JPH0133451B2 - - Google Patents

Info

Publication number
JPH0133451B2
JPH0133451B2 JP53132958A JP13295878A JPH0133451B2 JP H0133451 B2 JPH0133451 B2 JP H0133451B2 JP 53132958 A JP53132958 A JP 53132958A JP 13295878 A JP13295878 A JP 13295878A JP H0133451 B2 JPH0133451 B2 JP H0133451B2
Authority
JP
Japan
Prior art keywords
palladium
reaction
catalyst
mmole
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53132958A
Other languages
Japanese (ja)
Other versions
JPS5559114A (en
Inventor
Hidefumi Hirai
Naoki Toshima
Hitoshi Chawandani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13295878A priority Critical patent/JPS5559114A/en
Publication of JPS5559114A publication Critical patent/JPS5559114A/en
Publication of JPH0133451B2 publication Critical patent/JPH0133451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、パラジウムコロイド触媒を用いて環
状ポリエンを選択的に水素添加し、環状モノエン
を得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively hydrogenating a cyclic polyene using a palladium colloidal catalyst to obtain a cyclic monoene.

2個以上の不飽和結合を有する環状ポリエンを
環状モノエンの段階まで選択的に水素添加する反
応は、有機化学工業の分野で広い応用が期待され
る反応であるが、従来、工業的に実施しうる選択
性のよい水素添加触媒が知られていないため、こ
の種の水素添加方法は工業的にはあまり用いられ
てはいなかつた。しかしながら、選択性のよい水
素添加方法の需要はいので、選択的水素添加反
応の技術開発研究、特に選択的水素添加触媒の研
究は盛んであり種々の触媒が提案されている。
The reaction of selectively hydrogenating a cyclic polyene having two or more unsaturated bonds to the stage of a cyclic monoene is a reaction that is expected to have wide application in the field of organic chemistry, but it has not been carried out industrially in the past. This type of hydrogenation method has not been widely used industrially because no hydrogenation catalyst with good selectivity is known. However, since there is no demand for a hydrogenation method with good selectivity, research and development of technology for selective hydrogenation reactions, particularly research on selective hydrogenation catalysts, is active, and various catalysts have been proposed.

すでに提案されている比較的選択性のよいとさ
れている触媒系としては、種々の被毒剤、例えば
金属塩、アミンなどで被毒した固体触媒及びいわ
ゆる金属錯体触媒が挙げられる。上記固体触媒
は、調製が複雑であり、一般に活性が比較的低い
ので、反応をか酷な条件で行わなければならない
し、また、反応中に性能の低下をきたすなどの問
題がある。一方、金属錯体触媒は、比較的温和な
条件下で触媒が進行するという利点を有している
が、触媒の原料が価であり、製造方法が複雑で
あるばかりでなく、触媒が空気、水などに対して
不安定なものが多く、また、水素添加反応の生成
物と触媒との分離に困難を伴うなど工程管理操作
上の問題が多いため、工業的に用いるには不適当
である。
Catalyst systems that have been proposed and are said to have relatively good selectivity include solid catalysts and so-called metal complex catalysts poisoned with various poisoning agents, such as metal salts and amines. The above-mentioned solid catalysts are complicated to prepare and generally have relatively low activity, so the reaction must be carried out under harsh conditions, and there are also problems such as a decrease in performance during the reaction. On the other hand, metal complex catalysts have the advantage of catalyzing under relatively mild conditions, but the raw materials for the catalyst are expensive and the manufacturing method is complicated. Many of them are unstable against the like, and there are many problems in process control operations such as difficulty in separating the hydrogenation reaction product from the catalyst, so they are unsuitable for industrial use.

本発明者らは、このような問題のない選択性良
好な水素添加方法を開発すべく鋭意研究を重ねた
結果、本発明者らが先にその製造方法を提案して
いるパラジウムコロイド、すなわち塩化パラジウ
ム()にアルカリを含むメタノールを還元的に
作用させて調製したパラジウムコロイドを、触媒
として用いるとシクロオクタジエン、シクロペン
タジエンなどの2個以上の不飽和結合をもつ環状
ポリエンを環状モノエンにい選択率で水素添加
しうることを見出し、この知見に基づいて本発明
を完成するに至つた。
The present inventors have conducted intensive research to develop a hydrogenation method with good selectivity that does not have such problems. When palladium colloid prepared by reductively reacting methanol containing an alkali with palladium is used as a catalyst, cyclic polyenes having two or more unsaturated bonds such as cyclooctadiene and cyclopentadiene can be selected from cyclic monoenes. The present inventors have discovered that hydrogenation can be carried out at a high rate, and have completed the present invention based on this knowledge.

すなわち、本発明は、環状ポリエンをパラジウ
ムコロイド触媒の存在下で水素添加し、環状モノ
エンを生成させることを特徴とする環状ポリエン
の選択的水素添加方法を提供するものである。
That is, the present invention provides a method for selectively hydrogenating a cyclic polyene, which is characterized by hydrogenating the cyclic polyene in the presence of a palladium colloid catalyst to produce a cyclic monoene.

本発明方法において用いられるパラジウムコロ
イド触媒は、塩化パラジウム()を、メタノー
ル中、アルカリ金属メトキシド及び極性基をもつ
合成高分子化合物の中から選ばれた保護コロイド
の存在下で加熱することによつて得ることができ
る。
The palladium colloidal catalyst used in the method of the present invention can be prepared by heating palladium chloride () in methanol in the presence of a protective colloid selected from alkali metal methoxides and synthetic polymer compounds having polar groups. Obtainable.

この際用いられるアルカリ金属メトキシドとし
ては、ナトリウムメトキシドが好適であるが、こ
れを用いる代りに反応系内でアルカリ金属メトキ
シドを生成しうる化合物例えば水酸化ナトリウム
を用いることもできる。
The alkali metal methoxide used in this case is preferably sodium methoxide, but instead of using sodium methoxide, a compound capable of producing alkali metal methoxide in the reaction system, such as sodium hydroxide, can also be used.

また、保護コロイドとして使用される極性基を
もつ合成分子は、メタノール可溶性であればよ
く、通常保護コロイドとして使用される型のもの
はいずれも使用しうるが、特にポリビニルピロリ
ドンが好ましく用いられる。
Furthermore, the synthetic molecule having a polar group used as a protective colloid only needs to be soluble in methanol, and any type commonly used as a protective colloid can be used, but polyvinylpyrrolidone is particularly preferably used.

本発明において、触媒として用いられるパラジ
ウムコロイドは、極めて簡単にかつ再現性よく調
製することができ、しかも空気中、水中などに放
置しておいても安定であるので、取扱いが非常に
容易である。このパラジウムコロイドは、水素添
加反応に際し、調製溶液をそのまま用いてもよ
く、また、一度メタノールを減圧下に蒸発乾固し
て、適当な溶媒に再度溶解したものを用いてもよ
い。この際、溶媒としては、保護コロイドとして
の極性分子化合物を溶解するものであれば、通
常の水素化反応に用いられるすべての溶媒が使用
できる。また、混合溶媒も使用でき、各溶媒成分
が相互に均一に溶けあつている必要はない。
In the present invention, the palladium colloid used as a catalyst can be prepared extremely easily and with good reproducibility, and is stable even when left in air or water, so it is extremely easy to handle. . In the hydrogenation reaction, the palladium colloid may be used as a prepared solution, or may be prepared by evaporating methanol to dryness under reduced pressure and redissolving it in an appropriate solvent. In this case, as the solvent, any solvent used in ordinary hydrogenation reactions can be used as long as it dissolves the polar molecular compound serving as the protective colloid. A mixed solvent can also be used, and the solvent components do not need to be uniformly dissolved in each other.

本発明の水素添加反応において、選択的に水素
添加されうる環状ポリエンとしては、炭素数5以
上の環状ジエン、トリエン、テトラエンなどを挙
げることができる。触媒はパラジウムに基づき基
質である環状ポリエンの500分の1当量以下、時
には数千分の1当量以下で用いられるが、反応の
選択性に関し、特に有効な範囲は500分の1当量
ないし4000分の1当量の範囲である。反応温度
は、常温で十分であり、水素圧も通常全圧1気圧
の水素で十分迅速に反応が進行する。
In the hydrogenation reaction of the present invention, examples of the cyclic polyene that can be selectively hydrogenated include cyclic dienes having 5 or more carbon atoms, trienes, and tetraenes. The catalyst is based on palladium and is used in an amount of less than 1/500th equivalent of the cyclic polyene substrate, sometimes less than 1/1000th of an equivalent, but in terms of reaction selectivity, a particularly effective range is from 1/500th equivalent to 4000th equivalent. The range is 1 equivalent. The reaction temperature is sufficient at room temperature, and the reaction proceeds sufficiently quickly with hydrogen pressure usually at a total pressure of 1 atm.

本発明方法において、水素添加の選択性は、シ
クロペンタジエンとシクロオクタジエンを比べる
と、シクロオクタジエンの方が優れている。この
傾向はC6を除く環状ジエンについて一般に認め
られている傾向と一致する。また、同じ大きさの
環状ジエンの間では、共役ジエンの方が非共役ジ
エンよりも水素化されやすく、かつモノエンへの
選択性も優れている。
In the method of the present invention, when cyclopentadiene and cyclooctadiene are compared, cyclooctadiene is superior in hydrogenation selectivity. This trend is consistent with the generally accepted trend for cyclic dienes excluding C6 . Moreover, among cyclic dienes of the same size, conjugated dienes are more easily hydrogenated than non-conjugated dienes, and have superior selectivity to monoenes.

本発明方法は、用いられる触媒が従来の触媒よ
りも著しく活性がく選択性が良好なので、少量
の触媒と温和な条件で選択性よく環状ポリエンを
環状モノエンに水素添加できる。
In the method of the present invention, since the catalyst used is significantly more active and has better selectivity than conventional catalysts, it is possible to hydrogenate a cyclic polyene to a cyclic monoene with good selectivity using a small amount of catalyst and under mild conditions.

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

参考例 1 塩化パラジウム()5.9mg(0.33mmole)と
ポリビニルピロリドン(重合度3200)151mg(単
量体残基量1.36mmole)と、それぞれ22.5mlのメ
タノールに溶解した後混合し、水浴上で30分間加
熱還流した。次いで、還流させながら、水酸化ナ
トリウム6.6mg(0.17mmole)のメタノール溶液
5mlを滴下し、さらに10分間加熱還流を続ける
と、黒褐色で均一のパラジウムコロイド溶液が得
られた。
Reference Example 1 Palladium chloride () 5.9 mg (0.33 mmole) and polyvinylpyrrolidone (degree of polymerization 3200) 151 mg (monomer residue amount 1.36 mmole) were each dissolved in 22.5 ml of methanol, mixed, and heated on a water bath for 30 minutes. The mixture was heated to reflux for a minute. Next, while refluxing, 5 ml of a methanol solution containing 6.6 mg (0.17 mmole) of sodium hydroxide was added dropwise, and heating and refluxing was continued for an additional 10 minutes to obtain a blackish brown and uniform palladium colloidal solution.

また、この際反応溶液中にメトキシメタノール
の生成が認められたが、これは反応式 PdCl2+CH3OH→Pd+HCHO+2HCl に従い、塩化パラジウムにメタノールが還元的に
作用した結果生成したホルムアルデヒドが、共存
するメタノールと反応して生じたものと考えられ
る。
Also, at this time, the formation of methoxymethanol was observed in the reaction solution, but this was due to the reaction formula PdCl 2 + CH 3 OH → Pd + HCHO + 2HCl, where formaldehyde, which was generated as a result of the reductive action of methanol on palladium chloride, reacted with the coexisting methanol. It is thought that this was caused by a reaction.

このコロイド溶液少量を蒸発乾固して得られる
フイルムを電子顕微鏡により20万倍で観察する
と、パラジウムコロイド中のパラジウム粒子の粒
径は10〜80Åに分布し、平均粒径は25Åであつ
た。
When a film obtained by evaporating a small amount of this colloidal solution to dryness was observed under an electron microscope at a magnification of 200,000 times, the particle size of the palladium particles in the palladium colloid was distributed from 10 to 80 Å, and the average particle size was 25 Å.

このパラジウムコロイドを用いてシクロヘキセ
ンをメタノール溶媒中30℃1気圧水素で水素添加
したときの水素添加初速度は2.0H2mol/Pdg−
atm・secであつた。
When cyclohexene was hydrogenated with hydrogen at 30°C and 1 atm in methanol using this palladium colloid, the initial hydrogenation rate was 2.0H 2 mol/Pdg-
It was ATM/sec.

参考例 2 塩化パラジウム()5.9mg(0.033mmole)と
ポリビニルピロリドン(重合度3200)151mg(単
量体残基量1.36mmole)とを、それぞれ22.5mlの
メタノールに溶解した後混合し、水浴上で30分間
加熱還流した。次いで、還流を続けながら、ナト
リウムメトキシド9.2mg(0.17mmole)のメタノ
ール溶液5mlを滴下し、さらに10分間加熱還流を
続けると黒褐色で均一のパラジウムコロイド溶液
が得られた。
Reference Example 2 Palladium chloride () 5.9 mg (0.033 mmole) and polyvinylpyrrolidone (polymerization degree 3200) 151 mg (monomer residue amount 1.36 mmole) were each dissolved in 22.5 ml of methanol, mixed, and mixed on a water bath. The mixture was heated to reflux for 30 minutes. Next, while continuing to reflux, 5 ml of a methanol solution containing 9.2 mg (0.17 mmole) of sodium methoxide was added dropwise, and heating and refluxing was continued for an additional 10 minutes to obtain a blackish brown and uniform palladium colloidal solution.

このパラジウムコロイドの物性及び活性は参考
例1で調製したものと同じであつた。
The physical properties and activity of this palladium colloid were the same as those prepared in Reference Example 1.

実施例 1 参考例1で調製したパラジウムコロイド溶液
0.3ml(パラジウム量にして2×10-4mmole)を、
アルゴン気流下の蒸留により脱酸素したメタノー
ル19.7ml中に加え全量20mlとし、30.0℃で全圧1
気圧の水素で1時間かきまぜて系を水素で飽和さ
せた。次いで、1,3−シクロオクタジエン54mg
(0.5mmole、触媒パラジウムの2500倍当量)を
加え水素添加反応を行つた。2分間で基質と等モ
ルの水素を吸収したので、この時点で反応を止
め、ただちに生成物をガスクロマトグラフイー
(PEG+AgNO3、4m、70℃〜90℃の昇温)で分
析すると、シクロオクタジエン及びシクロオクタ
ンは検出されず、シクロオクテン100%であつた。
Example 1 Palladium colloidal solution prepared in Reference Example 1
0.3ml (2×10 -4 mmole of palladium),
Add to 19.7 ml of methanol deoxygenated by distillation under an argon stream to make a total volume of 20 ml, and at 30.0°C with a total pressure of 1.
The system was saturated with hydrogen by stirring with atmospheric hydrogen for 1 hour. Next, 54 mg of 1,3-cyclooctadiene
(0.5 mmole, 2500 times the equivalent of catalyst palladium) was added to carry out a hydrogenation reaction. Since the same mole of hydrogen as the substrate was absorbed in 2 minutes, the reaction was stopped at this point and the product was immediately analyzed by gas chromatography (PEG + AgNO 3 , 4 m, temperature increased from 70°C to 90°C). And cyclooctane was not detected, and the content was 100% cyclooctene.

なお、さらに水素添加反応を続けたところ、添
付図面に示す結果が得られた。この図から明らか
なように、水素添加はモノエンの状態で停止し、
もはや進行しない。
In addition, when the hydrogenation reaction was further continued, the results shown in the attached drawings were obtained. As is clear from this figure, hydrogenation stops in the monoene state,
It's no longer progressing.

比較のために、触媒として活性炭担持パラジウ
ム(日本エンゲルハルド社製、5%パラジウム担
持活性炭粉末)10.5mg(パラジウムにして5×
10-3mmole)を用い、1,3−シクロオクタジ
エン540mg(5mmole、触媒パラジウムの1000倍
当量)の水素添加反応を行い、反応経過をガスク
ロマトグラフイーで追跡した。4分後にシクロオ
クタジエンがなくなり、この時の生成物はシクロ
オクテン94.1%及びシクロオクタン5.9%であつ
た。
For comparison, 10.5 mg of palladium supported on activated carbon (manufactured by Nippon Engelhard Co., Ltd., 5% palladium supported activated carbon powder) was used as a catalyst (5×
A hydrogenation reaction of 540 mg (5 mmole, 1000 times the equivalent of the catalyst palladium) of 1,3-cyclooctadiene was carried out using 10 -3 mmole), and the progress of the reaction was monitored by gas chromatography. After 4 minutes, the cyclooctadiene disappeared, and the products at this time were 94.1% cyclooctene and 5.9% cyclooctane.

実施例 2 参考例1で調製したパラジウムコロイド溶液
1.5ml(パラジウム量1×10-3mmole)を用い実
施例1と同様の方法で、1,5−シクロオクタジ
エン54mg(0.5mmole、触媒パラジウムの500倍
当量)の水素添加反応を行つた。反応時間8分間
で基質とほゞ等モルの水素を吸収した。生成物を
実施例1と同様の方法で分析した結果、シクロオ
クテン99%及びシクロオクタン1%であつた。
Example 2 Palladium colloid solution prepared in Reference Example 1
A hydrogenation reaction of 54 mg (0.5 mmole, 500 times the equivalent of the catalyst palladium) of 1,5-cyclooctadiene was carried out in the same manner as in Example 1 using 1.5 ml (palladium amount: 1 x 10 -3 mmole). During the reaction time of 8 minutes, approximately the same mole of hydrogen as the substrate was absorbed. The product was analyzed in the same manner as in Example 1 and found to be 99% cyclooctene and 1% cyclooctane.

比較のために、触媒として活性炭担持パラジウ
ム(日本エンゲルハルド社製、5%パラジウム担
持活性炭粉末)10.5mg(パラジウムにして5×
10-3mmole)を用いて1,5−シクロオクタジ
エン54mg(0.5mmole、触媒パラジウムの100倍
当量)の水素添加反応を行つた。反応時間7分で
シクロオクタジエンはなくなり、生成物はシクロ
オクテン91.4%とシクロオクタン8.6%であつた。
For comparison, 10.5 mg of palladium supported on activated carbon (manufactured by Nippon Engelhard Co., Ltd., 5% palladium supported activated carbon powder) was used as a catalyst (5×
A hydrogenation reaction of 54 mg (0.5 mmole, 100 times the equivalent of the catalyst palladium) of 1,5-cyclooctadiene was carried out using 10 -3 mmole). After a reaction time of 7 minutes, cyclooctadiene disappeared, and the products were 91.4% cyclooctene and 8.6% cyclooctane.

実施例 3 参考例2で調製したパラジウムコロイド溶液
0.3ml(パラジウム量2×10-4mmole)を用い1,
3−シクロペンタジエン66mg(1mmole、触媒
パラジウムの5000倍当量)の水素添加反応を行つ
た。反応時間8分間で基質とほぼ等モルの水素を
吸収した。反応液をガスクロマトグラフイー
(PEG+AgNO3、4m、50℃)で分析した結果、
シクロペンテン97.3%シクロペンタン1.9%及び
シクロペンタジエン0.8%であつた。
Example 3 Palladium colloid solution prepared in Reference Example 2
Using 0.3 ml (palladium amount 2 × 10 -4 mmole) 1,
A hydrogenation reaction of 66 mg (1 mmole, 5000 times equivalent to the palladium catalyst) of 3-cyclopentadiene was carried out. During the reaction time of 8 minutes, approximately the same mole of hydrogen as the substrate was absorbed. As a result of analyzing the reaction solution by gas chromatography (PEG + AgNO 3 , 4m, 50℃),
The composition was 97.3% cyclopentene, 1.9% cyclopentane, and 0.8% cyclopentadiene.

比較のために、活性炭担持パラジウム(日本エ
ンゲルハルド社製、5%パラジウム担持活性炭粉
末)10.5mg(パラジウムにして5×10-3mmole)
を用いてシクロペンタジエン33mg(0.5mmole、
触媒パラジウムの100倍当量)の水素添加反応を
行つた。2分後にシクロペンタジエンは消滅し、
生成物はシクロペンテン86.4%及びシクロペンタ
ン13.6%であつた。
For comparison, palladium supported on activated carbon (manufactured by Nippon Engelhard Co., Ltd., 5% palladium supported activated carbon powder) 10.5 mg (5 × 10 -3 mmole of palladium)
33 mg (0.5 mmole,
A hydrogenation reaction of 100 times the equivalent of palladium catalyst was carried out. Cyclopentadiene disappears after 2 minutes,
The product was 86.4% cyclopentene and 13.6% cyclopentane.

実施例 4 実施例2と等量のパラジウムコロイド溶液を用
いて、実施例2の10倍量の1,5−シクロオクタ
ジエン(540mg、5mmole、触媒パラジウムの
5000倍当量)の水素添加反応を行つた。1時間反
応後、生成物を分析すると、原料の1,5−シク
ロオクタジエンが43.8%残つており、シクロオク
タン0.5%、シクロオクテン42.3%の他に1,4
−シクロオクタジエン13.4%が生成していた。
1,3−シクロオクタジエンは検出されなかつ
た。
Example 4 Using the same amount of palladium colloidal solution as in Example 2, 1,5-cyclooctadiene (540 mg, 5 mmole, catalytic palladium
5000 times equivalent) hydrogenation reaction was carried out. After 1 hour of reaction, the product was analyzed and found that 43.8% of the raw material 1,5-cyclooctadiene remained, 0.5% of cyclooctane, 42.3% of cyclooctene, and 1,4-cyclooctadiene.
-13.4% of cyclooctadiene was produced.
No 1,3-cyclooctadiene was detected.

さらに、反応時間を4.5時間にすると、生成物
は、シクロオクタン1.9%、シクロオクテン84.8
%、1,4−シクロオクタジエン3.1%、1,5
−シクロオクタジエン10.2%であつた。
Furthermore, when the reaction time was increased to 4.5 hours, the products were 1.9% cyclooctane, 84.8% cyclooctene,
%, 1,4-cyclooctadiene 3.1%, 1,5
- 10.2% of cyclooctadiene.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法における水素吸収量と時間と
の関係を示すグラフである。
The drawing is a graph showing the relationship between hydrogen absorption amount and time in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 塩化パラジウム()のメタノール溶液を、
アルカリ金属メトキシド又は反応系内でアルカリ
金属メトキシドを生成しうる化合物及び極性基を
もつ合成高分子の中から選ばれた保護コロイドの
存在下で加熱して得られるパラジウムコロイド触
媒を用い、環状ポリエンを水素添加し、環状モノ
エンを生成させることを特徴とする環状ポリエン
の選択的水素添加方法。 2 保護コロイドがポリビニルピロリドンである
特許請求の範囲第1項記載の方法。
[Claims] 1. A methanol solution of palladium chloride (),
A cyclic polyene is produced using a palladium colloid catalyst obtained by heating in the presence of a protective colloid selected from alkali metal methoxide or a compound capable of producing alkali metal methoxide in the reaction system and a synthetic polymer having a polar group. A method for selectively hydrogenating a cyclic polyene, the method comprising hydrogenating a cyclic polyene to produce a cyclic monoene. 2. The method according to claim 1, wherein the protective colloid is polyvinylpyrrolidone.
JP13295878A 1978-10-28 1978-10-28 Selective hydrogenation of cyclic polyene Granted JPS5559114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295878A JPS5559114A (en) 1978-10-28 1978-10-28 Selective hydrogenation of cyclic polyene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295878A JPS5559114A (en) 1978-10-28 1978-10-28 Selective hydrogenation of cyclic polyene

Publications (2)

Publication Number Publication Date
JPS5559114A JPS5559114A (en) 1980-05-02
JPH0133451B2 true JPH0133451B2 (en) 1989-07-13

Family

ID=15093466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295878A Granted JPS5559114A (en) 1978-10-28 1978-10-28 Selective hydrogenation of cyclic polyene

Country Status (1)

Country Link
JP (1) JPS5559114A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924472A (en) * 1972-06-30 1974-03-04
JPS4947340A (en) * 1972-05-05 1974-05-08
JPS5324938A (en) * 1976-08-20 1978-03-08 Nakamura Jico Kk Lubricator for spline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947340A (en) * 1972-05-05 1974-05-08
JPS4924472A (en) * 1972-06-30 1974-03-04
JPS5324938A (en) * 1976-08-20 1978-03-08 Nakamura Jico Kk Lubricator for spline

Also Published As

Publication number Publication date
JPS5559114A (en) 1980-05-02

Similar Documents

Publication Publication Date Title
Hirai et al. Colloidal palladium protected with poly (N-vinyl-2-pyrrolidone) for selective hydrogenation of cyclopentadiene
Mallat et al. Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers
Chen et al. Metal–organic-framework-based catalysts for hydrogenation reactions
Hintermann et al. Catalytic hydration of alkynes and its application in synthesis
Schwartz Alkane activation by oxide-bound organorhodium complexes
CN1130265C (en) Catalyst capable of using on carrier in organic compound conversion reaction
Biondi et al. Synthesis of gold nanoparticle catalysts based on a new water-soluble ionic polymer
JPS5921660B2 (en) Method for producing catalyst supported on support
JPH0352475B2 (en)
JPH04122452A (en) Metal particle and/or metal compound particle carrier and production thereof
US4021374A (en) Selective hydrogenating catalysts and a process for the preparation thereof
Hirai Polymer effect on fine metal particles and reactive metal complexes
US4127506A (en) Photochemical preparation of olefin addition catalysts
CN113877630B (en) Catalyst for preparing bis [ (3-dimethylamino) propyl ] amine and application thereof
US3974095A (en) Catalyst for hydrogenation, isomerization and hydrosilylation of alkanes, and method of preparation
Steines et al. Stereoselective catalytic hydrogenation of sorbic acid and sorbic alcohol with new Cp* Ru complexesDedicated to Professor Wilhelm Keim on the occasion of his 65th birthday.
CN1145898A (en) Process for producing aliphatic nitrile
WO2023207584A1 (en) Eggshell-type catalyst, preparation method therefor, and use thereof in propylene hydroformylation reaction
Brayner et al. Liquid-phase hydrogenation of hexadienes on metallic colloidal nanoparticles immobilized on supports via coordination capture by bifunctional organic molecules
JPH0133451B2 (en)
JP5786621B2 (en) Selective hydrogenation catalyst, process for producing the same, and selective hydrogenation process using the same.
Lindsay et al. Hydrogenation of alkenes by diruthenium (II) tetraacetate
CN114700089B (en) MoS 2 Supported diatomic catalyst and preparation method and application thereof
Hinze Homogeneous hydrogenation and isomerisation of alkenes by means of μ‐dichloro (π‐benzene) ruthenium (II)
CN100411733C (en) Palladium charcoal catalyst in cyclohexanone class converted from phenols class, preparation method, and application