JPH0133616B2 - - Google Patents

Info

Publication number
JPH0133616B2
JPH0133616B2 JP55182072A JP18207280A JPH0133616B2 JP H0133616 B2 JPH0133616 B2 JP H0133616B2 JP 55182072 A JP55182072 A JP 55182072A JP 18207280 A JP18207280 A JP 18207280A JP H0133616 B2 JPH0133616 B2 JP H0133616B2
Authority
JP
Japan
Prior art keywords
air
slab
building
roof
rooftop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182072A
Other languages
Japanese (ja)
Other versions
JPS57108350A (en
Inventor
Manzo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noda Plywood Mfg Co Ltd
Original Assignee
Noda Plywood Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noda Plywood Mfg Co Ltd filed Critical Noda Plywood Mfg Co Ltd
Priority to JP18207280A priority Critical patent/JPS57108350A/en
Publication of JPS57108350A publication Critical patent/JPS57108350A/en
Publication of JPH0133616B2 publication Critical patent/JPH0133616B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Description

【発明の詳細な説明】 本発明は屋上スラブ空冷工法と該工法を利用し
た建築物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rooftop slab air cooling construction method and a building using the construction method.

マンシヨンなどの建築物の屋上、屋根は直射日
光に曝されるので、特に夏季においては非常に高
温となり(約70℃)屋上屋根に蓄積された熱によ
り、最上階の室温も非常に高温になり居住性を著
しく悪化させていた。このような最上階の高温に
なるのを防止するため従来次のような断熱材によ
る施工方法が行なわれていた。
The rooftops and roofs of buildings such as condominiums are exposed to direct sunlight, resulting in extremely high temperatures (approximately 70 degrees Celsius), especially in the summer.The heat accumulated on the roofs causes the room temperature on the top floor to become extremely high. This significantly worsened livability. In order to prevent such high temperatures on the top floor, the following construction methods have been used in the past.

屋上面に断熱材を貼る方法、 室内天井面に断熱材を貼る方法、 しかしの方法では屋上面に貼つた断熱材が太
陽熱、風雨で劣化し、損傷し易く、またの方法
では、屋上スラブ自体が高温化し、温度変化によ
る屋上スラブの伸縮により、屋上スラブに亀裂が
生ずるなどして屋上スラブ自体が劣化し易い欠点
がある。
The method of pasting insulation material on the roof surface, and the method of pasting insulation material on the indoor ceiling surface. However, with these methods, the insulation material pasted on the roof surface deteriorates and is easily damaged by solar heat, wind and rain, and with the other method, the roof slab itself The problem is that the roof slab itself tends to deteriorate due to the expansion and contraction of the roof slab due to temperature changes, which can cause cracks in the roof slab.

本発明はこのような従来の建築物の最上階の室
温の高温になるのを防止する施工法の問題点を解
決することを目的とするものである。
The present invention aims to solve the problems of the conventional construction method for preventing the room temperature on the top floor of a building from becoming too high.

すなわち本発明は以下詳述するように建築物1
の屋上、または屋根に屋上スラブ板2を敷設し、
該屋上スラブ板2により、日当り面から日陰面に
連通する空気流通層5を形成し、夏季において該
空気流通層5内に日陰面の低温空気を導入し、屋
上スラブの冷却をするようにしたものである。
That is, the present invention applies to the building 1 as detailed below.
Laying the rooftop slab board 2 on the roof or roof of
The rooftop slab board 2 forms an air circulation layer 5 that communicates from the sunny side to the shaded side, and in summer, low-temperature air from the shaded side is introduced into the air circulation layer 5 to cool the rooftop slab. It is something.

本発明はこのような構成により、特に夏季にエ
ネルギーを必要とすることなく、日当り面に発生
する上昇気流aを利用し、建築物1の屋上スラブ
の高温化を防止しようとするものである。
With such a configuration, the present invention aims to prevent the roof slab of the building 1 from becoming hotter by utilizing the upward airflow a generated on the sunny surface without requiring energy, especially in the summer.

実施例の説明 以下図面に記載された本発明の実施例について
説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention illustrated in the drawings will be described.

まづ第1図、第2図に示される第1実施例につ
いて説明する。
First, a first embodiment shown in FIGS. 1 and 2 will be described.

第1図、第2図において1はコンクリート建築
物、で建築物1の屋上に屋上スラブ板2を支柱4
で支える。第2図において3は最上階スラブであ
る。最上階スラブ3と屋上スラブ板2の間にはか
くして日当り面側一般には南側から日陰面側一般
には北側に連通する空気層5が形成される。該空
気流通層5の南側は排出口6、北側は吸引口7と
なる。空気流通層5を形成する屋上スラブ板2と
最上階スラブ3との間隔は5〜200cmの範囲で、
好ましくは3〜10cmである。
In Figures 1 and 2, 1 is a concrete building, and a rooftop slab board 2 is attached to the roof of the building 1 with support 4.
Support with. In FIG. 2, 3 is the top floor slab. Thus, an air layer 5 is formed between the top floor slab 3 and the roof slab board 2, which communicates from the south side on the sunny side in general to the north side on the shaded side in general. The south side of the air circulation layer 5 is a discharge port 6, and the north side is a suction port 7. The interval between the rooftop slab board 2 and the top floor slab 3 forming the air circulation layer 5 is in the range of 5 to 200 cm,
Preferably it is 3 to 10 cm.

排出口6の前面には空気流通層5内の空気を外
部へ吸い出す形状の排出空気整流兼蓋板8を上向
傾斜に設ける。傾斜角度αは10゜〜45゜の範囲であ
る。もし第5図aに示すように排出空気整流兼蓋
板108の水平面に対する角度が15゜以下たとえ
ば5゜とすると、日当り面の外壁に沿つて上昇して
きた上昇気流は前記蓋板108の裏面と衝突状態
となり、乱流を発生し、このため空気流通層10
5の空気排出口106部分の空気に負圧を与える
ことができなくなる。このため空気流通層105
内の空気流dに対して吸引力を発揮できない。
A discharge air rectifying/lid plate 8 having a shape for sucking out the air in the air circulation layer 5 to the outside is provided on the front surface of the discharge port 6 in an upwardly inclined manner. The angle of inclination α is in the range of 10° to 45°. If the angle of the exhaust air rectifier/cover plate 108 with respect to the horizontal plane is 15 degrees or less, for example 5 degrees, as shown in FIG. A collision state occurs, generating turbulence, which causes the air circulation layer 10 to
Negative pressure cannot be applied to the air at the air outlet 106 of No. 5. Therefore, the air circulation layer 105
It cannot exert suction force against the air flow d inside.

また逆に45゜以上になると第5図bのように上
昇気流は前記蓋板108に沿つて上昇し切つた後
は蓋板108の抵抗がなくなるので拡散し、前記
蓋板108をこの拡散した部分が蓋板108を載
り越えて、空気流通層105の排出口106部分
に侵入し、空気流通層105内の空気流dと衝突
してしまう。
On the other hand, when the angle exceeds 45 degrees, the upward air current rises along the cover plate 108 as shown in FIG. The portion passes over the cover plate 108, enters the discharge port 106 portion of the air circulation layer 105, and collides with the air flow d within the air circulation layer 105.

このため、前記傾斜角度が45゜を越えると、逆
に空気流通層105の空気の流通を阻害する。
Therefore, if the angle of inclination exceeds 45 degrees, the air circulation in the air circulation layer 105 will be hindered.

前記傾斜角度が45゜以下だとすると、上昇気流
は前記蓋板の下面に沿つて放出する方向性が与え
られているので、直ちに前記蓋板を載り越えるこ
とがなく、排出口部分に正圧を与えることがな
い。
If the inclination angle is 45 degrees or less, the upward airflow is directed to be discharged along the lower surface of the cover plate, so it does not immediately go over the cover plate and applies positive pressure to the outlet area. Never.

本願発明では上記の理由から排出空気整流兼蓋
板の水平面に対する角度を上記のように設定し
た。
In the present invention, for the above-mentioned reasons, the angle of the exhaust air rectification/cover plate with respect to the horizontal plane is set as described above.

また吸引口7の後面には吸引空気整流兼蓋板9
を下向傾斜に設ける。その傾斜角度は10゜〜90゜の
範囲で、好ましくは30゜〜60゜である。なお排出空
気および吸引空気整流兼蓋板8,9は後述するよ
うに冬季閉鎖するので、排出口6、吸引口7を開
閉できるように揺動可能に形成される。
Also, on the back of the suction port 7 is a suction air rectifier/cover plate 9.
is installed on a downward slope. The angle of inclination is in the range of 10° to 90°, preferably 30° to 60°. Note that since the discharge air and suction air rectifying/lid plates 8 and 9 are closed during the winter as will be described later, they are formed to be swingable so that the discharge port 6 and the suction port 7 can be opened and closed.

つぎにその作用を説明する。 Next, its effect will be explained.

夏季には建築物1の日当り面(南側)の外壁
および屋上スラブが非常に高温となり、日当り
面の外壁に沿つて強い上昇気流aが生ずる。さ
らに屋上スラブ2の温度自体が上昇することに
よつて、空気層5内に多量の熱量が蓄積され
る。
In summer, the exterior wall and roof slab on the sunny side (south side) of the building 1 become extremely hot, and a strong upward air current a is generated along the exterior wall on the sunny side. Furthermore, as the temperature of the rooftop slab 2 itself increases, a large amount of heat is accumulated in the air layer 5.

前記上昇気流aが排出空気整流兼蓋板8に当
ると、該排出空気整流兼蓋板8は一般に15゜〜
45゜の上向傾斜となつているため、排出口6部
分の空気が稀薄となり、部分的に気圧の低下を
生ずる。換云すれば上昇気流aが排出空気整流
兼蓋板8の上向傾斜面に沿つて上昇する。
When the rising air flow a hits the exhaust air rectifier/cover plate 8, the exhaust air rectifier/cover plate 8 generally has an angle of 15° to
Since it has an upward slope of 45 degrees, the air at the discharge port 6 becomes thinner, causing a partial pressure drop. In other words, the rising air current a rises along the upwardly inclined surface of the exhaust air rectifying/lid plate 8.

また屋上スラブ2上部の空気が高温となる
と、同時に上昇気流bとなる。この上昇気流
a,bの上昇にともない、排出口6部分の空気
は吸引され、この部分に負圧が発生することに
なる。このようにして排出口6部分の空気は上
昇気流a,bに吸い出されて、上昇気流cとな
る。
Moreover, when the air above the rooftop slab 2 becomes high temperature, it simultaneously becomes an upward air current b. As the rising air currents a and b rise, the air in the discharge port 6 is sucked, and a negative pressure is generated in this part. In this way, the air in the portion of the discharge port 6 is sucked out by the rising air currents a and b, and becomes the rising air current c.

排出口6部分に上昇気流cが発生すると、空
気流通層5の吸引口7から北側の低温空気が吸
引される。北側の低温空気は吸引口7後面に設
けられた吸引空気整流兼蓋板9に案内されて、
日陰面の空気の多量が空気層5に導入されるよ
うになつている。
When an upward air current c is generated in the discharge port 6 portion, low-temperature air from the north side is sucked through the suction port 7 of the air circulation layer 5. The low-temperature air on the north side is guided to the suction air rectifier/cover plate 9 provided at the rear of the suction port 7,
A large amount of air from the shaded surface is introduced into the air layer 5.

このように夏季日照時間中は連続して空気層
5内を日陰面の低温空気を流すことができる。
一般に日当り面の空気温度は70℃、日陰面の空
気温度は30℃程度の場合は本発明の屋上スラブ
空冷工法は特に有効に機能する。この結果夏季
における屋根スラブの急激な温度上昇による屋
根直下の室温の上昇、昼夜の急激な温度変化に
よる屋上スラブの伸縮による劣化などを防止で
きる。
In this way, low-temperature air from the shaded surface can be continuously flowed through the air layer 5 during the summer sunshine hours.
In general, the rooftop slab air cooling method of the present invention works particularly effectively when the air temperature on the sunny side is 70°C and the air temperature on the shaded side is about 30°C. As a result, it is possible to prevent the rise in room temperature directly under the roof due to the rapid temperature rise of the roof slab in the summer, and the deterioration due to expansion and contraction of the roof slab due to rapid temperature changes between day and night.

夏季以外の季節においては、排出口6と吸引
口7とを閉鎖しておけば、屋上スラブの過冷却
を防止して、逆に空気層5が空気保温層として
機能する。
In seasons other than summer, if the exhaust port 6 and the suction port 7 are closed, overcooling of the rooftop slab is prevented, and the air layer 5 functions as an air heat insulating layer.

なお空気層5を設ける方法として建築物1の
屋上に厚い屋上スラブ2aを敷設し、該屋上ス
ラブ2a内に多数のトンネル状連通孔5aを穿
けてもよい。トンネル状連通孔5aの大きさは
直径5〜200cm、好ましくは3〜10cmで、建築
物1の断面長さLの全巾にわたつて密接して設
ける。
Note that as a method of providing the air layer 5, a thick roof slab 2a may be laid on the roof of the building 1, and a large number of tunnel-like communication holes 5a may be bored in the roof slab 2a. The tunnel-like communication hole 5a has a diameter of 5 to 200 cm, preferably 3 to 10 cm, and is closely spaced over the entire width of the cross-sectional length L of the building 1.

第2図のように、空気層5をやや排出口6側
から下り傾斜(1/300〜1/20ラジアン)に
傾斜させると、高温空気の上昇力が増大して空
気の排出能力が増大できる。
As shown in Figure 2, if the air layer 5 is tilted slightly downward (1/300 to 1/20 radian) from the exhaust port 6 side, the upward force of high-temperature air will increase and the air exhaust capacity can be increased. .

また排出空気整流兼蓋板8と最上階スラブ3
との間に隙間S(第2図)を明けておくと、雨
水の排出ができる利点がある。
In addition, the exhaust air rectifier/cover plate 8 and the top floor slab 3
If a gap S (Fig. 2) is left between the two, there is an advantage that rainwater can be drained away.

また第4図のように屋上スラブ板2の中央部
にも中央排気口10を設けると、日射光が直上
から当る時に屋上中央部に発生する上昇気流d
によつて空気層5内の高温空気を排気すること
ができる。
Furthermore, if a central exhaust port 10 is also provided in the center of the rooftop slab board 2 as shown in FIG.
This allows the high temperature air in the air layer 5 to be exhausted.

11は整流板で、上昇気流dの上昇にともな
い前記中央排出空気整流兼蓋板8を同様上昇気
流dが中央排出口10部分の空気を吸引する作
用を発生させるために設けられる。一般には第
4図のようにV字状であることが好ましい。
Reference numeral 11 denotes a rectifying plate, which is provided so that as the ascending air current d rises, the central exhaust air rectifying/lid plate 8 similarly causes the ascending air current d to suction air from the central exhaust port 10 portion. Generally, it is preferable to have a V-shape as shown in FIG.

またこの場合空気の大部分が中央排出口10
から排出すると、中央排出口10と排出口6の
間の部分の最上階スラブ3が冷却されないこと
になる。したがつて排出口6および中央排出口
10より上昇する空気の量が適当に配分される
ように中央整流板11と排出口10との間隔、
排出口6と排出空気整流兼蓋板8との間隔を適
宜調整する必要がある。したがつて中央整流板
11は中央排出口10を開閉できるように上下
動可能に設けられる。
In addition, in this case, most of the air is at the central outlet 10.
If it is discharged from the central discharge port 10 and the discharge port 6, the uppermost floor slab 3 in the area between the central discharge port 10 and the discharge port 6 will not be cooled. Therefore, the distance between the center baffle plate 11 and the outlet 10 is adjusted so that the amount of air rising from the outlet 6 and the center outlet 10 is appropriately distributed.
It is necessary to adjust the distance between the discharge port 6 and the discharge air rectifier/cover plate 8 as appropriate. Therefore, the central current plate 11 is provided so as to be movable up and down so as to open and close the central discharge port 10.

最上階の室内の天井にグラスウール、などの
断熱材12(第2図)を施工すると冬期の保温
効果が一層向上する。
If a heat insulating material 12 (Fig. 2) such as glass wool is installed on the ceiling of the room on the top floor, the heat retention effect in winter will be further improved.

本発明の作用効果 建築物1の日当り面の外壁に沿つて発生する
夏季の強い上昇気流のエネルギーを利用して、
夏季屋上スラブの冷却を行なうので、天然エネ
ルギーを必要とすることなく、屋上の夏季の高
温蓄積を除去することができる。
Effects of the present invention Utilizing the energy of strong updrafts in summer that occur along the outer wall of the sunny side of the building 1,
Summer roof slab cooling allows removal of summer heat build-up on the roof without the need for natural energy.

したがつて、室内の冷房などのエネルギーを
節約できる。
Therefore, energy for indoor cooling, etc. can be saved.

(b) 本発明においては、排出空気整流兼蓋板8を
排出口6水平面に対して15゜〜45゜上向傾斜に設
けたので、南側の外壁に沿つて発生する上方気
流aは前記排出空気整流兼蓋板8の上向傾斜面
に沿つて整流状態のまま上昇する結果、排出口
6部分に負圧を発生し、空気流通層5部分の空
気をこの負圧部分内に誘導し、上昇気流cを発
生する。このようにして北側の冷たい空気が建
築物を空冷する効果を生ずる。
(b) In the present invention, since the discharge air rectifying/cover plate 8 is provided with an upward slope of 15° to 45° with respect to the horizontal plane of the discharge port 6, the upward airflow a generated along the outer wall on the south side is As a result of the air rising in a rectified state along the upwardly inclined surface of the air rectifying/lid plate 8, a negative pressure is generated in the discharge port 6 portion, and the air in the air circulation layer 5 portion is guided into this negative pressure portion. Generates an updraft c. In this way, the cold air from the north has the effect of air-cooling the building.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明建築物の全体断面図、第2図:
第1図の要部拡大断面図、第3図:屋上スラブ板
の他の実施例の断面図、第4図:中央排出口10
を附設した場合の本発明建築物の断面図、第5図
a:蓋板の水平面に対する角度が15゜以下のとき
の作用説明図。第5図b:蓋板の水平面に対する
角度が45゜以上のときの作用説明図。 1…建築物、2,2a…屋上スラブ板、3…最
上階スラブ、4…支柱、5…空気流通層、5a…
トンネル状空気連通孔、6…空気排出口、7…空
気吸引口、8…排出空気整流兼蓋板、9…吸引空
気整流兼蓋板、10…中央排出口、11…中央排
出空気整流兼蓋板、12…天井断熱材。
Figure 1: Overall sectional view of the building of the present invention, Figure 2:
Fig. 1 is an enlarged cross-sectional view of the main part; Fig. 3: a cross-sectional view of another embodiment of the rooftop slab board; Fig. 4: central discharge port 10.
FIG. 5a is a cross-sectional view of the building of the present invention when the lid plate is attached to the horizontal plane. Fig. 5b: An explanatory diagram of the effect when the angle of the cover plate with respect to the horizontal plane is 45° or more. 1...Building, 2, 2a...Rooftop slab board, 3...Top floor slab, 4...Column, 5...Air circulation layer, 5a...
Tunnel-shaped air communication hole, 6...Air discharge port, 7...Air suction port, 8...Exhaust air rectification/lid plate, 9...Suction air rectification/lid plate, 10...Central discharge port, 11...Central discharge air rectification/lid Board, 12...Ceiling insulation material.

Claims (1)

【特許請求の範囲】 1 建築物1の屋上または屋根に屋上スラブ板2
を敷設し、該屋上スラブ板2により、建築物1の
日当り面から日陰面に連通する空気流通層5を形
成し、該空気流通層5の目当り面側の空気排出口
6の前面に水平面に対して15゜〜45゜上向傾斜の排
出空気整流兼蓋板8を、日陰面側の空気吸引口7
の後面には吸引空気整流兼蓋板9を取付け、夏季
建築物1の日当り面壁面に沿つて発生する上昇気
流aにより、空気排出口6部分に負圧を発生せし
め、空気流通層5内の空気を前記上昇気流aに吸
引することにより、日陰面の低温空気を空気流通
層5を通して空気排出口6に排出するようにし
た、 ことを特徴とする屋上スラブ空冷工法。 2 建築物1の屋上または屋根に屋上スラブ板2
を敷設し、該屋上スラブ板2により、日当り面と
日陰面とを連通する空気流通層5を形成し、該空
気流通層5の目当り面側の空気排出口6前面に水
平面に対して15゜〜45゜上向傾斜の排出空気整流兼
蓋板8を、日陰面側の空気吸引口7後面に吸引空
気整流兼蓋板9を取付けた、 ことを特徴とする屋上スラブ空冷工法を利用した
建築物。 3 建築物1の屋上または屋根に屋上スラブ板2
を敷設し、該屋上スラブ板2により、日当り面と
日陰面とを連通する空気流通層5を形成し、該空
気流通層5の日当り面側の空気排出口6前面に水
平面に対して15゜〜45゜上向傾斜の排出空気整流兼
蓋板8を、日陰面側の空気吸引口7後面に吸引空
気整流兼蓋板9を取付けた、建築物1において屋
上スラブ板2の中央部に中央空気排出口10を設
け、かつ該中央空気排出口10の上端に近接して
中央排出空気整流兼蓋板11を設けた、 ことを特徴とする屋上スラブ空冷工法を利用した
建築物。 4 最上階スラブ3上面に屋上スラブ板2を敷設
し、該屋上スラブ板2と最上階スラブ3との間に
空気流通層5を形成した特許請求の範囲第2項記
載の屋上スラブ空冷工法を利用した建築物。 5 最上階スラブ3上面に屋上スラブ板2aを敷
設し、該屋上スラブ板2a内にトンネル状空気連
通孔5aを穿設して空気流通層を形成した、特許
請求の範囲第2項記載の屋上スラブ空冷工法を利
用した建築物。 6 空気流通層5を空気排出口6から空気吸引口
7に向けて下り傾斜とした特許請求の範囲第2項
記載の屋上スラブ空冷工法を採用した建築物。 7 排出空気整流兼蓋板8下端と最上階スラブ3
との間に隙間を空けた特許請求の範囲第2項記載
の屋上スラブ空冷工法を利用した建築物。 8 日陰面側の空気吸引口7後面に取付けた吸引
空気整流兼蓋板9を下向傾斜とした特許請求の範
囲第2項記載の屋上スラブ空冷工法を利用した建
築物。
[Claims] 1 Rooftop slab board 2 on the roof or roof of the building 1
The roof slab board 2 forms an air circulation layer 5 that communicates from the sunny side to the shaded side of the building 1, and a horizontal plane is formed in front of the air outlet 6 on the target side of the air circulation layer 5. The exhaust air rectifier/cover plate 8 is tilted upward at an angle of 15° to 45° to the air suction port 7 on the shaded side.
A suction air rectifier/cover plate 9 is attached to the rear surface, and the upward airflow a generated along the sunny side wall of the summer building 1 generates negative pressure at the air outlet 6, and the air inside the air circulation layer 5 is A rooftop slab air cooling construction method characterized in that low-temperature air on a shaded surface is discharged to an air outlet 6 through an air circulation layer 5 by sucking air into the rising air current a. 2 Rooftop slab board 2 on the roof or roof of building 1
The rooftop slab board 2 forms an air circulation layer 5 that communicates the sunny side and the shaded side, and the air outlet 6 on the target side of the air circulation layer 5 has an opening of 15 mm in front of the horizontal plane. Utilizing a rooftop slab air cooling construction method characterized by an exhaust air rectifier/cover plate 8 with an upward slope of ~45 degrees and a suction air rectifier/cover plate 9 attached to the back of the air suction port 7 on the shaded side. Building. 3 Rooftop slab board 2 on the roof or roof of building 1
The rooftop slab board 2 forms an air circulation layer 5 that communicates the sunny side and the shaded side, and the front side of the air outlet 6 on the sunny side of the air circulation layer 5 is set at an angle of 15° with respect to the horizontal plane. The exhaust air rectifier/cover plate 8 with an upward slope of ~45° is installed in the center of the rooftop slab plate 2 in the building 1, in which the suction air rectifier/cover plate 9 is attached to the rear surface of the air suction port 7 on the shaded side. A building using a rooftop slab air cooling construction method, characterized in that an air outlet 10 is provided, and a central exhaust air rectifier/cover plate 11 is provided adjacent to the upper end of the central air outlet 10. 4. A rooftop slab air cooling construction method according to claim 2, in which a rooftop slab board 2 is laid on the top surface of the top floor slab 3, and an air circulation layer 5 is formed between the rooftop slab board 2 and the top floor slab 3. Buildings used. 5. The rooftop according to claim 2, wherein a rooftop slab board 2a is laid on the upper surface of the top floor slab 3, and a tunnel-like air communication hole 5a is bored in the rooftop slab board 2a to form an air circulation layer. A building using the slab air cooling method. 6. A building employing the rooftop slab air cooling construction method according to claim 2, in which the air circulation layer 5 is sloped downward from the air outlet 6 to the air suction port 7. 7 Lower end of exhaust air rectifier/cover plate 8 and top floor slab 3
A building using the roof slab air cooling construction method according to claim 2, in which a gap is left between the roof slab and the roof slab. 8. A building using the roof slab air cooling construction method according to claim 2, in which the suction air rectifier/cover plate 9 attached to the rear surface of the air suction port 7 on the shaded side is tilted downward.
JP18207280A 1980-12-24 1980-12-24 Air cooling method of roof slab and building utilizing same Granted JPS57108350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18207280A JPS57108350A (en) 1980-12-24 1980-12-24 Air cooling method of roof slab and building utilizing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18207280A JPS57108350A (en) 1980-12-24 1980-12-24 Air cooling method of roof slab and building utilizing same

Publications (2)

Publication Number Publication Date
JPS57108350A JPS57108350A (en) 1982-07-06
JPH0133616B2 true JPH0133616B2 (en) 1989-07-14

Family

ID=16111854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18207280A Granted JPS57108350A (en) 1980-12-24 1980-12-24 Air cooling method of roof slab and building utilizing same

Country Status (1)

Country Link
JP (1) JPS57108350A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758017B2 (en) * 2001-03-27 2011-08-24 株式会社フジタ Cooling system
JP2014047529A (en) * 2012-08-31 2014-03-17 Akira Shibazaki Dwelling house utilizing solar heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108622A (en) * 1977-03-02 1978-09-21 Masayuki Nishitani Method of executing heat insulation on roof of building as reinforced concrete structure or like

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262620U (en) * 1975-11-05 1977-05-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108622A (en) * 1977-03-02 1978-09-21 Masayuki Nishitani Method of executing heat insulation on roof of building as reinforced concrete structure or like

Also Published As

Publication number Publication date
JPS57108350A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
US4098260A (en) Solar heat collector and radiator for building roof
US4254598A (en) Thermally isolated roof structure
US8272177B2 (en) Solar roofing assembly
US4151697A (en) Methods of insulating purlins
JPH019855Y2 (en)
JPH0133616B2 (en)
JP4866882B2 (en) Underfloor heat storage system and underfloor heat storage method
JPH1018514A (en) Roof material
CN208088701U (en) A kind of roof radiator structure
CA1073258A (en) Roof ventilation
CN210288916U (en) Heat-insulating waterproof parapet wall
CN210563019U (en) Copper tile with heat dissipation structure
CN220184469U (en) Structure is maintained to roof thermal-insulated layer
RU108467U1 (en) PED ROOF VENTILATION SYSTEM
JPH0213616Y2 (en)
JPS60185032A (en) Room cooling system utilizing solar heat
JPS6357590B2 (en)
JPH0518071A (en) Multi-solar system and building therewith
JPH08338663A (en) Air type heat taking and cold heat taking device in solar system
JPH0122843Y2 (en)
SU953843A1 (en) Wall enclosure with solar heating
JPH0562627U (en) Solar-powered buildings
JPH01190851A (en) Air circulating structure for building
JP2001207596A (en) Ventilating folded-plate roof
TW202331060A (en) Heat insulation structure which can be easily assembled on a roof to provide the effects of ventilation and heat insulation