ付) 引張強度 240Kg/cm 引張伸度 64% 実施例 2 この例は、主重合反応器として第4図で示した
多管式熱交換器を備えた本発明の反応器を使用し
て実施したものであり、次の点以外は実施例1と
同じ条件で行なつた。
Rubber content 5.8% by weight Intrinsic viscosity of the soft phase 0.74 (measured in toluene at 30°C) Melt flow index (190°C)
0.91g/10min Izot impact strength 9.5Kg・cm/cm (with notch) Tensile strength 240Kg/cm Tensile elongation 64% Example 2 This example uses the shell-and-tube heat exchanger shown in Figure 4 as the main polymerization reactor. The experiment was carried out using the reactor of the present invention equipped with a reactor, and the experiment was carried out under the same conditions as in Example 1 except for the following points.

a 前重合用完全混合槽型反応器として20のも
のを用いる。
a. Use 20 complete mixing tank reactors for prepolymerization.

b ポリブタジエンゴムを溶解した単量体組成物
を20/Hrで供給する。
b. A monomer composition in which polybutadiene rubber is dissolved is supplied at a rate of 20/Hr.

c 第1主重合反応器のジヤケツト及び熱交換器
に120℃の熱媒を流す。(回転数は10rpm) d 第2主重合反応器のジヤケツト及び熱交換器
に130℃の熱媒を流す。(回転数は10rpm) e 第3主重合反応器のジヤケツト及び熱交換器
に150℃の熱媒を流す。(回転数は5rpm) f 第1主重合反応容器及び第2主重合反応器の
サイドフイードノズルよりエチルベンゼンと白
色鉱物油の2対1の混合物をそれぞれ2.0/
Hr、1.0/Hrで供給し混合する。
c. Flow a 120°C heat medium through the jacket and heat exchanger of the first main polymerization reactor. (Rotation speed: 10 rpm) d. Flow a heat medium at 130°C through the jacket and heat exchanger of the second main polymerization reactor. (Rotation speed is 10 rpm) e. Flow a heat medium at 150°C through the jacket and heat exchanger of the third main polymerization reactor. (Rotation speed: 5 rpm) f A 2:1 mixture of ethylbenzene and white mineral oil was added at a rate of 2.0/2 from the side feed nozzles of the first and second main polymerization reactors, respectively.
Supply and mix at a rate of 1.0/Hr.

主重合反応器は以下のものを用いた。 The following main polymerization reactor was used.

反応容器全体の長さが80cm、内壁がセル部で20
cmのもので、2つに分けられたものを重ねて用い
る。この反応容器には中心に回転軸がついてお
り、その回転軸には6個の半ピツチの2重らせん
帯型撹拌翼がついている。反応器全体は、4枚の
軸とともに回転するデイスク状多孔板及び2つの
多管式熱交換器によつて6つのセルと1つの混合
室とに仕切られている。混合室は第3セルの手前
に設えられている。2重らせん帯型撹拌翼は、翼
幅2cm、翼軸長7cm、翼の外径19.5cmのものを用
い、反応容器内壁とのクリアランスは2.5mmであ
る。撹拌翼の向きは全て同一方向で、回転方向は
液の流れが第4図の様になる方向である。デイス
ク状多孔板は直径19.5cm厚さ2mmの大きさで直径
1.4cmの孔が正三角形配列で18個あいている(開
口面積比14%)。多管式熱交換器については、内
径1.4cm長さ10cmのチユーブが正三角形配列に18
本と中心に内径4cm長さ10cmのチユーブが1本つ
いたシエルアンドチユーブ型のものを用いる(開
口面積比11%)。混合室は、回転軸方向の長さが
3.5cmであり、その中に外径6mmでその先端が反
応容器の内壁より5cm内側に突出したサイドフイ
ードノズル及び翼長19.5cm、翼幅2cmの4枚パド
ル翼の補助撹拌翼が一つ設置されている。
The total length of the reaction vessel is 80 cm, and the inner wall is 20 cm in cell section.
cm, and are divided into two parts that are stacked on top of each other. This reaction vessel had a rotating shaft in the center, and six half-pitch double helical band stirring blades were attached to the rotating shaft. The entire reactor is divided into six cells and one mixing chamber by a disk-shaped perforated plate rotating with four shafts and two shell-and-tube heat exchangers. The mixing chamber is provided in front of the third cell. The double helical band stirring blade used had a blade width of 2 cm, a blade axis length of 7 cm, and an outer diameter of 19.5 cm, and the clearance with the inner wall of the reaction vessel was 2.5 mm. The stirring blades are all oriented in the same direction, and the direction of rotation is such that the liquid flows as shown in FIG. The disc-shaped perforated plate has a diameter of 19.5 cm and a thickness of 2 mm.
There are 18 1.4cm holes in an equilateral triangular arrangement (opening area ratio: 14%). For shell-and-tube heat exchangers, 18 tubes with an inner diameter of 1.4 cm and a length of 10 cm are arranged in an equilateral triangle.
Use a shell-and-tube type with a book and a tube with an inner diameter of 4 cm and a length of 10 cm in the center (opening area ratio: 11%). The length of the mixing chamber in the direction of the rotation axis is
It is 3.5 cm in size, and there is one side feed nozzle with an outer diameter of 6 mm and whose tip protrudes 5 cm inward from the inner wall of the reaction vessel, and one auxiliary stirring blade of four paddle blades with a blade length of 19.5 cm and a blade width of 2 cm. is set up.

この様な条件で実施したところ得られた最終生
成物は、ほぼ実施例1と同様なものが得られた。
When carried out under these conditions, the final product obtained was almost the same as in Example 1.

参考例 1 実施例1と同一条件であるが主重合反応器内の
デイスク状多孔板の代りに直径3cmの孔が6個あ
いた直径9.0cmの円板(開口面積比73%)を用い
て連続重合を行なつた。
Reference Example 1 Same conditions as Example 1, but continuous polymerization using a 9.0 cm diameter disc with 6 3 cm diameter holes (opening area ratio 73%) instead of the disc-shaped perforated plate in the main polymerization reactor. Polymerization was carried out.

この結果反応容器内の温度分布が乱れ、樹脂の
構造、物性も不安定でかつ実施例1に比べ劣るも
のが得られた。
As a result, the temperature distribution within the reaction vessel was disturbed, and the structure and physical properties of the resin were unstable and inferior to those of Example 1.

比較例 1 実施例1と同一条件であるが、主重合反応器で
の2重らせん帯型撹拌翼の代りに翼幅3cm、翼長
9.5cmの4枚のパドル型撹拌翼を用いて連続重合
を行なつた。
Comparative Example 1 Same conditions as Example 1, but with a blade width of 3 cm and a blade length instead of the double helical band type stirring blade in the main polymerization reactor.
Continuous polymerization was carried out using four 9.5 cm paddle-type stirring blades.

この結果反応槽内に高温の領域が発生し、安定
した状態で運転ができなかつた。
As a result, a high-temperature region was generated in the reaction tank, making it impossible to operate in a stable state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第4図は本発明による連続塊状重合
装置の概略図である。 1:重合反応容器、2:ジヤケツト、3:回転
軸、4:撹拌翼、5:邪魔板、6:サイドフイー
ド液を混ぜる混合室、7:混合室の補助撹拌翼、
8:邪魔板、9:液流入口、10:液流出口、1
1:サイドフイードノズル、12:熱媒入口、1
3:熱媒出口、14:メインフイード液流入方
向、15:メインフイード液流出方向、16:サ
イドフイード液流入方向、17:多管式熱交換
器、18:フランジ 第2図は、第1図の装置を用い仕様を種々変更
して測定した場合の滞留時間分布曲線である。第
3図は、本発明の連続塊状重合装置で用いた2重
らせん帯型撹拌翼の模式図である。 D:重合反応容器内壁、b:撹拌翼の翼幅、
d:撹拌翼の外径、δ:重合反応容器内壁と撹拌
翼外周との間のクリアランス、h:撹拌翼軸長、
L:撹拌翼のあるセルの回転軸方向の長さ、b′:
補助撹拌翼の翼幅、d′:補助撹拌翼の翼長、l:
混合室の回転軸方向の長さ。
1 and 4 are schematic diagrams of a continuous bulk polymerization apparatus according to the present invention. 1: Polymerization reaction vessel, 2: Jacket, 3: Rotating shaft, 4: Stirring blade, 5: Baffle plate, 6: Mixing chamber for mixing side feed liquid, 7: Auxiliary stirring blade for mixing chamber,
8: Baffle plate, 9: Liquid inlet, 10: Liquid outlet, 1
1: Side feed nozzle, 12: Heat medium inlet, 1
3: Heat medium outlet, 14: Main feed liquid inflow direction, 15: Main feed liquid outflow direction, 16: Side feed liquid inflow direction, 17: Multi-tube heat exchanger, 18: Flange Figure 2 shows the device shown in Figure 1. These are residence time distribution curves measured with various specifications. FIG. 3 is a schematic diagram of a double helical band type stirring blade used in the continuous bulk polymerization apparatus of the present invention. D: inner wall of polymerization reaction vessel, b: blade width of stirring blade,
d: outer diameter of the stirring blade, δ: clearance between the inner wall of the polymerization reaction vessel and the outer periphery of the stirring blade, h: axial length of the stirring blade,
L: Length of the cell with stirring blades in the direction of the rotation axis, b′:
Blade width of the auxiliary stirring blade, d′: Blade length of the auxiliary stirring blade, l:
The length of the mixing chamber in the direction of the rotation axis.

Claims (1)

【特許請求の範囲】 1 液流入口と液流出口とを備えた液の流れ方向
に長い構造を有する円筒型反応容器と該反応容器
の内部に付設した回転軸及び1若しくはそれ以上
のサイドフイードノズルとからなり、該回転軸に
は複数個の2重らせん帯型の撹拌翼がその大部分
が同一方向を向くよう配設され、該撹拌翼と撹拌
翼との間には仕切効果を有する1若しくはそれ以
上の邪魔板が付設され、前記サイドフイードノズ
ルは邪魔板と邪魔板とにより仕切られその内部に
前記2重らせん型の撹拌翼を有さない混合室に臨
んで付設されていることを特徴とする連続塊状重
合装置。 2 前記2重らせん帯型撹拌翼の翼幅bと前記反
応容器の内径Dとの比が0.05≦b/D≦0.3であ
る特許請求の範囲第1項記載の装置。 3 前記反応容器の内壁と前記2重らせん帯型撹
拌翼の外周との間のクリアランスδが1mm<δ<
30mmである特許請求の範囲第1又は2項記載の装
置。 4 前記2重らせん帯型撹拌翼の軸長hと前記邪
魔板と邪魔板とにより区分されその内部に2重ら
せん帯型撹拌翼を有するセルの回転軸方向の長さ
Lとの比がh/L≧0.5である特許請求の範囲第
1,2又は3項記載の装置。 5 前記邪魔板の反応容器断面積に対する開口面
積比が5〜40%の範囲にある特許請求の範囲第
1,2,3又は4項記載の装置。 6 前記混合室内の回転軸に1又は2の補助撹拌
翼が付設されている特許請求の範囲第1,2,
3,4又は5項記載の装置。 7 前記サイドフイードノズルの先端が反応容器
の内壁から突出している特許請求の範囲第1,
2,3,4,5又は6項記載の装置。 8 前記混合室の回転軸方向の長さlが前記長さ
Lに対してl/L≦0.5である特許請求の範囲第
4,5,6又は7項記載の装置。 9 前記補助撹拌翼の翼が複数枚のパドル翼であ
る特許請求の範囲第6,7又は8項記載の装置。
[Scope of Claims] 1. A cylindrical reaction vessel having a structure elongated in the flow direction of the liquid and having a liquid inlet and a liquid outlet, a rotating shaft attached to the inside of the reaction vessel, and one or more side walls. A plurality of double helical band type stirring blades are arranged on the rotating shaft so that most of them face the same direction, and a partition effect is created between the stirring blades. one or more baffle plates are attached thereto, and the side feed nozzle is attached facing a mixing chamber that is partitioned by the baffle plates and does not have the double helical stirring blades therein. A continuous bulk polymerization device characterized by: 2. The apparatus according to claim 1, wherein the ratio of the blade width b of the double helical band stirring blade to the inner diameter D of the reaction vessel is 0.05≦b/D≦0.3. 3 The clearance δ between the inner wall of the reaction vessel and the outer periphery of the double helical band stirring blade is 1 mm<δ<
3. The device according to claim 1 or 2, which has a diameter of 30 mm. 4 The ratio of the axial length h of the double helical band type stirring blade to the length L in the rotational axis direction of the cell divided by the baffle plate and having the double helical band type stirring blade inside thereof is h. The device according to claim 1, 2 or 3, wherein /L≧0.5. 5. The apparatus according to claim 1, 2, 3, or 4, wherein the opening area ratio of the baffle plate to the cross-sectional area of the reaction vessel is in the range of 5 to 40%. 6 Claims 1, 2, and 2, wherein one or two auxiliary stirring blades are attached to the rotating shaft in the mixing chamber.
The device according to item 3, 4 or 5. 7. Claim 1, wherein the tip of the side feed nozzle protrudes from the inner wall of the reaction vessel.
The device according to item 2, 3, 4, 5 or 6. 8. The device according to claim 4, 5, 6, or 7, wherein the length l of the mixing chamber in the direction of the rotational axis is l/L≦0.5 with respect to the length L. 9. The device according to claim 6, 7 or 8, wherein the auxiliary stirring blades are a plurality of paddle blades.
JP230782A 1982-01-12 1982-01-12 Continuous bulk polymerization apparatus Granted JPS58120604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP230782A JPS58120604A (en) 1982-01-12 1982-01-12 Continuous bulk polymerization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP230782A JPS58120604A (en) 1982-01-12 1982-01-12 Continuous bulk polymerization apparatus

Publications (2)

Publication Number Publication Date
JPS58120604A JPS58120604A (en) 1983-07-18
JPH0134444B2 true JPH0134444B2 (en) 1989-07-19

Family

ID=11525695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP230782A Granted JPS58120604A (en) 1982-01-12 1982-01-12 Continuous bulk polymerization apparatus

Country Status (1)

Country Link
JP (1) JPS58120604A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035001A (en) * 1983-08-05 1985-02-22 Japan Synthetic Rubber Co Ltd Polymerization apparatus
EP0813900A1 (en) * 1996-03-28 1997-12-29 Union Carbide Chemicals & Plastics Technology Corporation Continuous, squeeze flow mixing process

Also Published As

Publication number Publication date
JPS58120604A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
JPS6328082B2 (en)
US4198383A (en) Apparatus for continuous preparation of acrylonitrilebutadienstyrene copolymer
US4952627A (en) Process for producing high impact styrene resin by continuous bulk polymerization
RU2390377C2 (en) Method and installation for production of styrene polymer in reactor with mechanical mixer
JP3447378B2 (en) Granulation equipment
US5210132A (en) Continuous process for preparing rubber modified high impact resin
US3434804A (en) Apparatus utilizing a webbed stirrer for continuous mixing
JP4112255B2 (en) Method for producing impact-resistant monovinyl aromatic polymer
US5550186A (en) Particle sizing
JPS629245B2 (en)
JPH037708A (en) Production of rubber-modified styrene resin
JPH0134444B2 (en)
US3003986A (en) Process of emulsion polymerization of ethylenically unsaturated monomers utilizing taylor ring flow pattern
JPH0134445B2 (en)
EP0376232B1 (en) Continuous process for preparing rubber modified high impact resins
US5194491A (en) Process for producing rubber-modified styrene resin, and resin composition
JPS634850B2 (en)
JP3600325B2 (en) Method for producing rubber-reinforced styrenic resin
US5973079A (en) Large particle generation
JP2594343B2 (en) Continuous production method of rubber-modified styrenic resin
JP3365854B2 (en) Impact resistant styrenic resin composition and continuous production method thereof
JPH082934B2 (en) Method for producing rubber-modified styrene resin and resin composition
JP2594344B2 (en) Continuous production method of rubber-modified impact-resistant resin
JPH02311508A (en) Production of rubber-modified styrene resin, and resin composition containing the same
EP0036896A1 (en) Bulk polymerization reactor