JPH0132963B2 - - Google Patents

Info

Publication number
JPH0132963B2
JPH0132963B2 JP17012080A JP17012080A JPH0132963B2 JP H0132963 B2 JPH0132963 B2 JP H0132963B2 JP 17012080 A JP17012080 A JP 17012080A JP 17012080 A JP17012080 A JP 17012080A JP H0132963 B2 JPH0132963 B2 JP H0132963B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
sleeve
magnetic brush
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17012080A
Other languages
Japanese (ja)
Other versions
JPS5793321A (en
Inventor
Sadatsugu Miura
Haruo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17012080A priority Critical patent/JPS5793321A/en
Publication of JPS5793321A publication Critical patent/JPS5793321A/en
Publication of JPH0132963B2 publication Critical patent/JPH0132963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing

Description

【発明の詳細な説明】 本発明は液晶セル基板の配向処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for aligning a liquid crystal cell substrate.

電界効果型液晶セルは、種々の方式が表示装置
として使われており、その配向状態を分類すると
液晶分子が液晶セル基板(液晶を狭持する基板)
に平行となる水平配向と垂直状態となる垂直配向
とがあり、水平配向による表示体が多く用いられ
ている。
Various types of field-effect liquid crystal cells are used as display devices, and the orientation state of the liquid crystal molecules can be classified into liquid crystal cell substrates (substrates that sandwich liquid crystals).
There are two types of display bodies: horizontal alignment, which is parallel to , and vertical alignment, which is perpendicular to .

ここで、従来の液晶セル製造工程における水平
配向処理方法の一例を第1図に示す。テフロンや
ポリイミドの如き樹脂を塗布焼成または蒸着した
液晶セル基板11の上を布12を巻いたドラム1
3にて、圧力を加えながらラビングする。この結
果、配向剤表面に微視的な傷が形成され、配向処
理が完了する。このような配向工程においては、
液晶セル基板に大きな圧力が加えられるため、基
板の割れが発生し、歩留りの低下をもたらすと共
に、圧力の均一なラビング処理を行なうことが難
しいため配向の乱れを生じ、表示の色むらを生
じ、更に、布の摩耗による交換を頻繁に必要とし
ていた。
Here, an example of a horizontal alignment treatment method in a conventional liquid crystal cell manufacturing process is shown in FIG. A drum 1 on which a cloth 12 is wrapped around a liquid crystal cell substrate 11 on which a resin such as Teflon or polyimide is coated and baked or vapor-deposited.
In step 3, rub while applying pressure. As a result, microscopic scratches are formed on the surface of the alignment agent, and the alignment process is completed. In such an orientation process,
Because a large amount of pressure is applied to the liquid crystal cell substrate, cracks occur in the substrate, resulting in a decrease in yield.At the same time, it is difficult to perform a rubbing process with an even pressure, resulting in disordered alignment and uneven display color. Furthermore, the cloth needed to be replaced frequently due to wear.

更に、従来のもう一つの配向処理方法として酸
化硅素等を斜め蒸着する方法が用いられていた。
しかるにかかる方法は、蒸着物の蒸着方向によつ
て斜着角度が異なるため、均一な配向が得られに
くい欠点があつた。
Furthermore, as another conventional alignment treatment method, a method of obliquely vapor depositing silicon oxide or the like has been used.
However, this method has the disadvantage that uniform orientation is difficult to obtain because the angle of oblique deposition differs depending on the direction of deposition of the deposit.

本発明の目的は、かかる欠点を除去し、頻繁な
布の交換等を不要としながら、液晶セル基板の割
れ等がなく、均一な配向処理を可能とする配向処
理方法を提供する点にある。
An object of the present invention is to provide an alignment processing method that eliminates such drawbacks, eliminates the need for frequent cloth replacement, and enables uniform alignment processing without cracking of liquid crystal cell substrates.

以下、図面を使用して本発明の液晶セル基板の
配向処理方法について説明する。
Hereinafter, a method for aligning a liquid crystal cell substrate according to the present invention will be described with reference to the drawings.

第2図は本発明による配向処理方法を示す原理
図である。円筒スリーブ21と該円筒スリーブに
内蔵される磁石22とからなるマグネツトロール
において、該マグネツトロールを回転する手段を
有し、該スリーブの表面に磁性粉末を磁気的に吸
引し磁気ブラシ23を形成する。回転する該磁気
ブラシにて液晶セル基板24の表面をラビングす
ると、該液晶セル基板の表面には微視的な傷が形
成され、これにより液晶セル内に於ける液晶の配
向が行なわれる。なお、かかる方法を用いれば均
一な配向処理等上記目的を達成するためには充分
であるが、磁気ブラシの穂の密度が疎であり、穂
の長さがバラつくため配向ムラを生じ易いことが
あり、この問題を解決するためには、磁気ブラシ
の長さを均一に規制し、繰返しラビングを行なう
ことが望ましい。このため、マグネツトロールを
構成するスリーブと磁石の一方を固定し、他方を
回転させスリーブ上で磁気ブラシを回転させるこ
とが有効である。即ち磁性粉末を適量選び、磁気
ブラシの穂の長さ規制用のブレード34を設ける
と、上記マグネツトロールのスリーブ31表面
に、第3図に示す磁気ブラシ33が形成され、磁
気ブラシはスリーブ上で回転する。かかる磁気ブ
ラシを用いて、一層均一な配向処理を行なうこと
が可能となる。以下詳細を実施例に説明する。
FIG. 2 is a principle diagram showing the orientation treatment method according to the present invention. A magnet roll consisting of a cylindrical sleeve 21 and a magnet 22 built into the cylindrical sleeve has a means for rotating the magnet roll, and magnetic powder is magnetically attracted to the surface of the sleeve to drive a magnetic brush 23. Form. When the rotating magnetic brush rubs the surface of the liquid crystal cell substrate 24, microscopic scratches are formed on the surface of the liquid crystal cell substrate, thereby aligning the liquid crystal within the liquid crystal cell. It should be noted that using this method is sufficient to achieve the above objectives such as uniform orientation treatment, but the density of the ears of the magnetic brush is sparse and the length of the ears varies, which tends to cause uneven orientation. In order to solve this problem, it is desirable to regulate the length of the magnetic brush uniformly and to perform rubbing repeatedly. For this reason, it is effective to fix one of the sleeve and the magnet that constitute the magnet roll, and rotate the other to rotate the magnetic brush on the sleeve. That is, by selecting an appropriate amount of magnetic powder and providing a blade 34 for regulating the length of the magnetic brush ears, a magnetic brush 33 shown in FIG. 3 is formed on the surface of the sleeve 31 of the magnet roll, and the magnetic brush is placed on the sleeve. Rotate with. Using such a magnetic brush, it becomes possible to perform a more uniform alignment process. Details will be explained below using examples.

実施例 1 本発明によるマグネツト回転方式磁気ブラシ配
向法を説明する。外径30mm、長さ30cmの円筒スリ
ーブの中に、磁場の強さ1000ガウスの12極マグネ
ツトを設け、スリーブは固定してマグネツトのみ
をモータにて回転させる。スリーブ表面には粒径
50μm以下の鉄粉を2〜3g与え、ブレードとス
リーブの隙間を約500μmに設定する。マグネツ
トの回転数を60〜2000RPMとすると、スリーブ
表面に長さ500μmの均一な長さの磁気ブラシが
形成され、磁気ブラシは360〜12000RPMで高速
回転する。一方、液晶セル基板とスリーブとの間
隙を300〜400μmとして通過させると液晶セル基
板には均一なラビング処理が施こされ、ドメイン
のない良好な配向を示す液晶セルが得られた。
Example 1 A magnet rotation type magnetic brush alignment method according to the present invention will be explained. A 12-pole magnet with a magnetic field strength of 1000 Gauss is placed inside a cylindrical sleeve with an outer diameter of 30 mm and a length of 30 cm.The sleeve is fixed and only the magnet is rotated by a motor. Particle size on sleeve surface
Apply 2 to 3 g of iron powder of 50 μm or less, and set the gap between the blade and the sleeve to about 500 μm. When the rotation speed of the magnet is 60 to 2000 RPM, a magnetic brush with a uniform length of 500 μm is formed on the sleeve surface, and the magnetic brush rotates at a high speed of 360 to 12000 RPM. On the other hand, when the liquid crystal cell substrate and the sleeve were passed through with a gap of 300 to 400 μm, the liquid crystal cell substrate was subjected to a uniform rubbing treatment, and a liquid crystal cell having no domains and exhibiting good alignment was obtained.

実施例 2 本発明によるスリーブ回転式磁気ブラシ配向法
を説明する。ここで用いるスリーブ及びマグネツ
トは実施例1に述べたものを使用する。スリーブ
回転方式において、スリーブと液晶セル基板との
間隙を一定に保つために、スリーブはガイドロー
ラ保持方式とし、更にマグネツトブラシの長さを
規制するために、ブレードはスリーブ外周上の磁
極間に配置し、スリーブとの間隙距離を500μm
とする。スリーブ上に粒径50μm以下の鉄粉を2
〜3g与え、60〜1000RPMにてスリーブ回転し
ている処を液晶セル基板を通過させラビングを行
ない、良好な配向特性が得られた。
Example 2 A sleeve rotating magnetic brush orientation method according to the present invention will be described. The sleeve and magnet used here are those described in Example 1. In the sleeve rotation method, in order to maintain a constant gap between the sleeve and the liquid crystal cell substrate, the sleeve is held by a guide roller, and in order to further regulate the length of the magnetic brush, the blade is placed between the magnetic poles on the outer periphery of the sleeve. The gap distance with the sleeve is 500μm.
shall be. Two pieces of iron powder with a particle size of 50 μm or less are placed on the sleeve.
~3g was applied and rubbing was performed by passing the liquid crystal cell substrate through the sleeve rotating at 60 to 1000 RPM, and good alignment characteristics were obtained.

以上本発明は従来の布を用いたラビングと違つ
て、小さな圧力による均一なラビング処理を可能
とし、硬い材料を用いているため、テフロンやポ
リイミドから酸化硅素膜或いは酸化スズや酸化イ
ンジウムまで任意の材質へのラビング処理が可能
で、摩耗も少ないメインテナンスの容易な配向方
法を提供するものである。実施例の中ではスリー
ブ上にて磁気ブラシを回動させるための手段とし
て、マグネツト回転方式及びスリーブ回転方式を
説明したが、マグネツト及びスリーブ共に回転さ
せることも可能であり、同様な効果が得られる。
このように、本発明の配向処理方法によれば、頻
繁な布の交換等を不要としながら液晶セル基板の
割れ等がなく、均一な配向処理が可能となるすぐ
れた効果を奏する。
As mentioned above, unlike conventional rubbing using cloth, the present invention enables uniform rubbing treatment with small pressure, and since it uses hard materials, it can be applied to any material from Teflon or polyimide to silicon oxide film, tin oxide or indium oxide. The object of the present invention is to provide an orientation method that allows rubbing treatment on materials, causes less wear, and is easy to maintain. In the embodiments, a magnet rotation method and a sleeve rotation method have been described as means for rotating the magnetic brush on the sleeve, but it is also possible to rotate both the magnet and the sleeve, and the same effect can be obtained. .
As described above, according to the alignment treatment method of the present invention, there is an excellent effect that it is possible to eliminate the need for frequent cloth replacement, eliminate cracks in the liquid crystal cell substrate, and enable uniform alignment treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の配向処理方式の説明図。第2図
及び第3図は本発明の配向処理方法の説明図。 11……液晶セル基板、12……ラビング用
布、13……ドラム、21……スリーブ、22…
…マグネツト、23……磁気ブラシ、31……ス
リーブ、32……マグネツト、33……磁気ブラ
シ、34……ブレード。
FIG. 1 is an explanatory diagram of a conventional alignment treatment method. FIGS. 2 and 3 are explanatory diagrams of the orientation treatment method of the present invention. 11...Liquid crystal cell substrate, 12...Rubbing cloth, 13...Drum, 21...Sleeve, 22...
...Magnet, 23...Magnetic brush, 31...Sleeve, 32...Magnet, 33...Magnetic brush, 34...Blade.

Claims (1)

【特許請求の範囲】 1 液晶セル基板の配向処理方法において、円筒
スリーブと、前記円筒スリーブに内蔵される磁石
を具備したマグネツトロールを用い、前記円筒ス
リーブの表面に磁性粉末を磁気的に吸引し前記磁
性粉末にて磁気ブラシを形成し、前記円筒スリー
ブと前記磁石の少なくとも一方を回転させること
により前記磁気ブラシを回転させた後、前記液晶
セル基板を前記円筒スリーブ近傍を通過させ前記
液晶セル基板上に前記磁気ブラシによるラビング
処理を行なうことを特徴とする液晶セル基板の配
向処理方法。 2 前記円筒スリーブ表面近傍に前記磁性粉末で
形成される磁気ブラシの高さを規制するブレード
を設けたことを特徴とする特許請求の範囲第1項
記載の液晶セルの配向処理方法。
[Scope of Claims] 1. In a method for aligning a liquid crystal cell substrate, magnetic powder is magnetically attracted to the surface of the cylindrical sleeve using a cylindrical sleeve and a magnet roll equipped with a magnet built into the cylindrical sleeve. After forming a magnetic brush with the magnetic powder and rotating the magnetic brush by rotating at least one of the cylindrical sleeve and the magnet, the liquid crystal cell substrate is passed near the cylindrical sleeve to remove the liquid crystal cell. A method for aligning a liquid crystal cell substrate, comprising performing a rubbing process on the substrate using the magnetic brush. 2. The method for aligning a liquid crystal cell according to claim 1, wherein a blade is provided near the surface of the cylindrical sleeve to regulate the height of the magnetic brush formed of the magnetic powder.
JP17012080A 1980-12-02 1980-12-02 Production of liquid crystal cell Granted JPS5793321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17012080A JPS5793321A (en) 1980-12-02 1980-12-02 Production of liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17012080A JPS5793321A (en) 1980-12-02 1980-12-02 Production of liquid crystal cell

Publications (2)

Publication Number Publication Date
JPS5793321A JPS5793321A (en) 1982-06-10
JPH0132963B2 true JPH0132963B2 (en) 1989-07-11

Family

ID=15899008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17012080A Granted JPS5793321A (en) 1980-12-02 1980-12-02 Production of liquid crystal cell

Country Status (1)

Country Link
JP (1) JPS5793321A (en)

Also Published As

Publication number Publication date
JPS5793321A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
JP2530432B2 (en) Liquid crystal element
JPH02137819A (en) Liquid crystal display device and its manufacture
JPH0132963B2 (en)
TWI352244B (en) Apparatus for rubbing the alignment layer on a sub
JPS61249021A (en) Liquid crystal display device
JPH0754381B2 (en) Liquid crystal display manufacturing method
US4232946A (en) Liquid crystal alignment layers
JPS6054656B2 (en) Manufacturing method of liquid crystal display element
JPH0222624A (en) Production of liquid crystal display device
JPH06118413A (en) Orientation method for liquid crystal molecule
JPS59187321A (en) Manufacture of liquid crystal display device
TW548490B (en) Improvements in liquid crystal displays
JP2850265B2 (en) Orientation treatment method
US5676779A (en) Device for the surface treatment of alignment film by wet-type friction method
JPS6023329B2 (en) Liquid crystal cell alignment treatment method
JPS60169830A (en) Manufacture of liquid crystal display element
JPH01156721A (en) Liquid crystal display element
JP2861510B2 (en) Substrate surface smoothing method and smoothed product
JPH01166019A (en) Ferroelectric liquid crystal element and its production
JPH03126917A (en) Production of liquid crystal display device
JPS5847685B2 (en) Ekishiyouno Bunshihaikono Tamenosouno Seiseihouhouou Oyobisouchi
JPS60103519A (en) Smoothing method at manufacture of magnetic recording medium
JPH07181494A (en) Rubbing orientation treatment of liquid cryastal electro-optic device and roll with hair for rubbing to be used for the same
JPS62272225A (en) Production of liquid crystal display device
JPH07294929A (en) Production of liquid crystal element