JPH0133533B2 - - Google Patents

Info

Publication number
JPH0133533B2
JPH0133533B2 JP12351383A JP12351383A JPH0133533B2 JP H0133533 B2 JPH0133533 B2 JP H0133533B2 JP 12351383 A JP12351383 A JP 12351383A JP 12351383 A JP12351383 A JP 12351383A JP H0133533 B2 JPH0133533 B2 JP H0133533B2
Authority
JP
Japan
Prior art keywords
heat
temperature
cover
metal plate
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12351383A
Other languages
Japanese (ja)
Other versions
JPS6017015A (en
Inventor
Yasushi Ueno
Shunichi Sugyama
Kazuo Kunioka
Masahiro Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP12351383A priority Critical patent/JPS6017015A/en
Publication of JPS6017015A publication Critical patent/JPS6017015A/en
Publication of JPH0133533B2 publication Critical patent/JPH0133533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0025Supports; Baskets; Containers; Covers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、ローラテーブル上を搬送中の高温
鋼材の保温カバーに関するものである。 高温鋼材の搬送ラインには、第1図の搬送ライ
ンの概略断面図で示されるように、断面コの字型
の保温カバー1が、搬送のラインのローラテーブ
ルを構成するローラ2の上方に、ローラ2によつ
て搬送される高温鋼材3を覆うように設置されて
いる。保温カバー1は、搬送される高温鋼材3の
冷却を防止するためのもので、第2図の部分拡大
断面図に示されるように、高温鋼材3に面する断
熱材4と、断熱材4の外側に設けられた鋼板製外
被5とから形成されている。高温カバー1は、高
温鋼材3より発する放射熱が放散することを防ぐ
と共に、その内面を、高温鋼材からの放射熱によ
つて高温となして、高温鋼材とこの内面の間の熱
交換量を小さくして、高温鋼材の冷却防止を図る
ものである。 ところで、高温鋼材の搬送ラインの保温に関し
ては、従来、次のような難点があつた。 (1) 高温鋼材の搬送は間欠的であり、搬送の時間
間隔が比較的長い。例えば、高温鋼材として高
温スラブを例にとると、スラブは、長さが一般
に数m〜10数mであり、1分〜数分間隔で数
m/min〜120m/minの速度で搬送されてい
る。従つて、仮りに、長さ10mのスラブを120
m/minの速度で搬送したときには、保温カバ
ーの任意箇所がスラブと対面している時間は、
1分〜数分毎に5秒と非常に短かい。その結
果、保温カバーの内面は、高温スラブの通過に
よつて高温になつても、次に高温スラブが通過
するまでに温度が低下するので、搬送される高
温スラブが冷却することは避けられない。その
冷却の程度は、温度が低下した保温カバー内面
を通過する高温スラブの先端ほど大きく、高温
スラブの通過と共にその放射熱によつて温度が
上昇した保温カバーを通過する高温スラブの後
端ほど小さくなる。 (2) 搬送ローラ等の軸受部や圧延ロールなどに供
給される冷却水によつて、保温カバーの設けら
れている付近の雰囲気は、水分を多く含んでお
り、この水分が保温カバーに悪影響を与える。
例えば保温カバーを構成する断熱材には、断熱
レンガ、キヤスタブル、セラミツクフアイバー
等が使用されているが、この断熱材内に水分が
侵入すると、断熱材の熱伝導率が、例えば無水
時の約10倍に上昇する。従つて、高温鋼材の発
する放射熱は、保温カバーを伝わつて外部に放
散され易くなるので、高温鋼材は冷却される。
さらに、断熱材に水分が侵入すると、断熱材が
劣化して、保温カバーは長期間の使用に耐えな
くなる。 そこで、断熱材内への水分の侵入を防止する
ために、第3図の部分拡大断面図で示されるよ
うに、断熱材4の高温鋼材に面する側に保護板
6を設けた保温カバーが知られている。通常、
保護板6には、熱的変形を考慮して、厚さ0.8
mm以上の比較的厚い鋼板が使用されている。し
かしながら、このような保護板6に比較的厚い
鋼板を用いた保温カバーでは、後述するように
保温効果が小さい。また、保護板6に低放射率
(高反射率)の金属板を用いた保温カバーも知
られている。しかしながら、この保温カバーで
は、金属板に付着した水分により金属板表面が
劣化したり、長期間の使用による酸化等によ
り、金属板の低放射率(高反射率)が維持でき
なくなるため、保温効果がほとんどなくなる。 本発明者等は、上述の難点に鑑み、搬送中の高
温鋼材に対する保温効果の高い保温カバーを開発
すべく、保温カバーの断熱構造について試験を行
なつた。その結果、次に述べることがわかつた。 試験は、第4図a〜dにその部分拡大断面図を
示す各種の保温カバー内に、1000℃の高温スラブ
を挿入し、挿入直後から5秒経過後までのスラブ
表面温度の平気降下速度を調べた。第4図a〜d
の保温カバーは、同図aが厚さ0.8mmの鋼板7の
1枚構造、同図bが前記鋼板7にセラミツクフア
イバー8を重ねた構造、同図cが前記鋼板7に、
空隙9を介して、クロムメツキ鋼板からなる低放
射率板(放射率:0.1〜0.20)10を設けた構造、
同図dが厚さ0.01mmの鋼板又はSUS310S(25C―
20Ni)からなる金属板11を20枚重ねた構造で
ある。 その結果は第1表のようになつた。
The present invention relates to a heat insulating cover for high temperature steel material being transported on a roller table. In the conveyance line for high-temperature steel materials, as shown in the schematic cross-sectional view of the conveyance line in FIG. It is installed so as to cover the high temperature steel material 3 being conveyed by the rollers 2. The heat insulation cover 1 is for preventing cooling of the high-temperature steel material 3 being transported, and as shown in the partially enlarged sectional view of FIG. It is formed from a steel plate jacket 5 provided on the outside. The high-temperature cover 1 prevents the radiant heat emitted from the high-temperature steel material 3 from dissipating, and also heats its inner surface to a high temperature due to the radiant heat from the high-temperature steel material, thereby reducing the amount of heat exchange between the high-temperature steel material and this inner surface. The purpose is to reduce the size and prevent cooling of high-temperature steel materials. By the way, in the past, there have been the following difficulties in keeping heat in a conveying line for high-temperature steel materials. (1) High-temperature steel materials are transported intermittently, and the time interval between transports is relatively long. For example, if we take a high-temperature slab as a high-temperature steel material, the length of the slab is generally several meters to several tens of meters, and it is transported at a speed of several meters/min to 120 m/min at intervals of one to several minutes. There is. Therefore, if a slab with a length of 10 m is 120
When conveying at a speed of m/min, the time that any part of the insulation cover faces the slab is:
It is very short, 5 seconds every 1 to several minutes. As a result, even if the inner surface of the thermal cover becomes hot when a high-temperature slab passes through it, the temperature drops before the next high-temperature slab passes, so it is inevitable that the high-temperature slab being transported will cool down. . The degree of cooling is greater as the tip of the hot slab passes through the inner surface of the insulation cover, where the temperature has decreased, and decreases as the rear end of the hot slab passes through the insulation cover, whose temperature has increased due to radiant heat as the high temperature slab passes through. Become. (2) The atmosphere around the heat insulating cover contains a lot of moisture due to the cooling water supplied to the bearings of the conveyor rollers, rolling rolls, etc., and this moisture may have an adverse effect on the heat insulating cover. give.
For example, insulating bricks, castables, ceramic fibers, etc. are used as the insulating material that makes up the heat insulating cover, but when moisture enters the insulating material, the thermal conductivity of the insulating material decreases to about 10 rise twice. Therefore, the radiant heat generated by the high-temperature steel material is easily radiated to the outside through the heat-insulating cover, so that the high-temperature steel material is cooled.
Furthermore, if moisture enters the insulation material, the insulation material will deteriorate and the thermal cover will no longer be able to withstand long-term use. Therefore, in order to prevent moisture from entering the heat insulating material, a heat insulating cover with a protective plate 6 provided on the side of the heat insulating material 4 facing the high-temperature steel material is installed, as shown in the partially enlarged sectional view of FIG. Are known. usually,
The protection plate 6 has a thickness of 0.8 in consideration of thermal deformation.
A relatively thick steel plate of mm or more is used. However, such a heat retaining cover using a relatively thick steel plate for the protection plate 6 has a small heat retaining effect as described later. Further, a heat-retaining cover using a metal plate with low emissivity (high reflectance) as the protection plate 6 is also known. However, with this thermal cover, the metal plate surface deteriorates due to moisture adhering to the metal plate, and due to oxidation due to long-term use, the low emissivity (high reflectance) of the metal plate cannot be maintained, so it is not effective at retaining heat. almost disappears. In view of the above-mentioned difficulties, the present inventors conducted tests on the heat insulating structure of a heat retaining cover in order to develop a heat retaining cover that has a high heat retention effect on high-temperature steel materials being transported. As a result, we found the following. In the test, a high-temperature slab of 1000°C was inserted into various heat insulation covers whose partially enlarged cross-sectional views are shown in Figures 4a to d, and the normal rate of decrease in the surface temperature of the slab was measured from immediately after insertion until 5 seconds had elapsed. Examined. Figure 4 a-d
The heat insulation cover shown in Figure a has a structure made of a single steel plate 7 with a thickness of 0.8 mm, Figure b shows a structure in which ceramic fibers 8 are stacked on the steel plate 7, Figure c shows a structure in which ceramic fibers 8 are stacked on the steel plate 7,
A structure in which a low emissivity plate (emissivity: 0.1 to 0.20) 10 made of a chrome-plated steel plate is provided through a gap 9,
d in the same figure is a steel plate with a thickness of 0.01 mm or SUS310S (25C-
It has a structure in which 20 metal plates 11 made of (20Ni) are stacked. The results were as shown in Table 1.

【表】 第1表によると、スラブ表面の温度降下速度
は、第4図a〜cの保温カバーを使用した場合
は、自然放冷となる保温カバーの無いときの約40
%と、小さくなつているが、スラブ表面の降下速
度は、これらの第4図a〜cの保温カバー間に大
差はなく、一方、第4図dの保温カバーを使用し
た場合は、いずれも、第4図a〜cの保温カバー
の約1/20であつた。 上述した試験結果から、保温カバーによるスラ
ブの保温特性は、保温カバーのスラブに面する鋼
板7、および金属板11の昇温速度に律則されて
おり、保温カバーのスラブに面する金属板の厚さ
に支配されていることがわかつた。すなわち、保
温カバーのスラブに面する側に、薄い板厚の金属
板を設けると、金属板は、高温度のスラブが発す
る放射熱によつて、短時間で高温度に昇温し、ス
ラブが失う放射熱量は小さくなり、スラブは保温
されることになる。 次に、保温効果に対する金属板の板厚の影響を
定量的に調べるために、板厚が0.01、0.03、0.1、
0.3、0.5mmの鋼板をそれぞれ5枚積層した構造の
5種類の保温カバーを作成して、保温カバー内に
1000℃のスラブを挿入し、挿入した瞬間から、保
温カバーのスラブ側の表面温度の時間経過による
温度変化を測定した。そして、測定した温度か
ら、保温カバー内のスラブの放熱量を計算し、そ
の放熱量と自然放冷時のスラブの放熱量とから、
次式に従つて保温カバーの断熱効率ηを求た。 断熱効率η=(1−保温カバー内のスラブの放熱
量/自然放冷時のスラブの放熱量)×1100(%) 第5図は、保温カバー内へのスラブの挿入後、
1秒および3秒経過したときの、保温カバーの断
熱効率ηである。 第5図によると、スラブ挿入後1秒経過したと
き、金属板が0.1mmを越える場合は、断熱効率が
ほぼ一定で低くなり、板厚が0.1mm以下の場合は、
断熱効率が急激に増加している。スラブ挿入後3
秒経過したときにも、板厚が0.1mmを境にして断
熱効率に同様の傾向がみられる。従つて、保温カ
バーに板厚0.1mm以下の金属板を使用すると、保
温効果が非常に高くなることがわかつた。 この発明は、上記知見に基づいてなされたもの
で、この発明の保温カバーは、ローラテーブル上
を搬送中の高温鋼材に面する、厚さが0.1mm以下
の金属板が1枚以上からなる金属板層と、前記金
属板層の前記高温鋼材に面する側と反対の側に設
けられた断熱材層とから構成されることに特徴を
有する。 この発明においては、保温カバーの高温鋼材に
面する金属板層を形成する金属板は、上述の試験
結果より、その板厚を0.1mm以下にする必要があ
る。金属板の板厚が0.1mmを越えると、金属板の
断熱効率が一定の低い値になり、保温カバーの保
温効果は小さくなる。その場合、金属板は、でき
る限り薄いものを使用した方が保温効果は高い。 第6図は、この発明の保温カバーの一実施態様
を示す部分拡大断面図である。同図において、1
2は、厚さ0.1mm以下の金属板が1枚以上からな
る金属板層、13は断熱材層である。金属板層1
2は、厚さ0.1mm以下の金属板1枚からなる層で
も充分であるが、保温カバーを長期間使用する
と、金属板が酸化して部分的に欠落するので、複
数枚の金属板を積層することが好ましい。金属板
を複数枚積層させたときには、金属板相互間の熱
抵抗により、保温カバーの断熱性が向上する効果
もある。金属板としては、鋼板、ステンレス鋼板
その他がある。 断熱材層13は、高温鋼材によつて加熱される
金属板層12を保温し、金属板層12が短時間に
高温度に昇温するのを助けるもので、断熱レン
ガ、キヤスタブル、セラミツクフアイバー等の断
熱材からなる。断熱材層13は、金属板層12よ
つて、断熱材層12内へ水分の侵入を阻止され、
熱伝導率が上昇するのを防止される。 第7図は、この発明の他の実施態様を示す斜視
図である。この保温カバーは、金属板層12を耐
熱性金属の金網14で支持して、金属板層12を
補強し、また、断熱材層13を鋼板製の外被15
で被覆して、断熱材層13を保護させている。 この発明は、上述のように構成されているが、
これによれば、搬送される高温鋼材が通過する箇
所の保温カバーの金属板層は、高温鋼材の発する
放射熱によつて加熱されて、単時間に高温度に昇
温するため、高温鋼材の大部分は、その高温鋼材
が昇温した高温度の金属板層内を通過するので、
高温鋼材は充分に保温される。
[Table] According to Table 1, the rate of temperature drop on the slab surface is approximately 40% when using the insulation covers shown in Figure 4 a to c compared to when there is no insulation cover, which is natural cooling.
%, but there is no big difference in the rate of descent of the slab surface between the insulation covers shown in Figure 4 a to c. On the other hand, when the insulation cover shown in Figure 4 d is used, , it was about 1/20 of the thermal cover shown in Fig. 4 a to c. From the above test results, the heat retention characteristics of the slab by the heat insulation cover are determined by the temperature rise rate of the steel plate 7 and the metal plate 11 facing the slab of the heat insulation cover, and It turns out that it is controlled by thickness. In other words, if a thin metal plate is provided on the side of the insulation cover facing the slab, the metal plate will heat up to a high temperature in a short time due to the radiant heat emitted by the high-temperature slab, and the slab will heat up. The amount of radiant heat lost will be reduced and the slab will be kept warm. Next, in order to quantitatively investigate the influence of the thickness of the metal plate on the heat retention effect, we examined
We created 5 types of thermal covers with a structure consisting of 5 layers of 0.3 mm and 0.5 mm steel plates, and placed them inside the thermal cover.
A 1000°C slab was inserted, and from the moment it was inserted, the temperature change over time in the surface temperature of the slab side of the heat insulation cover was measured. Then, from the measured temperature, calculate the heat radiation amount of the slab inside the heat insulation cover, and from that heat radiation amount and the heat radiation amount of the slab during natural cooling,
The insulation efficiency η of the heat insulation cover was determined according to the following formula. Insulation efficiency η = (1 - heat radiation amount of the slab inside the heat insulation cover / heat radiation amount of the slab during natural cooling) × 1100 (%) Figure 5 shows that after inserting the slab into the heat insulation cover,
This is the insulation efficiency η of the heat insulation cover after 1 second and 3 seconds have elapsed. According to Figure 5, when 1 second has passed after inserting the slab, if the metal plate exceeds 0.1 mm, the insulation efficiency is almost constant and low, and if the plate thickness is 0.1 mm or less,
The insulation efficiency is increasing rapidly. After inserting the slab 3
A similar trend in insulation efficiency can be seen when the plate thickness exceeds 0.1 mm. Therefore, it was found that using a metal plate with a thickness of 0.1 mm or less for the heat insulation cover greatly increases the heat insulation effect. This invention was made based on the above knowledge, and the heat insulation cover of the invention is made of a metal plate made of one or more metal plates with a thickness of 0.1 mm or less, facing the high-temperature steel material being conveyed on a roller table. It is characterized in that it is composed of a plate layer and a heat insulating material layer provided on a side of the metal plate layer opposite to the side facing the high temperature steel material. In this invention, the metal plate forming the metal plate layer facing the high-temperature steel material of the heat insulating cover needs to have a thickness of 0.1 mm or less, based on the above test results. When the thickness of the metal plate exceeds 0.1 mm, the heat insulation efficiency of the metal plate reaches a certain low value, and the heat insulation effect of the heat insulation cover becomes small. In this case, it is better to use a metal plate that is as thin as possible for better heat retention. FIG. 6 is a partially enlarged sectional view showing one embodiment of the heat retaining cover of the present invention. In the same figure, 1
2 is a metal plate layer consisting of one or more metal plates with a thickness of 0.1 mm or less, and 13 is a heat insulating material layer. metal plate layer 1
For 2, a layer consisting of a single metal plate with a thickness of 0.1 mm or less is sufficient, but if the heat insulating cover is used for a long period of time, the metal plate will oxidize and partially break off, so multiple metal plates should be laminated. It is preferable to do so. When a plurality of metal plates are laminated, the thermal resistance between the metal plates has the effect of improving the heat insulation properties of the heat retaining cover. Examples of metal plates include steel plates, stainless steel plates, and others. The heat insulating material layer 13 keeps the metal plate layer 12 heated by the high-temperature steel material and helps the metal plate layer 12 to reach a high temperature in a short time. consisting of insulation material. The heat insulating material layer 13 is prevented from moisture entering into the insulating material layer 12 by the metal plate layer 12,
Thermal conductivity is prevented from increasing. FIG. 7 is a perspective view showing another embodiment of the invention. This heat insulation cover supports the metal plate layer 12 with a heat-resistant metal wire mesh 14 to reinforce the metal plate layer 12, and the heat insulating material layer 13 is supported by a steel plate outer sheath 15.
The heat insulating material layer 13 is protected. Although this invention is configured as described above,
According to this, the metal plate layer of the insulation cover where the high-temperature steel material passes through is heated by the radiant heat emitted by the high-temperature steel material, and the temperature rises to a high temperature in a single hour. Most of the time, the high-temperature steel material passes through the heated metal plate layer, so
High-temperature steel materials are sufficiently insulated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の保温カバーが設けられた高温
鋼材の搬送ラインの概略横断面図、第2図は、第
1図の保温カバーの部分拡大断面図、第3図は、
従来の他の保温カバーの部分拡大断面図、第4図
a〜dは、スラブ表面の温度降下速度試験に供試
した保温カバーの構造を示す断面図、第5図は、
積層される鋼板の板厚とその断熱効率との関係を
示すグラフ、第6図は、この発明の一実施態様を
示す部分拡大断面図、第7図は、この発明の他の
実施態様を示す斜視図である。図面において、 1……保温カバー、2……搬送ローラ、3……
高温鋼材、4,13……断熱材、5,15……外
被、6……保護板、8……セラミツクフアイバ
ー、11,12……金属板、14……耐熱性金属
の金網。
FIG. 1 is a schematic cross-sectional view of a high-temperature steel conveyance line equipped with a conventional heat-insulating cover, FIG. 2 is a partially enlarged cross-sectional view of the heat-insulating cover in FIG. 1, and FIG.
FIGS. 4a to 4d are partial enlarged cross-sectional views of other conventional heat-retaining covers, and FIG.
A graph showing the relationship between the thickness of laminated steel plates and their insulation efficiency, FIG. 6 is a partially enlarged sectional view showing one embodiment of the present invention, and FIG. 7 shows another embodiment of the present invention. FIG. In the drawings, 1... Heat insulation cover, 2... Conveyance roller, 3...
High-temperature steel material, 4, 13... Insulating material, 5, 15... Outer cover, 6... Protection plate, 8... Ceramic fiber, 11, 12... Metal plate, 14... Heat resistant metal wire mesh.

Claims (1)

【特許請求の範囲】[Claims] 1 ローラテーブル上を搬送中の高温鋼材に面す
る、厚さが0.1mm以下の金属板が1枚以上からな
る金属板層と、前記金属板層の前記高温鋼材と面
する側と反対の側に設けられた断熱材層とから構
成されることを特徴とするローラテーブル上を搬
送中の高温鋼材の保温カバー。
1. A metal plate layer consisting of one or more metal plates with a thickness of 0.1 mm or less, facing the high-temperature steel material being transported on a roller table, and a side of the metal plate layer opposite to the side facing the high-temperature steel material. A heat insulating cover for high-temperature steel material being transported on a roller table, characterized by comprising a heat insulating material layer provided on a roller table.
JP12351383A 1983-07-08 1983-07-08 Holding cover of high-temperature steel material under conveyance on roller table Granted JPS6017015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12351383A JPS6017015A (en) 1983-07-08 1983-07-08 Holding cover of high-temperature steel material under conveyance on roller table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12351383A JPS6017015A (en) 1983-07-08 1983-07-08 Holding cover of high-temperature steel material under conveyance on roller table

Publications (2)

Publication Number Publication Date
JPS6017015A JPS6017015A (en) 1985-01-28
JPH0133533B2 true JPH0133533B2 (en) 1989-07-13

Family

ID=14862465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12351383A Granted JPS6017015A (en) 1983-07-08 1983-07-08 Holding cover of high-temperature steel material under conveyance on roller table

Country Status (1)

Country Link
JP (1) JPS6017015A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339481Y2 (en) * 1985-04-12 1991-08-20
US4675974A (en) * 1985-10-17 1987-06-30 Tippins Machinery Co., Inc. Method of continuous casting and rolling strip
WO1998052104A1 (en) * 1997-05-13 1998-11-19 Laboratoire Pont-Saint-Germain Method for stamping watch cases and resulting products

Also Published As

Publication number Publication date
JPS6017015A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
US8696350B2 (en) Heat-treating furnace
JPS632513A (en) Thermal protective device for high heat material
JPH0133533B2 (en)
JPS6355370B2 (en)
JP5452955B2 (en) Preform heating device
KR100858263B1 (en) Heat insulating board of induction heating apparatus
JPS6036856B2 (en) Insulated roll
US3057941A (en) Heat-sensing device with protective sheath
JP2573102B2 (en) Furnace wall of heating furnace
JPS6234996Y2 (en)
JPS5939455A (en) Roll for conveying high-temperature slab
JP2973162B2 (en) Hot plate for molten metal container
JP2973164B2 (en) Hot plate for molten metal container
JPS639571Y2 (en)
JPS58210115A (en) Heat insulating method of conveyance line for high temperature steel material
JPS5836157Y2 (en) Refractory material for embedding the heating element
JPH0339481Y2 (en)
JPS5389045A (en) Manufacturing of sheath heater
JPH0344367Y2 (en)
JPS58120731A (en) Continuous annealing furnace for electrical steel plate
JPS6127099Y2 (en)
JPH0348199Y2 (en)
JPS6112640B2 (en)
JPH07113115A (en) Carbon roll
JPS645236B2 (en)