JPH0134218B2 - - Google Patents

Info

Publication number
JPH0134218B2
JPH0134218B2 JP7813481A JP7813481A JPH0134218B2 JP H0134218 B2 JPH0134218 B2 JP H0134218B2 JP 7813481 A JP7813481 A JP 7813481A JP 7813481 A JP7813481 A JP 7813481A JP H0134218 B2 JPH0134218 B2 JP H0134218B2
Authority
JP
Japan
Prior art keywords
substituted
carboxylic acid
exchange resin
ion exchange
aziridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7813481A
Other languages
Japanese (ja)
Other versions
JPS57193432A (en
Inventor
Nobuyuki Kawashima
Toshio Kato
Ryuichi Mita
Masaharu Oooka
Chojiro Higuchi
Nobuhiro Kawashima
Teruhiro Yamaguchi
Shosuke Nagai
Takao Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7813481A priority Critical patent/JPS57193432A/en
Priority to AU84520/82A priority patent/AU550973B2/en
Priority to IT21337/82A priority patent/IT1151414B/en
Priority to KR8202182A priority patent/KR860001885B1/en
Priority to EP82901531A priority patent/EP0079390B1/en
Priority to PCT/JP1982/000182 priority patent/WO1982004044A1/en
Priority to CA000403290A priority patent/CA1185979A/en
Priority to MX192763A priority patent/MX155815A/en
Priority to DE8282901531T priority patent/DE3268091D1/en
Publication of JPS57193432A publication Critical patent/JPS57193432A/en
Publication of JPH0134218B2 publication Critical patent/JPH0134218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は、β―ヒドロキシアミノ酞の新芏な補
造法に関するものである。さらに詳しくは、―
眮換アゞリゞン――カルボン酞たたはその誘導
䜓を匷酞性型カチオン亀換暹脂に吞着させお、氎
の存圚䞋に加熱しおβ―眮換―β―ヒドロキシア
ミノ酞を補造する方法に関するものである。 β―眮換―β―ヒドロキシアミノ酞ずしおは、
たずえば、スレオニン、プニルセリンたたはβ
―ヒドロキシバリン等が挙げられる。スレオニン
は必須アミノ酞の䞀皮であり、飌料添加剀ずしお
その将来性が期埅され、プニルセリンやβ―ヒ
ドロキシバリンをはじめずするβ―眮換―β―ヒ
ドロキシアミノ酞は、それ自身に生理掻性が期埅
されるずずもに、皮々の蟲医薬品の䞭間䜓ずしお
も有甚な化合物である。 埓来、―眮換アゞリゞン――カルボン酞お
よびその誘導䜓からβ―眮換―β―ヒドロキシア
ミノ酞を補造する方法に぀いおは、―メチルア
ゞリゞン――カルボン酞メチル゚ステルおよび
゚チル゚ステルの混合物を過塩玠酞で凊理した
埌、さらに、塩酞で凊理しおスレオニンを補造す
る方法特開昭54−157555号、たた、―ベン
ゞル――プニルアゞリゞン――カルボン酞
メチルを過塩玠酞で開環加氎分解したのち、
Pd觊媒䞋に還元するこずによりプニルセ
リンを補造する方法が知られおいる
Heterocycles4731978。しかしなが
ら、前者の方法では、生成したスレオニンを含む
溶液からスレオニンを単離するには、反応液を濃
瞮しアンモニア氎でPH調敎埌、むオン亀換暹脂に
より粟補する必芁があり、工皋が非垞に煩雑にな
るずいう欠点がある。たた、埌者の方法では、過
塩玠酞凊理埌、―ベンゞルプニルセリンを単
離し、さらにPd觊媒䞋に還元しお、ベンゞ
ル基をはずす必芁があるため、工皋が非垞に煩雑
になり、工業的には有甚な方法ではない。たた、
―眮換アゞリゞン――カルボン酞たたはその
誘導䜓の開環反応においおは、反応系に氎より高
い求栞胜を有する陰むオン、䟋えば、ハロゲンむ
オンが共存するず副生成物ずしお、それらのむオ
ンが付加した化合物が生成しおβ―眮換―β―ヒ
ドロキシアミノ酞の収率を䜎䞋させる欠点も有す
る。このように、β―眮換―β―ヒドロキシアミ
ノ酞の補法ずしお、いく぀かの方法が提案されお
いるが、それぞれ䞀長䞀短があり、工業的に満足
しうる補造法は芋圓らない。 本発明者らは、―眮換アゞリゞン――カル
ボン酞たたはその誘導䜓からβ―眮換―β―ヒド
ロキシアミノ酞の工業的補造法を鋭意怜蚎した結
果、本発明の方法に到達した。 すなわち、本発明は、䞀般匏 匏䞭、R1はメチル基、眮換もしくは無眮換
のプニル基たたはピリゞル基、R2は氎玠原子
たたはメチル基を瀺し、は―CO2H、―CO2M
こゝで、はアルカリ金属たたはアルカリ土類
金属である、―CO2R3こゝで、R3は炭玠原子
数〜の䜎玚アルキル基たたはベンゞル基であ
る、―CO2NH2たたは―CNを瀺すで衚わさ
れる―眮換アゞリゞン――カルボン酞たたは
その誘導䜓を匷酞性型カチオン亀換暹脂に吞着さ
せお、氎の存圚䞋で加熱しおβ―眮換―β―ヒド
ロキシアミノ酞を補造する方法である。 このような本発明の方法は、埓来党く知られお
いない新芏な方法であ぀お、埓来公知の方法にく
らべお工皋が著しく簡略化され、ほずんど副生物
を䌎うこずもなく、盞圓するβ―ヒドロキシアミ
ノ酞が高収率で埗られる利点がある。さらには、
反応によ぀お生成したβ―眮換―β―ヒドロキシ
アミノ酞の単離は、加熱埌の該むオン亀換暹脂に
アンモニア氎を流しおβ―眮換―β―ヒドロキシ
アミノ酞を溶離し、溶離液を濃瞮也固たたは濃瞮
晶析するだけの簡単な操䜜で可胜であり、このよ
うに反応、粟補および単離を同時に行えるこずも
本発明の方法の倧きな特城の぀である。 本発明の方法で䜿甚される原料は、前蚘䞀般匏
で衚わされる―眮換アゞリゞン――カ
ルボン酞たたはその誘導䜓であり、これらの原料
化合物は、β―眮換―αβ―ゞハロゲノプロピ
オン酞たたはその誘導䜓たたはβ―眮換―α―ハ
ロゲノアクリル酞誘導䜓ずアンモニアずの反応
特開昭54−157555号E.KyburzHelv.Chim.
acta493591966G.SzeimiesChem.Ber.
11017921977E.P.StyhgachKhim.
Geterotsikl.Soedin19731523Y.Yukawa
Mem.Inst.Sci.and Ind.ResearchOsaka
Univ.141911957E.P.StyngackIzv.
Akad.Nauk.Mold.SSR.Ser.Biol.Khim.Nank
197562、あるいは、―眮換アクリル酞゚ス
テルずアゞドカルボン酞゚ステルの熱分解反応、
M.P.SamnesJ.Chem.Soc.Perkin Trans.1
1972344、さらには、―眮換アゞリゞン―
―カルボン酞のアルカリ金属たたはアルカリ土類
金属塩は、―眮換アゞリゞン――カルボン酞
゚ステルを等量のアルカリ金属たたはアルカリ土
類金属の氎酞化物で凊理するか、あるいは、β―
眮換―α―アミノ―β―ハロゲノプロピオン酞も
しくはその誘導䜓゚ステル、アミド、ニトリ
ルたたはβ―眮換―α―ハロゲノ―β―アミノ
プロピオン酞もしくはその誘導䜓を、アルカリ金
属たたはアルカリ土類金属の氎酞化物で凊理する
等の公知技術、あるいはそれに準じた方法により
補造できる。 本発明の方法で䜿甚する匷酞性型カチオン亀換
暹脂は、型、Na型、NH+ 4型等いずれの型でも
よいが、通垞、型を䜿甚するこずが奜たしい。
たたむオン亀換暹脂の基䜓は、ゲル型、ポヌラス
型たたはマクロポヌラス型等のあらゆる基䜓のも
のを䜿甚するこずができる。したが぀お匷酞性型
カチオン亀換暹脂であれば、その銘柄は特に限定
されるものではない。たた、銘柄以䞊の匷酞性
型カチオン亀換暹脂を䜵甚するこずも䜕ら差し支
えない。むオン亀換暹脂の䜿甚量は、原料ずしお
―眮換アゞリゞン――カルボン酞のアルカリ
金属たたはアルカリ土類金属塩を䜿甚する堎合は
―眮換アゞリゞン――カルボン酞ず、それず
塩をなしおいる金属むオンの総量に察しお、湿最
状態での亀換容量で圓量以䞊、奜たしくは、
1.2圓量以䞊である。䟋えば、モルの―眮換
アゞリゞン――カルボン酞カリりム塩を原料ず
し、総亀換容量が圓量の匷酞性型カチオン
亀換暹脂を䜿甚する堎合、その暹脂䜿甚量は、
以䞊奜たしくは1.2以䞊である。たた、―
眮換アゞリゞン――カルボン酞、たたはその゚
ステル、アミド、ニトリル等の誘導䜓を甚いる堎
合は、―眮換アゞリゞン――カルボン酞たた
はその誘導䜓そのものに察しお、湿最状態での亀
換容量で圓量以䞊、奜たしくは、1.2圓量以䞊
である。䟋えばモルの―眮換アゞリゞン―
―カルボン酞゚チル゚ステルを原料ずし、総亀換
容量が圓量の匷酞性型カチオン亀換暹脂を
䜿甚する堎合その暹脂䜿甚量は、0.5以䞊、奜
たしくは0.6以䞊である。原料の氎溶液䞭に塩
化ナトリりムや臭化アンモニりム等の無機塩や、
アミノ基を含んだ化合物のように匷酞性型カチオ
ン亀換暹脂に吞着されやすい物質が含たれる堎
合、これらの物質に盞圓する分以䞊に暹脂量を増
量しおおく必芁がある。 本発明の方法では、前蚘䞀般匏で衚わさ
れる―眮換アゞリゞン――カルボン酞たたは
その誘導䜓は、氎溶液たたは氎ず混和性の有機溶
媒、䟋えばメタノヌル、゚タノヌル、む゜プロパ
ノヌル等のアルコヌル類を含有する氎溶液ずし、
これ等の氎溶液を匷酞性型カチオン亀換暹脂を充
填した暹脂塔に流し、さらに氎掗する方法、たた
はこれらの氎溶液に匷酞性型カチオン亀換暹脂を
添加混合する方法によ぀お、むオン亀換暹脂に吞
着させる。ずくに、原料化合物の氎溶液䞭に、塩
化ナトリりム、臭化アンモニりム等のようにむオ
ン亀換によ぀お塩酞や臭化氎玠酞のような酞玠物
質を生成する化合物が含たれる堎合には、原料化
合物がむオン亀換暹脂から脱離したり、ハロゲン
むオンが原料化合物ず反応する可胜性があるの
で、原料氎溶液をむオン亀換暹脂塔に流し、その
埌十分に氎掗しお、―眮換アゞリゞン――カ
ルボン酞たたはその誘導䜓を匷酞性型カチオン亀
換暹脂に吞着させる方法が奜たしい。 このように、―眮換アゞリゞン――カルボ
ン酞たたはその誘導䜓を吞着させた匷酞性型カチ
オン亀換暹脂は、氎の存圚䞋に加熱される。その
加熱方法には、特に限定はないが、湿最状態を保
぀必芁があり、加熱された氎をむオン亀換暹脂を
充填した塔に連続的に流しおもよく、たたむオン
亀換暹脂を充填した塔を倖郚から加熱しおもよ
い。あるいは、むオン亀換暹脂を別の容噚に移
し、氎の存圚䞋に撹拌しながら加熱するこずもで
きる。 この加熱条件は、40〜120℃、〜100時間、奜
たしくは、50〜100℃、〜50時間である。反応
は40℃以䞋の枩床、䟋えば、宀枩でも進行する
が、反応の完結に著しく長時間を芁し実際的では
ない。 むオン亀換暹脂に吞着状態の―眮換アゞリゞ
ン――カルボン酞たたは誘導䜓を加熱しお生成
するβ―眮換―β―ヒドロキシアミノ酞は、反応
埌むオン亀換暹脂に吞着された状態にあり、この
β―眮換―β―ヒドロキシアミノ酞を単離するに
は、垞法にしたが぀おむオン亀換暹脂から溶離、
䟋えば、吞着されおいるβ―眮換―β―ヒドロキ
シアミノ酞をアンモニア氎で溶離し、その溶離液
を濃瞮也固するか、たたはβ―眮換―β―ヒドロ
キシアミノ酞の溶解床以䞋に濃瞮したのち、晶析
によ぀お単離する。 以䞋、実斜䟋によ぀お本発明の方法を説明す
る。なお、実斜䟋〜および1011で甚いられ
る原料の―眮換アゞリゞン――カルボン酞
塩、たたは―眮換アゞリゞン――カルボン酞
誘導䜓は、シス䜓ずトランス䜓の混合物であり、
埗られるβ―ヒドロキシアミノ酞もスレオ䜓ず゚
リスロ䜓の混合物である。 なお、実斜䟋においお、玔床分析ならびに収率
は、高速液䜓クロマトグラフむヌ、栞磁気共鳎ス
ペクトル等の方法によ぀お求めた。 実斜䟋  ―メチルアゞリゞン――カルボン酞゚チル
゚ステル12.9の氎溶液160mlを匷酞性型カチオ
ン亀換暹脂Lewatit ―100型バむ゚ル瀟
補60mlに通し、さらに蒞留氎60mlで氎掗しお
―メチルアゞリゞン――カルボン酞゚チル゚ス
テルを吞着させる。その埌、このむオン亀換暹脂
を100mlのフラスコに移し、80〜85℃で時間反
応させた埌、再びカラムに移しアンモニア氎
90mlず蒞留氎60mlで溶離した。この溶離液を濃瞮
也固しおスレオニン11.4を埗た。埗られたスレ
オニンは、玔床92.5で、収率は88.6であ぀
た。 たた、原料ずしお、―メチルアゞリゞン―
―カルボン酞゚チル゚ステルのシス䜓トランス
䜓が6634の混合物を甚いた堎合、生成したスレ
オニンはスレオ䜓アロ䜓が7030の混合物であ
぀た。 さらに、原料ずしお、シス䜓のみを甚いた堎合
ほずんどスレオ䜓であ぀た。 実斜䟋  ―メチルアゞリゞン――ニトリル8.2の
氎溶液136mlをLewatit ―100型60mlに通
じ、さらに蒞留氎60mlで氎掗しお、―メチルア
ゞリゞン――ニトリルを吞着させる。その埌こ
のむオン亀換暹脂に80〜85℃に加熱された熱氎を
時間埪環させる。反応埌むオン亀換カラムを冷
华し、アンモニア氎90mlず蒞留氎60mlで溶離
し、この溶離液を濃瞮也固し、スレオニン4.9
を含有する固䜓7.6を埗た。埗られたスレオニ
ンは玔床64.5、収率41.2であ぀た。 実斜䟋  α―クロロ―β―アミノ――ブチロニトリル
å¡©é…žå¡©15.5の氎溶液160に、撹拌䞋、氎酞化
ナトリりム12.8を90の氎に溶解した氎溶液を
陀々に滎䞋する。぀いでこの反応混合物を60℃に
昇枩し、60〜65℃で時間反応させる。 次にこの反応液を冷华し硫酞氎溶液で䞭和
し、Lewatit ―100型400mlを充填したカ
ラムに通した。さらにカラムからの留出液䞭に塩
玠むオンが怜出されなくなるたで、蒞留氎を流し
た。その埌、この―メチルアゞリゞン――カ
ルボン酞を吞着したむオン亀換カラムに85〜90℃
に加熱された熱氎を時間埪環しお反応させる。
反応埌むオン亀換カラムを冷华し、アンモニ
ア氎600mlず、蒞留氎400mlによ぀お溶離した。こ
の溶離液を濃瞮也固しお11.0のスレオニンを埗
た。埗られたスレオニンは玔床88.7、収率82
であ぀た。 実斜䟋  α―クロロ―β―アミノ酪酞゚チル゚ステル塩
é…žå¡©20.2を甚いた倖は実斜䟋ず党く同様の反
応を行い、スレオニン10.5を埗た。埗られたス
レオニンは玔床93.0、収率82.0であ぀た。 実斜䟋  ―メチルアゞリゞン――カルボン酞む゜プ
ロピル゚ステル7.2の氎溶液100mlをLewatit 
―100型30mlに通し、さらに蒞留氎30mlで氎
掗しお、―メチル―アゞリゞン――カルボン
酞む゜プロピル゚ステルを吞着させる。その埌、
このむオン亀換暹脂に80〜85℃に加熱した熱氎を
時間埪環させる。反応埌、むオン亀換カラムを
冷华し、アンモニア氎45mlず蒞留氎30mlで溶
離し、この溶離液を濃瞮也固しスレオニン11.2
を埗た。埗られたスレオニンは玔床95.9、収率
90.3であ぀た。 実斜䟋 〜 匷酞性型カチオン亀換暹脂をLewatit ―100
のかわりに他の暹脂を甚い、その他は実斜䟋ず
同様に反応を行い、衚―に瀺す結果を埗た。 【衚】 実斜䟋  ―ゞメチルアゞリゞン――カルボン酞
5.8の氎溶液72mlをLewatit ―100型30
mlに通し、さらに蒞留氎30mlで氎掗しお―
ゞメチルアゞリゞン――カルボン酞を吞着させ
る。その埌、このむオン亀換暹脂を100mlのフラ
スコに移し、80〜85℃で時間反応させた埌、再
びカラムに移しアンモニア氎45mlず蒞留氎30
mlで溶離した。この溶離液を濃瞮也固しおβ―ヒ
ドロキシバリン6.4を埗た。埗られたβ―ヒド
ロキシバリンは玔床91.3、収率88.5であ぀
た。 実斜䟋 10 ―プニルアゞリゞン――カルボン酞む゜
プロピル゚ステル10.3を溶解した氎溶液150ml
をLewatit ―100型40mlに適し、蒞留氎
40mlで氎掗しお―プニルアゞリゞン――カ
ルボン酞む゜プロピル゚ステルを吞着させる。そ
の埌、このむオン亀換暹脂に80〜85℃に加熱した
熱氎を時間埪環させる。反応埌、むオン亀換カ
ラムを冷华し、アンモニア氎60mlず蒞留氎90
mlで溶離しこの溶離液を濃瞮也固し、生成物9.0
を埗た。生成物は83.3のプニルセリンを含
有し、プニルセリンずしおの収率は82.9であ
぀た。 実斜䟋 11 ―プニルアゞリゞン――カルボン酞アミ
ド8.1の氎溶液160mlを実斜䟋10ず党く同じよう
に凊理しお、生成物8.7を埗た。生成物は56.3
のプニルセリンを含有し、プニルセリンの
収率は54.1であ぀た。 実斜䟋 12 ――ピリゞルアゞリゞン――カルボ
ン酞む゜プロピル゚ステル10.3の氎溶液160ml
を、実斜䟋10ず同じように凊理しお、生成物9.2
を埗た。生成物は80.4の―ピリゞルセリン
を含有し、―ピリゞルセリンの収率は81.3で
あ぀た。 実斜䟋 13 実斜䟋ず同じ方法を、アゞリゞン――カル
ボン酞メチル゚ステルに代えお、―メチルアゞ
リゞン――カルボン酞ベンゞル゚ステル19.1
を䜿甚しお実斜した。 11.8のスレオニンが埗られた。玔床91.7、
収率91.3であ぀た。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing β-hydroxyamino acids. For more details, see 3-
The present invention relates to a method for producing a β-substituted β-hydroxyamino acid by adsorbing substituted aziridine-2-carboxylic acid or a derivative thereof onto a strongly acidic cation exchange resin and heating it in the presence of water. As β-substituted-β-hydroxy amino acids,
For example, threonine, phenylserine or β
-Hydroxyvaline etc. Threonine is a type of essential amino acid and is expected to have potential as a feed additive, while β-substituted β-hydroxy amino acids such as phenylserine and β-hydroxyvaline are expected to have physiological activity on their own. It is also a useful compound as an intermediate for various agricultural medicines. Conventionally, in a method for producing β-substituted β-hydroxy amino acids from 3-substituted aziridine-2-carboxylic acid and its derivatives, a mixture of 3-methylaziridine-2-carboxylic acid methyl ester and ethyl ester was treated with perchloric acid. and then further treatment with hydrochloric acid to produce threonine. After ring hydrolysis,
A method for producing phenylserine by reduction under a Pd/C catalyst is known (Heterocycles, 9 , 473 (1978)). However, in the former method, in order to isolate threonine from the solution containing threonine produced, it is necessary to concentrate the reaction solution, adjust the pH with aqueous ammonia, and then purify it using an ion exchange resin, making the process extremely complicated. It has the disadvantage of becoming. In addition, in the latter method, it is necessary to isolate N-benzylphenylserine after treatment with perchloric acid, and then reduce it under a Pd/C catalyst to remove the benzyl group, making the process extremely complicated. , is not an industrially useful method. Also,
In the ring-opening reaction of 3-substituted aziridine-2-carboxylic acid or its derivatives, if anions with higher nucleophilic ability than water, such as halogen ions, coexist in the reaction system, these ions may be added as by-products. It also has the disadvantage that compounds are formed and the yield of β-substituted β-hydroxy amino acids is reduced. As described above, several methods have been proposed for producing β-substituted β-hydroxyamino acids, but each has advantages and disadvantages, and no industrially satisfactory production method has been found. The present inventors have intensively studied methods for industrially producing β-substituted β-hydroxy amino acids from 3-substituted aziridine-2-carboxylic acids or derivatives thereof, and as a result, have arrived at the method of the present invention. That is, the present invention provides the general formula () (In the formula, R 1 is a methyl group, a substituted or unsubstituted phenyl group, or a pyridyl group, R 2 is a hydrogen atom or a methyl group, and X is -CO 2 H, -CO 2 M
(Here, M is an alkali metal or alkaline earth metal), -CO 2 R 3 (Here, R 3 is a lower alkyl group having 1 to 5 carbon atoms or a benzyl group), -CO 3-Substituted aziridine-2-carboxylic acid or its derivatives represented by 2 NH 2 or -CN) is adsorbed onto a strongly acidic cation exchange resin and heated in the presence of water to form β-substituted -β- This is a method for producing hydroxyamino acids. The method of the present invention is a novel method that has not been previously known. Compared to conventionally known methods, the process is significantly simplified, almost no by-products are produced, and the corresponding β-hydroxy It has the advantage that amino acids can be obtained in high yield. Furthermore,
The β-substituted β-hydroxy amino acid produced by the reaction is isolated by flowing aqueous ammonia through the heated ion exchange resin to elute the β-substituted β-hydroxy amino acid, and concentrating the eluate to dryness. Alternatively, it can be performed by a simple operation of concentration and crystallization, and one of the major features of the method of the present invention is that reaction, purification, and isolation can be performed simultaneously in this way. The raw material used in the method of the present invention is a 3-substituted aziridine-2-carboxylic acid represented by the above general formula () or a derivative thereof, and these raw material compounds are β-substituted-α,β-dihalogenated Reaction of propionic acid or its derivatives or β-substituted-α-halogenoacrylic acid derivatives with ammonia (JP-A-54-157555; E. Kyburz, Helv. Chim.
acta, 49, 359 (1966); G. Szeimies, Chem. Ber.
110, 1792 (1977); EPStyhgach, Khim.
Geterotsikl. Soedin, 1973, 1523; Y. Yukawa,
Mem.Inst.Sci.and Ind.ResearchOsaka
Univ., 14, 191 (1957); EPStyngack, Izv.
Akad.Nauk.Mold.SSR.Ser.Biol.Khim.Nank,
1975, 62), or thermal decomposition reaction of 3-substituted acrylic acid ester and azidocarboxylic acid ester,
(MPSamnes, J.Chem.Soc., Perkin Trans.1,
1972, 344), and furthermore, 3-substituted aziridine-2
-Alkali metal or alkaline earth metal salts of carboxylic acids can be prepared by treating a 3-substituted aziridine-2-carboxylic acid ester with an equal amount of alkali metal or alkaline earth metal hydroxide, or by treating β-
Substituted α-amino-β-halogenopropionic acid or its derivatives (esters, amides, nitriles) or β-substituted α-halogeno-β-aminopropionic acid or its derivatives by hydroxylation of alkali metals or alkaline earth metals. It can be manufactured by a known technique such as treatment with a substance, or a method similar thereto. The strongly acidic cation exchange resin used in the method of the present invention may be of any type, such as H type, Na type, or NH + 4 type, but it is usually preferable to use H type.
Further, as the base of the ion exchange resin, any type of base such as gel type, porous type, or macroporous type can be used. Therefore, the brand is not particularly limited as long as it is a strongly acidic cation exchange resin. Furthermore, there is no problem in using two or more brands of strongly acidic cation exchange resins together. When using an alkali metal or alkaline earth metal salt of 3-substituted aziridine-2-carboxylic acid as a raw material, the amount of ion exchange resin used is the amount of 3-substituted aziridine-2-carboxylic acid and its salt. 1 equivalent or more based on the exchange capacity in a wet state based on the total amount of metal ions, preferably,
It is 1.2 equivalent or more. For example, when using 1 mol of 3-substituted aziridine-2-carboxylic acid potassium salt as a raw material and using a strongly acidic cation exchange resin with a total exchange capacity of 2 equivalents, the amount of resin used is 1
The above value is preferably 1.2 or more. Also, 3-
When using a substituted aziridine-2-carboxylic acid or a derivative thereof such as an ester, amide, or nitrile, the exchange capacity in a wet state is 1 equivalent or more relative to the 3-substituted aziridine-2-carboxylic acid or its derivative itself. , preferably 1.2 equivalents or more. For example, 1 mole of 3-substituted aziridine-2
- When using a strongly acidic cation exchange resin using carboxylic acid ethyl ester as a raw material and having a total exchange capacity of 2 equivalents, the amount of the resin used is 0.5 or more, preferably 0.6 or more. Inorganic salts such as sodium chloride and ammonium bromide in the aqueous solution of raw materials,
When substances that are easily adsorbed by strongly acidic cation exchange resins, such as compounds containing amino groups, are included, it is necessary to increase the amount of resin by more than the amount corresponding to these substances. In the method of the present invention, the 3-substituted aziridine-2-carboxylic acid represented by the general formula () or its derivative contains an aqueous solution or an organic solvent miscible with water, such as alcohols such as methanol, ethanol, and isopropanol. an aqueous solution of
These aqueous solutions are poured into a resin column filled with a strongly acidic cation exchange resin, and then washed with water, or the strongly acidic cation exchange resin is added to and mixed with these aqueous solutions, so that the ion exchange resin adsorbs them. . In particular, when the aqueous solution of the raw material compound contains a compound such as sodium chloride or ammonium bromide that generates oxygen substances such as hydrochloric acid or hydrobromic acid through ion exchange, the raw material compound may be ionized. Since there is a possibility that the halogen ions may be desorbed from the exchange resin or react with the raw material compound, the raw material aqueous solution is poured into the ion exchange resin tower, and then thoroughly washed with water to remove the 3-substituted aziridine-2-carboxylic acid or its derivative. A method of adsorbing the compound to a strongly acidic cation exchange resin is preferred. In this way, the strongly acidic cation exchange resin adsorbed with 3-substituted aziridine-2-carboxylic acid or its derivative is heated in the presence of water. There are no particular limitations on the heating method, but it is necessary to maintain a moist state, and heated water may be continuously passed through a column filled with ion exchange resin, or a column filled with ion exchange resin may be used. It may be heated externally. Alternatively, the ion exchange resin can be transferred to a separate container and heated while stirring in the presence of water. The heating conditions are 40 to 120°C for 1 to 100 hours, preferably 50 to 100°C for 2 to 50 hours. Although the reaction proceeds at temperatures below 40° C., for example at room temperature, it takes an extremely long time to complete the reaction, which is not practical. The β-substituted-β-hydroxy amino acid produced by heating the 3-substituted aziridine-2-carboxylic acid or derivative adsorbed on the ion exchange resin is adsorbed on the ion exchange resin after the reaction, and this β- Substituted β-hydroxy amino acids can be isolated by elution from an ion exchange resin according to conventional methods.
For example, the adsorbed β-substituted β-hydroxyamino acid is eluted with aqueous ammonia, the eluate is concentrated to dryness, or the eluate is concentrated to below the solubility of the β-substituted β-hydroxyamino acid, and then crystallized. isolated by The method of the present invention will be explained below by way of examples. Note that the 3-substituted aziridine-2-carboxylic acid salts or 3-substituted aziridine-2-carboxylic acid derivatives used as raw materials in Examples 1 to 8 and 10 and 11 are a mixture of cis and trans forms,
The resulting β-hydroxyamino acid is also a mixture of threo and erythro forms. In addition, in the Examples, purity analysis and yield were determined by methods such as high performance liquid chromatography and nuclear magnetic resonance spectroscopy. Example 1 160 ml of an aqueous solution of 12.9 g of 3-methylaziridine-2-carboxylic acid ethyl ester was passed through 60 ml of strongly acidic cation exchange resin Lewatit S-100 (H type) (manufactured by Bayer), and further washed with 60 ml of distilled water. te3
-Methylaziridine-2-carboxylic acid ethyl ester is adsorbed. After that, this ion exchange resin was transferred to a 100ml flask and reacted at 80-85℃ for 7 hours, then transferred to the column again and 5% ammonia water was added.
eluted with 90 ml and 60 ml of distilled water. This eluate was concentrated to dryness to obtain 11.4 g of threonine. The obtained threonine had a purity of 92.5% and a yield of 88.6%. In addition, as a raw material, 3-methylaziridine-2
- When a mixture of carboxylic acid ethyl ester with a ratio of cis isomer to trans isomer at 66:34 was used, the threonine produced was a mixture of threo isomer and allo isomer at 70:30. Furthermore, when only the cis isomer was used as a raw material, most of the compounds were the threo isomer. Example 2 136 ml of an aqueous solution of 8.2 g of 3-methylaziridine-2-nitrile is passed through 60 ml of Lewatit S-100 (H type) and washed with 60 ml of distilled water to adsorb 3-methylaziridine-2-nitrile. Thereafter, hot water heated to 80 to 85°C is circulated through the ion exchange resin for 8 hours. After the reaction, the ion exchange column was cooled and eluted with 90 ml of 5% aqueous ammonia and 60 ml of distilled water, and the eluate was concentrated to dryness to yield 4.9 g of threonine.
7.6 g of solid containing . The obtained threonine had a purity of 64.5% and a yield of 41.2%. Example 3 To 160 g of an aqueous solution of 15.5 g of α-chloro-β-amino-n-butyronitrile hydrochloride is gradually added dropwise, with stirring, an aqueous solution of 12.8 g of sodium hydroxide dissolved in 90 g of water. The reaction mixture is then heated to 60°C and reacted at 60-65°C for 6 hours. Next, this reaction solution was cooled, neutralized with a 5% aqueous sulfuric acid solution, and passed through a column packed with 400 ml of Lewatit S-100 (H type). Further, distilled water was allowed to flow through the column until no chloride ions were detected in the distillate from the column. Then, the 3-methylaziridine-2-carboxylic acid was adsorbed on an ion exchange column at 85-90°C.
The reaction is carried out by circulating hot water heated to
After the reaction, the ion exchange column was cooled and eluted with 600 ml of 5% aqueous ammonia and 400 ml of distilled water. This eluate was concentrated to dryness to obtain 11.0 g of threonine. The obtained threonine has a purity of 88.7% and a yield of 82%.
It was hot. Example 4 The same reaction as in Example 3 was carried out except that 20.2 g of α-chloro-β-aminobutyric acid ethyl ester hydrochloride was used to obtain 10.5 g of threonine. The obtained threonine had a purity of 93.0% and a yield of 82.0%. Example 5 100 ml of an aqueous solution of 7.2 g of 3-methylaziridine-2-carboxylic acid isopropyl ester was added to Lewatit S
Pass through 30 ml of -100 (H type) and wash with 30 ml of distilled water to adsorb 3-methyl-aziridine-2-carboxylic acid isopropyl ester. after that,
Hot water heated to 80 to 85°C is circulated through this ion exchange resin for 8 hours. After the reaction, the ion exchange column was cooled and eluted with 45 ml of 5% aqueous ammonia and 30 ml of distilled water, and the eluate was concentrated to dryness to yield 11.2 g of threonine.
I got it. The obtained threonine has a purity of 95.9% and a yield of
It was 90.3%. Examples 6 to 8 Strongly acidic cation exchange resin Lewatit S-100
The reaction was carried out in the same manner as in Example 5 except that other resins were used instead, and the results shown in Table 1 were obtained. [Table] Example 9 3,3-dimethylaziridine-2-carboxylic acid
Add 72 ml of 5.8 g aqueous solution to Lewatit S-100 (H type) 30
ml, and then rinse with 30 ml of distilled water.
Adsorb dimethylaziridine-2-carboxylic acid. After that, this ion exchange resin was transferred to a 100ml flask and reacted at 80-85℃ for 7 hours, then transferred to the column again and mixed with 45ml of 5% ammonia water and 30ml of distilled water.
eluted with ml. This eluate was concentrated to dryness to obtain 6.4 g of β-hydroxyvaline. The β-hydroxyvaline obtained had a purity of 91.3% and a yield of 88.5%. Example 10 150 ml of an aqueous solution containing 10.3 g of 3-phenylaziridine-2-carboxylic acid isopropyl ester
Suitable for Lewatit S-100 (H type) 40ml, distilled water
Wash with 40 ml of water to adsorb 3-phenylaziridine-2-carboxylic acid isopropyl ester. Thereafter, hot water heated to 80 to 85°C is circulated through the ion exchange resin for 8 hours. After the reaction, cool the ion exchange column and add 60ml of 5% ammonia water and 90ml of distilled water.
This eluate was concentrated to dryness to give a product of 9.0 ml.
I got g. The product contained 83.3% phenylserine, and the yield as phenylserine was 82.9%. Example 11 160 ml of an aqueous solution of 8.1 g of 3-phenylaziridine-2-carboxylic acid amide was treated in exactly the same manner as in Example 10 to obtain 8.7 g of product. The product is 56.3
% of phenylserine, and the yield of phenylserine was 54.1%. Example 12 160 ml of an aqueous solution of 10.3 g of 3-(2-pyridyl)aziridine-2-carboxylic acid isopropyl ester
was treated as in Example 10 to give product 9.2
I got g. The product contained 80.4% 2-pyridylserine, and the yield of 2-pyridylserine was 81.3%. Example 13 The same method as in Example 1 was performed, except that 19.1 g of 3-methylaziridine-2-carboxylic acid benzyl ester was used instead of aziridine-2-carboxylic acid methyl ester.
It was carried out using 11.8 g of threonine was obtained. Purity 91.7%,
The yield was 91.3%.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、R1はメチル基、眮換もしくは無眮換
のプニル基たたはピリゞル基、R2は氎玠原子
たたはメチル基を瀺し、は―CO2H、―CO2M
ここで、はアルカリ金属たたはアルカリ土類
金属である、―CO2R3ここで、R3は炭玠原子
数〜の䜎玚アルキル基たたはベンゞル基であ
る、―CONH2たたは―CNを瀺すで衚わされ
る―眮換アゞリゞン――カルボン酞たたはそ
の誘導䜓を匷酞性型カチオン亀換暹脂に吞着させ
お、氎の存圚䞋で加熱するこずを特城ずするβ―
眮換―β―ヒドロキシアミノ酞の補造法。
[Claims] 1 General formula () (In the formula, R 1 is a methyl group, a substituted or unsubstituted phenyl group, or a pyridyl group, R 2 is a hydrogen atom or a methyl group, and X is -CO 2 H, -CO 2 M
(wherein M is an alkali metal or alkaline earth metal), —CO 2 R 3 (wherein R 3 is a lower alkyl group having 1 to 5 carbon atoms or a benzyl group), —CONH 2 or β-, which is characterized by adsorbing 3-substituted aziridine-2-carboxylic acid represented by -CN) or its derivative on a strongly acidic cation exchange resin and heating it in the presence of water.
Substituted method for producing β-hydroxy amino acids.
JP7813481A 1981-05-19 1981-05-25 Production of beta-hydroxyaminoacid Granted JPS57193432A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP7813481A JPS57193432A (en) 1981-05-25 1981-05-25 Production of beta-hydroxyaminoacid
AU84520/82A AU550973B2 (en) 1981-05-19 1982-03-19 Process for preparing b-hydroxy amino acid
IT21337/82A IT1151414B (en) 1981-05-19 1982-05-18 PROCESS FOR THE PRODUCTION OF BETA-HYDROXYAMINOACIDS
KR8202182A KR860001885B1 (en) 1981-05-19 1982-05-19 A process for preparing beta-hydroxy amino acids
EP82901531A EP0079390B1 (en) 1981-05-19 1982-05-19 Process for preparing beta-hydroxy amino acid
PCT/JP1982/000182 WO1982004044A1 (en) 1981-05-19 1982-05-19 Process for preparing beta-hydroxy amino acid
CA000403290A CA1185979A (en) 1981-05-19 1982-05-19 PRODUCTION PROCESS OF .beta.-HYDROXYAMIDO ACIDS
MX192763A MX155815A (en) 1981-05-19 1982-05-19 PROCEDURE FOR PREPARING BETA-HYDROXYAMINO-ACID
DE8282901531T DE3268091D1 (en) 1981-05-19 1982-05-19 Process for preparing beta-hydroxy amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7813481A JPS57193432A (en) 1981-05-25 1981-05-25 Production of beta-hydroxyaminoacid

Publications (2)

Publication Number Publication Date
JPS57193432A JPS57193432A (en) 1982-11-27
JPH0134218B2 true JPH0134218B2 (en) 1989-07-18

Family

ID=13653402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7813481A Granted JPS57193432A (en) 1981-05-19 1981-05-25 Production of beta-hydroxyaminoacid

Country Status (1)

Country Link
JP (1) JPS57193432A (en)

Also Published As

Publication number Publication date
JPS57193432A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
JP2619951B2 (en) Gabapentin monohydrate and method for producing the same
JPS5943459B2 (en) N-alkylpiperidine derivative
JPS5921684A (en) 3-aminoquinuclidine derivatives, manufacture and therapeutical drug
JPH0245624B2 (en)
JPH02231457A (en) Method for synthesizing l-(-)-2-amino-3-(3,4- dihydroxyphenyl)propanoic acid, product thereby, and use of said product in said synthesis
JPH0219820B2 (en)
US5565185A (en) Process for the preparation of radiolabeled meta-halobenzylguanidine
JPH0134218B2 (en)
JP2001048864A (en) COMPOUND FOR PRODUCING beta-ADRENALINE RECEPTOR ANTAGONIST AND METHOD
KR860001885B1 (en) A process for preparing beta-hydroxy amino acids
JPS5936626B2 (en) Method for producing 1H-indazole acetic acid derivative
US4366317A (en) Process for synthesis of N-(hydrocarbyl)substituted-p-menthane-3-carboxamide
Stammer et al. Synthesis of racemic threo-and erythro-. beta.-hydroxylysines
JPH0134217B2 (en)
JPS59137465A (en) Manufacture of imidazole-4,5-dicarboxylic acid
SU666169A1 (en) Method of obtaining dl-lysine
JP2767295B2 (en) Method for producing indole-3-carbonitrile compound
JPS5993059A (en) Preparation of cytosines
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
Taguchi et al. Stereochemistry of the 2, 2'-Dihydroxydicyclohexylamines. I1
JP2607896B2 (en) Method for producing isotope-labeled 3,4: 5,6-di-O-isopropylidene-D-glucononitrile
JPS6258347B2 (en)
JPS5921674A (en) Manufacture of pure water-free imido acid ester by reaction of nitrile and aminoalcohol
JPS6261584B2 (en)
JP5319339B2 (en) Method for producing aliphatic nitrile