JPH06118413A - Orientation method for liquid crystal molecule - Google Patents

Orientation method for liquid crystal molecule

Info

Publication number
JPH06118413A
JPH06118413A JP26374192A JP26374192A JPH06118413A JP H06118413 A JPH06118413 A JP H06118413A JP 26374192 A JP26374192 A JP 26374192A JP 26374192 A JP26374192 A JP 26374192A JP H06118413 A JPH06118413 A JP H06118413A
Authority
JP
Japan
Prior art keywords
liquid crystal
magnetic field
solvent
molecules
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26374192A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
博司 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26374192A priority Critical patent/JPH06118413A/en
Publication of JPH06118413A publication Critical patent/JPH06118413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent the generation of rust and to improve the uniformity of orientation and the yield of the product by applying specified dispersed liq. on the main surface of a base plate to obtain a coating film, evaporating a solvent moderately, after impressing magnetic field, evaporating the solvent completely, then allowing it to contact with a liquid crystal. CONSTITUTION:The dispersed liq. obtained by dispersing the molecule of the material whose molecule orients in the magnetic field and the molecule of the resin consisting of a long chain molecule in the suitable solvent is applied on the main surface of a base plate glass 1 and the coating film 4 is obtained, the solvent is evaporated moderately, magnetic field is impressed, moreover, the solvent is evaporated completely, then, the main surface is allowed to contact with liquid crystal molecule. In such a case, the magnetic field is a magnetostatic field or an alternate magnetic field, the direction of impressing the magnetic field relates to the direction of liquid crystal molecule at the desire interface containing pretilt. Then, when the surface of the resin film 4 is allowed to contact with the liquid crystal molecule, the liquid crystal molecule is affected by the molecule on the surface of the resin film 4 to orient toward desired direction with desired pretilt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置の製造等
における液晶分子の配向法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aligning liquid crystal molecules in manufacturing a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】液晶表示装置の製造等においては、レー
ヨン等の繊維で高速に樹脂膜を摩擦(ラビング)して樹
脂膜を構成する有機長鎖分子を延伸し、この樹脂表面と
液晶分子とを接触させることにより、液晶分子を配向さ
せている。この技術内容は、例えば、「薄膜ハンドブッ
ク」、日本学術振興会第131委員会編、オーム社刊に
詳しい。
2. Description of the Related Art In manufacturing a liquid crystal display device, a resin film is rubbed with a fiber such as rayon at a high speed to stretch an organic long chain molecule constituting the resin film, and the resin surface and the liquid crystal molecule are separated from each other. The liquid crystal molecules are aligned by bringing them into contact with each other. The technical contents are detailed in, for example, "Thin Film Handbook", edited by Japan Society for the Promotion of Science, 131st Committee, published by Ohmsha.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のラビ
ング技術は以下の課題を有する。
The conventional rubbing technique has the following problems.

【0004】そもそも、液晶パネルの製造工程において
は、ゴミを嫌い、従って、無塵室でなされる。しかし、
ラビングの過程で使用する繊維は、発塵の可能性が高
く、このものを無塵室に持ち込むことは基本的に不都合
が多い。塵やゴミは、繊維の切れ端、樹脂膜の削れ屑、
機械の高速運動による機械部品の摩耗屑等であり、これ
らはおのずから、製品の歩留まりを下げる原因となる。
In the first place, the liquid crystal panel manufacturing process dislikes dust, and is therefore performed in a dust-free chamber. But,
The fibers used in the rubbing process are highly likely to generate dust, and it is basically inconvenient to bring them into a dust-free chamber. Dust and debris is caused by fiber scraps, resin film shavings,
It is abrasion and debris of machine parts due to high-speed motion of the machine, which naturally causes a reduction in product yield.

【0005】この事態を防ぐため、いわゆるラビング操
作のあと、基板を洗浄するが、洗浄工程は、非常に微妙
であり、制御性の悪いものである。
In order to prevent this situation, the substrate is cleaned after the so-called rubbing operation, but the cleaning process is very delicate and the controllability is poor.

【0006】また、このようなラビング操作では、均一
な樹脂膜を構成する有機長鎖分子を延伸が困難であり、
結果として均一な表示が困難な場合がある。
Further, in such a rubbing operation, it is difficult to stretch the organic long chain molecules constituting the uniform resin film,
As a result, uniform display may be difficult.

【0007】また、最近の液晶表示装置では、液晶−基
板の界面での液晶分子の配向の際の、液晶分子の長手方
向と基板のなす角(いわゆる、プレティルト角)が、約
5°以上で、この角の面内均一性が重要となる。このプ
レティルト角は局部的なラビングの強度のバラツキ等に
より、微妙に変化し、これが表示に反映される。また、
所望のプレティルトの範囲により、樹脂膜を構成する分
子の構造を変える必要がある。また、約10°以上のプ
レティルトの均一性、再現性を確保することは工業とし
ては成功していない。
Further, in the recent liquid crystal display device, when the liquid crystal molecules are aligned at the liquid crystal-substrate interface, the angle between the longitudinal direction of the liquid crystal molecules and the substrate (so-called pretilt angle) is about 5 ° or more. The in-plane uniformity of this corner is important. This pretilt angle slightly changes due to local variations in the rubbing strength, and this is reflected in the display. Also,
It is necessary to change the structure of molecules forming the resin film depending on the desired pretilt range. Further, ensuring the uniformity and reproducibility of pretilt of about 10 ° or more has not been successful as an industry.

【0008】また、ラビング操作が、高速の摩擦である
故に、樹脂膜の基板への接着力が重要となる。これを確
保するために、樹脂膜にシランカップラー等を導入する
のが一般的である。ところが、このシランカップラー
が、液晶分子や、液晶中の不純物分子を吸着し、表示を
汚くする傾向にある。
Further, since the rubbing operation is high-speed friction, the adhesive force of the resin film to the substrate is important. In order to secure this, it is general to introduce a silane coupler or the like into the resin film. However, this silane coupler tends to adsorb liquid crystal molecules and impurity molecules in the liquid crystal, thus making the display dirty.

【0009】本発明は、この様な従来のラビング法によ
る液晶分子配向方法の課題を考慮し、そのような多くの
課題を有しない液晶分子配向法を提供することを目的と
するものである。
An object of the present invention is to provide a liquid crystal molecule alignment method that does not have many problems, taking into consideration the problems of the conventional liquid crystal molecule alignment method by the rubbing method.

【0010】[0010]

【課題を解決するための手段】本発明は、分子が磁場で
配向することが出来る材料と、長鎖分子からなる樹脂と
を適当な溶媒中に分散させて分散液を得、基板の主面上
にこの分散液を塗布し塗布膜を得、前記溶媒を適度に蒸
発させ、次に磁場を印加し、更に溶媒を完全に蒸発さ
せ、次に液晶分子と接触させるような液晶分子配向法を
提供するものである。
According to the present invention, a material in which molecules can be oriented in a magnetic field and a resin consisting of long-chain molecules are dispersed in a suitable solvent to obtain a dispersion liquid, and the main surface of a substrate is obtained. A liquid crystal molecule alignment method in which this dispersion is applied to obtain a coating film, the solvent is appropriately evaporated, a magnetic field is applied, the solvent is completely evaporated, and then the liquid crystal molecules are contacted It is provided.

【0011】この際、磁場は一定方向の静磁場ないし交
番磁場であり、磁場印加の方向は、プレティルトを含め
た、所望の界面の液晶分子の方向に関係する。
At this time, the magnetic field is a static magnetic field or an alternating magnetic field in a fixed direction, and the direction of magnetic field application is related to the direction of liquid crystal molecules at a desired interface including pretilt.

【0012】この磁場印加の際、若干、基板を加温する
のが望ましい。
When applying this magnetic field, it is desirable to slightly heat the substrate.

【0013】また、本発明は、分子が磁場で配向するこ
とが出来、かつ揮発性のある材料と長鎖分子とを適当な
溶媒中に分散させて分散液を得、基板の主面上にこの分
散液を塗布し塗布膜を得、前記溶媒を適度に蒸発させ、
次に磁場を印加し、更に溶媒を完全に蒸発させかつ揮発
性のある材料を完全に揮発させ、次に液晶分子と接触さ
せるような液晶分子配向法を提供する。
Further, according to the present invention, a volatile material and long-chain molecules in which molecules can be oriented in a magnetic field are dispersed in an appropriate solvent to obtain a dispersion liquid, and the dispersion liquid is obtained on the main surface of the substrate. This dispersion is applied to obtain a coating film, and the solvent is appropriately evaporated,
Then, a magnetic field is applied to further evaporate the solvent and volatilize the volatile material completely, and then bring the liquid crystal molecule into contact with the liquid crystal molecule.

【0014】この際、磁場は一定方向の静磁場ないし交
番磁場であり、磁場印加の方向は、プレティルトを含め
た、所望の界面の液晶分子の方向に関係する。
At this time, the magnetic field is a static magnetic field or an alternating magnetic field in a fixed direction, and the direction of magnetic field application is related to the direction of liquid crystal molecules at a desired interface including pretilt.

【0015】この磁場印加の際、若干、基板を加温する
のが望ましい。
When applying the magnetic field, it is desirable to slightly heat the substrate.

【0016】[0016]

【作用】まず、本発明は前述のような課題を解決するた
めに、分子が磁場で配向することが出来る材料の分子
と、長鎖分子からなる樹脂の分子とを適当な溶媒中に分
散させて分散液を得、基板ガラスの主面上にこの分散液
を塗布し塗布膜を得、前記溶媒を適度に蒸発させ、次に
磁場を印加し、更に溶媒を完全に蒸発させ、次にこの主
面を液晶分子と接触させるような液晶分子配向法を提供
するものである。
In order to solve the above-mentioned problems, the present invention disperses in a suitable solvent the molecules of a material whose molecules can be oriented in a magnetic field and the molecules of a resin consisting of long chain molecules. A dispersion liquid is obtained by applying the dispersion liquid on the main surface of the substrate glass to obtain a coating film, the solvent is appropriately evaporated, and then a magnetic field is applied to further evaporate the solvent completely. The present invention provides a method for aligning liquid crystal molecules in which the main surface is brought into contact with liquid crystal molecules.

【0017】この際、磁場は一定方向の静磁場ないし交
番磁場であり、磁場印加の方向は、プレティルトを含め
た、所望の界面の液晶分子の方向に関係する。
At this time, the magnetic field is a static magnetic field or an alternating magnetic field in a fixed direction, and the direction of magnetic field application is related to the direction of liquid crystal molecules at a desired interface including pretilt.

【0018】この磁場印加の際、若干、基板を加温し、
塗布膜中の分子を動き易くしておくのが望ましい。
When applying this magnetic field, the substrate is slightly heated,
It is desirable to make the molecules in the coating film move easily.

【0019】この発明では、塗布膜において、まず、分
子が磁場で配向することが出来る材料分子と、長鎖分子
からなる樹脂とを共存させる。このとき、若干、適当
量、溶媒成分を残存させ、前記材料分子と長鎖分子の動
き易さを確保する。
In the present invention, in the coating film, first, material molecules whose molecules can be oriented in a magnetic field and a resin composed of long chain molecules are made to coexist. At this time, the solvent component is allowed to remain in a slight amount to ensure the easiness of movement of the material molecule and the long chain molecule.

【0020】つぎに、一方向磁場を印加し、前記塗布膜
中の分子が磁場で配向することが出来る材料分子を配向
させる。この塗布膜中の秩序は、長鎖分子の並びにも影
響を及ぼし、長鎖分子も並ぶ。この状態を達成した後
で、残留溶媒成分を蒸発させる。
Next, a unidirectional magnetic field is applied to orient the material molecules in which the molecules in the coating film can be oriented by the magnetic field. The order in the coating film also affects the order of the long-chain molecules, and the long-chain molecules also line up. After achieving this state, the residual solvent component is evaporated.

【0021】かくて、この樹脂膜表面が液晶分子と接触
すると、液晶分子は、樹脂膜表面の分子の影響を受け
て、所望のプレティルトをもって、所望の方向に配向す
る。
Thus, when the surface of the resin film comes into contact with the liquid crystal molecules, the liquid crystal molecules are influenced by the molecules on the surface of the resin film and are oriented in a desired direction with a desired pretilt.

【0022】分子が磁場で配向することが出来る材料、
すなわち磁場に感応する材料とは、例えば、π電子の豊
富なベンゼン環を構造として含むようなものが考えられ
る。
A material whose molecules can be oriented in a magnetic field,
That is, as a material sensitive to a magnetic field, for example, a material containing a benzene ring rich in π electrons as a structure can be considered.

【0023】本発明ではさらに、かっての一酸化珪素の
斜方蒸着膜(これは、液晶分子を均一に配向させること
はよく知られている。しかし、生産性の故に、生産現場
ではあまり使われていない。)に類似した膜を得ようと
するものである。以下に、述べる。
Further, according to the present invention, it is well known that the obliquely vapor-deposited film of silicon monoxide (which is capable of uniformly aligning liquid crystal molecules is used. No.) to obtain a membrane similar to the above. This will be described below.

【0024】すなわち、本発明は、分子が磁場で配向す
ることが出来、かつ揮発性のある材料と、長鎖分子から
なる樹脂とを適当な溶媒中に分散させて分散液を得、基
板の主面上にこの分散液を塗布し塗布膜を得、前記溶媒
を適度に蒸発させ、次に磁場を印加し、更に溶媒を完全
に蒸発させかつ揮発性のある材料を完全に揮発させ、次
にこの主面を液晶分子と接触させるような液晶分子配向
法をも提供する。
That is, in the present invention, a volatile material in which molecules can be oriented in a magnetic field and a resin composed of long-chain molecules are dispersed in an appropriate solvent to obtain a dispersion liquid, This dispersion is applied on the main surface to obtain a coating film, the solvent is appropriately evaporated, and then a magnetic field is applied to further evaporate the solvent completely and volatilize the volatile material. In addition, a method for aligning liquid crystal molecules in which this main surface is brought into contact with liquid crystal molecules is also provided.

【0025】この磁場印加の際、若干、基板を加温し、
塗布膜中の分子を動き易くしておくのが望ましい。つぎ
に、一方向磁場を印加し、前記塗布膜中の分子が磁場で
配向することが出来る材料分子を配向させる。この塗布
膜中の秩序は、長鎖分子の並びにも影響を及ぼし、長鎖
分子も並ぶ。このとき、分子が磁場で配向することが出
来る材料分子と長鎖分子とは、なかば分相する傾向のあ
るものもある。これは、走査型トンネル顕微鏡や走査型
電子顕微鏡の観察によって推定される。
When applying this magnetic field, the substrate is slightly heated,
It is desirable to make the molecules in the coating film move easily. Next, a unidirectional magnetic field is applied to orient the material molecules in which the molecules in the coating film can be oriented by the magnetic field. The order in the coating film also affects the order of the long-chain molecules, and the long-chain molecules also line up. At this time, there is a tendency that the material molecules whose molecules can be oriented by the magnetic field and the long-chain molecules tend to be phase-separated. This is estimated by observation with a scanning tunneling microscope or a scanning electron microscope.

【0026】次に、揮発性の、分子が磁場で配向するこ
とが出来る材料分子をも揮発させる。出来た樹脂膜の表
面を観察したところ、表面は凹凸が激しく、孔状の構造
は統計的に、印加した磁場方向に関係した、ある方位を
向いていた。この状況は一酸化珪素の斜方蒸着膜に類似
していた。
Next, volatile material molecules whose molecules can be oriented in a magnetic field are also volatilized. Observation of the surface of the resin film produced revealed that the surface was highly uneven, and the pore-like structure was statistically oriented in a certain direction related to the direction of the applied magnetic field. This situation was similar to the oblique deposition film of silicon monoxide.

【0027】このようにこの樹脂膜表面が液晶分子と接
触すると、液晶分子は所望のプレティルトをもって、所
望の方向に配向する
When the surface of the resin film comes into contact with the liquid crystal molecules as described above, the liquid crystal molecules are oriented in a desired direction with a desired pretilt.

【0028】[0028]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0029】(実施例1)図1は本発明の一実施例にか
かる液晶分子配向法を説明するための断面図である。図
において、1はガラス基板であり、その上に透明電極
(ITO電極)2が形成され、さらに2酸化珪素からな
るトップコート3で覆われ、その上に樹脂膜4が形成さ
れている。なお、5はヒーター付きプレート、6は温
風、7は模式的に表した電磁石、8はヒーター付きプレ
ートである。
(Embodiment 1) FIG. 1 is a sectional view for explaining a liquid crystal molecule alignment method according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a glass substrate, on which a transparent electrode (ITO electrode) 2 is formed, which is further covered with a top coat 3 made of silicon dioxide, and a resin film 4 is formed thereon. In addition, 5 is a plate with a heater, 6 is warm air, 7 is an electromagnet shown schematically, and 8 is a plate with a heater.

【0030】次に、実際の製造工程を説明する。Next, the actual manufacturing process will be described.

【0031】コーニング社製#7059ガラス基板1を
入手した。これに、ITO膜2の膜付けを行い、更に、
公知のフォトリソグラフィー法でもって、市販の塩鉄溶
液で腐食し、ITO膜2の微細加工を行った。次に、有
機シリコン化合物を印刷、熱分解させて、トップコート
3を形成した。
A Corning # 7059 glass substrate 1 was obtained. The ITO film 2 is attached to this, and further,
The ITO film 2 was finely processed by corrosion using a commercially available salt iron solution by a known photolithography method. Next, the organic silicon compound was printed and thermally decomposed to form the top coat 3.

【0032】また、アントラセンのエタノール溶液を調
合した。また、脂環式ポリイミドのγ−ブチルラクトン
系溶媒による溶液、JIB−1を、日本合成ゴム(株)
から入手した。最終的に、アントラセン固形分を、溶液
全量に対して約0.8%、脂環式ポリイミド固形分を約
3.5w%とし、溶媒はエタノールとγ−ブチルラクト
ン系溶媒の混合系溶媒とし、塗布液を得た。
An ethanol solution of anthracene was prepared. In addition, JIB-1, a solution of an alicyclic polyimide in a γ-butyl lactone solvent, was manufactured by Nippon Synthetic Rubber Co., Ltd.
Obtained from. Finally, the anthracene solid content is about 0.8% with respect to the total amount of the solution, the alicyclic polyimide solid content is about 3.5 w%, the solvent is a mixed solvent of ethanol and γ-butyl lactone solvent, A coating liquid was obtained.

【0033】この塗布液を、前記トップコート3上にス
ピナーで塗布し、図1の(a)のような基板を得た。
This coating solution was applied onto the top coat 3 with a spinner to obtain a substrate as shown in FIG.

【0034】次に、約70℃に設定されたヒータ付きプ
レート5上に、前記基板を密着させ、溶媒をかなり蒸発
させて、図1の(b)のような基板を得た。
Next, the substrate was brought into close contact with the heater-equipped plate 5 set at about 70 ° C., and the solvent was considerably evaporated to obtain a substrate as shown in FIG. 1 (b).

【0035】さらに、約45℃になるように温風6に基
板を晒し、かつ、電磁石7により約60kガウスの静磁
場にこの基板を晒した。磁力線との方向は、基板に対し
て、所望の方向となるよう、制御した(図1(c))。
Further, the substrate was exposed to warm air 6 at about 45 ° C., and the substrate was exposed to a static magnetic field of about 60 kGauss by the electromagnet 7. The direction of the lines of magnetic force was controlled so as to be a desired direction with respect to the substrate (FIG. 1 (c)).

【0036】次に基板を約150℃に保った(図1
(d))。
Next, the substrate was kept at about 150 ° C. (see FIG. 1).
(D)).

【0037】この基板の表面を走査型原子間力顕微鏡で
観察したところ、表面の凹凸は磁場印加の方向に関係し
ているように観察された。アントラセンが、揮発してい
るようには観察されなかった。
When the surface of this substrate was observed with a scanning atomic force microscope, the surface irregularities were observed to be related to the direction of the magnetic field application. Anthracene was not observed to be volatile.

【0038】このような2枚の基板を、ITO膜2が対
向し、間隙が7.1ミクロンとなるように、貼り合わ
せ、この間隙にSTN用ネマティック液晶組成物を充填
した。更に、位相差板、偏光板を設け、液晶表示パネル
とした。液晶の配向をみたところ、所望のプレティルト
を実現出来ているように判断された。コントラストは約
50%向上した。歩留まりも、数10%向上した。なか
んずく、パネル内への異物の混入は皆無であった。表示
の均一性も大幅に向上した。
Two such substrates were attached so that the ITO films 2 face each other and the gap was 7.1 μm, and the gap was filled with the nematic liquid crystal composition for STN. Furthermore, a retardation plate and a polarizing plate were provided to complete the liquid crystal display panel. When the alignment of the liquid crystal was observed, it was judged that the desired pretilt was realized. The contrast is improved by about 50%. The yield has also improved by several tens of percent. Above all, no foreign matter was mixed into the panel. The uniformity of display is also greatly improved.

【0039】次に、表面安定化強誘電性液晶パネルを作
製した。このような2枚の基板を、ITO膜2が対向す
るように、間隙が1.5ミクロンとなるように、貼り合
わせ、この間隙にキラル・スメクティックC相の液晶組
成物を充填した。更に、偏光板を設け、液晶表示パネル
とした。ユニフォーム配向が得られ、ジグザグ欠陥も、
僅かで、実用上、問題ない程度であった。歩留まりも、
数10%向上した。なかんずく、パネル内への異物の混
入は皆無であった。
Next, a surface-stabilized ferroelectric liquid crystal panel was prepared. Two such substrates were bonded so that the ITO films 2 face each other and the gap was 1.5 μm, and the gap was filled with a chiral smectic C phase liquid crystal composition. Further, a polarizing plate was provided to make a liquid crystal display panel. Uniform orientation is obtained, and zigzag defects are also
It was small and practically acceptable. The yield is also
It improved by several tens of percent. Above all, no foreign matter was mixed into the panel.

【0040】(実施例2)コーニング社製#7059ガ
ラス基板1を入手した。これに、ITO膜2の膜付けを
行い、更に、公知のフォトリソグラフィー法でもって、
市販の塩鉄溶液で腐食、ITO膜2の微細加工を行っ
た。次に、有機シリコン化合物を印刷、熱分解させて、
トップコート3を形成した。
Example 2 A # 7059 glass substrate 1 manufactured by Corning Inc. was obtained. The ITO film 2 is attached to this, and further by a known photolithography method,
The ITO film 2 was finely processed by corrosion with a commercially available salt iron solution. Next, the organosilicon compound is printed and pyrolyzed,
Topcoat 3 was formed.

【0041】また、ナフタレンのエタノール溶液を調合
した。また、脂環式ポリイミドのγ−ブチルラクトン系
溶媒による溶液、JIB−1を、日本合成ゴム(株)か
ら入手した。最終的に、ナフタレン固形分を、溶液全量
に対して約0.5w%、脂環式ポリイミド固形分を約
3.5w%とし、溶媒はエタノールとγ−ブチルラクト
ン系溶媒の混合系溶媒とし、塗布液を得た。
Further, an ethanol solution of naphthalene was prepared. A solution of alicyclic polyimide in a γ-butyl lactone solvent, JIB-1, was obtained from Nippon Synthetic Rubber Co., Ltd. Finally, the naphthalene solid content is about 0.5 w% with respect to the total amount of the solution, the alicyclic polyimide solid content is about 3.5 w%, and the solvent is a mixed solvent of ethanol and γ-butyl lactone-based solvent, A coating liquid was obtained.

【0042】この塗布液を、前記トップコート3上にス
ピナーで塗布し、図1の(a)のような基板を得た。
This coating solution was applied onto the top coat 3 with a spinner to obtain a substrate as shown in FIG.

【0043】次に、約50℃に設定されたプレート5上
に、前記基板を密着させ、溶媒をかなり蒸発させて、図
1の(b)のような基板を得た。
Next, the substrate was brought into close contact with the plate 5 set at about 50 ° C., and the solvent was considerably evaporated to obtain a substrate as shown in FIG. 1 (b).

【0044】さらに、約45℃になるように温風6に基
板を晒し、かつ伝磁石7により約60kガウスの静磁場
に基板を晒した。磁力線との方向は、基板に対して、所
望の方向となるよう、制御した(図1(c))。
Further, the substrate was exposed to warm air 6 so that the temperature became about 45 ° C., and the substrate was exposed to a static magnetic field of about 60 kGauss by the transfer magnet 7. The direction of the lines of magnetic force was controlled so as to be a desired direction with respect to the substrate (FIG. 1 (c)).

【0045】次に、約85℃に、約2時間、基板を保っ
た。この温度はナフタレンが揮発するには、十分な温度
である(図1(d))。
Next, the substrate was kept at about 85 ° C. for about 2 hours. This temperature is a sufficient temperature for the naphthalene to volatilize (FIG. 1 (d)).

【0046】さらに次に基板を約150℃に保った(同
様に、図1(d))。
Next, the substrate was kept at about 150 ° C. (also, FIG. 1D).

【0047】この基板の表面を走査型原子間力顕微鏡で
観察したところ、表面の凹凸は磁場印加の方向に関係し
ているように観察された。また、かなり表面の凹凸が激
しく、ナフタレンが、揮発しているように思われた。
When the surface of this substrate was observed with a scanning atomic force microscope, the surface irregularities were observed to be related to the direction of the magnetic field application. Further, the surface was considerably uneven, and naphthalene seemed to be volatilized.

【0048】このような2枚の基板を、ITO膜2が対
向するように、間隙が7.1ミクロンとなるように、貼
り合わせ、この間隙にSTN用ネマティック液晶組成物
を充填した。更に、位相差板、偏光板を公知の如く設
け、液晶表示パネルとした。コントラストは約50%向
上した。歩留まりも、数10%向上した。なかんずく、
パネル内への異物の混入は皆無であった。表示の均一性
も大幅に向上した。
Two such substrates were bonded together so that the ITO films 2 face each other so that the gap was 7.1 μm, and the gap was filled with the nematic liquid crystal composition for STN. Further, a retardation plate and a polarizing plate were provided in a known manner to obtain a liquid crystal display panel. The contrast is improved by about 50%. The yield has also improved by several tens of percent. Above all,
No foreign matter was mixed into the panel. The uniformity of display is also greatly improved.

【0049】次に、表面安定化強誘電性液晶パネルを作
製した。このような2枚の基板を、ITO膜2が対向す
るように、間隙が1.5ミクロンとなるように、貼り合
わせ、この間隙にキラル・スメクティックC相の液晶組
成物を充填した。更に、偏光板を設け、液晶表示パネル
とした。ユニフォーム配向が得られ、ジグザグ欠陥も、
僅かで、実用上、問題ない程度であった。歩留まりも、
数10%向上した。なかんずく、パネル内への異物の混
入は皆無であった。
Next, a surface-stabilized ferroelectric liquid crystal panel was prepared. Two such substrates were bonded so that the ITO films 2 face each other and the gap was 1.5 μm, and the gap was filled with a chiral smectic C phase liquid crystal composition. Further, a polarizing plate was provided to make a liquid crystal display panel. Uniform orientation is obtained, and zigzag defects are also
It was small and practically acceptable. The yield is also
It improved by several tens of percent. Above all, no foreign matter was mixed into the panel.

【0050】なお、分子が磁場で配向することが出来、
かつ揮発性のある材料としては、上記実施例ではナフタ
レンや、アントラセンであったが、他の材料でもかまわ
ない。
The molecules can be oriented by a magnetic field,
In addition, as the volatile material, naphthalene or anthracene was used in the above embodiment, but other materials may be used.

【0051】また、長鎖分子から成る樹脂としては、上
記実施例では日本合成ゴム製、ポリイミド樹脂、JIB
シリーズであったが、他の材料でもかまわない。
Further, as the resin composed of long-chain molecules, in the above-mentioned embodiment, a resin made of Japan Synthetic Rubber, a polyimide resin, JIB is used.
It was a series, but other materials are acceptable.

【0052】また、溶媒の蒸発方法、磁場の印加方法、
加熱方法等も、上記実施例の方法に限られない。
Further, a solvent evaporation method, a magnetic field application method,
The heating method and the like are not limited to the method of the above embodiment.

【0053】また、分散液の形成は、上記実施例では、
塗布方法によるものであったが、他の方法でも可能であ
る。
Further, the formation of the dispersion liquid is performed in the above-mentioned embodiment.
Although it depends on the coating method, other methods are also possible.

【0054】[0054]

【発明の効果】以上述べたところから明らかなように、
本発明は、ゴミの発生は、原理上、皆無となり、製品の
歩留まりの向上を実現できる。
As is apparent from the above description,
In the present invention, the generation of dust is eliminated in principle, and the yield of products can be improved.

【0055】また、この製造工程で、基板からの発塵が
ほとんど無く、従って配向処理の後の基板洗浄は必要と
しないという長所がある。従って、この微妙な洗浄の工
程が省ける利点がある。
Further, in this manufacturing process, there is almost no dust generation from the substrate, so that there is an advantage that the substrate cleaning after the alignment treatment is not necessary. Therefore, there is an advantage that this delicate cleaning step can be omitted.

【0056】また、原理的に、本発明は、従来のラビン
グ法より、均一性を向上させることが出来る。
Further, in principle, the present invention can improve the uniformity as compared with the conventional rubbing method.

【0057】また、プレティルトの制御法は、従来法に
比べて単純である。均一性も優れる。約10°以上のプ
レティルトを均一で再現性よく実現することに、何等、
障害はない。
The pretilt control method is simpler than the conventional method. Excellent uniformity. In order to realize a pretilt of about 10 ° or more uniformly and with good reproducibility,
There is no obstacle.

【0058】また、従来程、樹脂膜の基板への付着力を
要求しない。従って、シランカップラー等、全く、必要
がない。この状況は、画質の向上をもたらす。
Further, the adhesion of the resin film to the substrate is not required as in the conventional case. Therefore, there is no need for a silane coupler or the like. This situation results in improved image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の液晶分子配向法を説明する
ための断面図である。
FIG. 1 is a cross-sectional view for explaining a liquid crystal molecule alignment method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極(ITO電極) 3 2酸化珪素からなるトップコート 4 樹脂膜 5 ヒーター付きプレート 6 温風 7 模式的に表した電磁石 8 ヒーター付きプレート 1 Glass Substrate 2 Transparent Electrode (ITO Electrode) 3 2 Top Coat Made of Silicon Oxide 4 Resin Film 5 Plate with Heater 6 Hot Air 7 Electromagnetic Schematically 8 Plate with Heater

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 分子が磁場で配向することが出来る材料
と長鎖分子からなる樹脂とを所定の溶媒中に分散させて
分散液を得る工程と、基板の主面上に前記分散液の膜を
形成する工程と、前記溶媒を適度に蒸発させる工程と、
磁場を印加する工程と、前記溶媒を完全に蒸発させる工
程とを利用して製造された液晶用基板を液晶分子に接触
させることを特徴とする液晶分子配向法。
1. A step of dispersing a material whose molecules can be oriented in a magnetic field and a resin composed of long-chain molecules in a predetermined solvent to obtain a dispersion, and a film of the dispersion on the main surface of a substrate. And a step of appropriately evaporating the solvent,
A method for aligning liquid crystal molecules, which comprises contacting liquid crystal molecules with a liquid crystal substrate manufactured by using a step of applying a magnetic field and a step of completely evaporating the solvent.
【請求項2】 分子が磁場で配向することが出来る材料
と長鎖分子とを所定の溶媒中に分散させて分散液を得る
工程と、基板の主面上に前記分散液の膜を形成する工程
と、前記溶媒を適度に蒸発させる工程と、前記基板を加
熱しながら磁場を印加する工程と、前記溶媒を完全に蒸
発させる工程とを利用して製造された液晶用基板を液晶
分子と接触させることを特徴とする液晶分子配向法。
2. A step of dispersing a material in which molecules can be oriented in a magnetic field and long-chain molecules in a predetermined solvent to obtain a dispersion, and forming a film of the dispersion on the main surface of a substrate. Contacting a liquid crystal substrate with a liquid crystal substrate manufactured by using a step, a step of appropriately evaporating the solvent, a step of applying a magnetic field while heating the substrate, and a step of completely evaporating the solvent. A liquid crystal molecular alignment method characterized by:
【請求項3】 分子が磁場で配向することが出来、かつ
揮発性のある材料と長鎖分子とを適当な溶媒中に分散さ
せて分散液を得る工程と、基板の主面上に前記分散液の
膜を形成する工程と、前記溶媒を適度に蒸発させる工程
と、磁場を印加する工程と、前記溶媒を完全に蒸発させ
かつ揮発性のある材料を完全に揮発させる工程とを利用
して製造された液晶用基板を液晶分子と接触させること
を特徴とする液晶分子配向法。
3. A step of dispersing a volatile material in which molecules can be oriented in a magnetic field and a volatile material and a long-chain molecule in a suitable solvent to obtain a dispersion, and the dispersion on the main surface of the substrate. Utilizing the steps of forming a liquid film, appropriately evaporating the solvent, applying a magnetic field, and completely evaporating the solvent and completely volatilizing a volatile material. A method for aligning liquid crystal molecules, which comprises contacting the manufactured liquid crystal substrate with liquid crystal molecules.
【請求項4】 分子が磁場で配向することが出来、かつ
揮発性のある材料と長鎖分子からなる樹脂とを適当な溶
媒中に分散させて分散液を得る工程と、基板の主面上に
前記分散液の膜を形成する工程と、前記溶媒を適度に蒸
発させる工程と、揮発性のある材料が実質上揮発しない
程度に加熱しながら、磁場を印加する工程と、前記溶媒
を完全に蒸発させかつ揮発性のある材料を完全に揮発さ
せる工程とを利用して製造された液晶用基板を液晶分子
と接触させることを特徴とする液晶分子配向法。
4. A step of dispersing a volatile material in which molecules can be oriented in a magnetic field and a resin composed of long-chain molecules in a suitable solvent to obtain a dispersion, and on the main surface of the substrate. A step of forming a film of the dispersion liquid, a step of appropriately evaporating the solvent, a step of applying a magnetic field while heating so that the volatile material is not substantially volatilized, and the solvent completely. A method for aligning liquid crystal molecules, which comprises contacting a liquid crystal substrate manufactured by utilizing a step of evaporating and completely volatilizing a volatile material.
JP26374192A 1992-10-01 1992-10-01 Orientation method for liquid crystal molecule Pending JPH06118413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26374192A JPH06118413A (en) 1992-10-01 1992-10-01 Orientation method for liquid crystal molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26374192A JPH06118413A (en) 1992-10-01 1992-10-01 Orientation method for liquid crystal molecule

Publications (1)

Publication Number Publication Date
JPH06118413A true JPH06118413A (en) 1994-04-28

Family

ID=17393648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26374192A Pending JPH06118413A (en) 1992-10-01 1992-10-01 Orientation method for liquid crystal molecule

Country Status (1)

Country Link
JP (1) JPH06118413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728933B2 (en) 2005-02-07 2010-06-01 Lg Display Co., Ltd. Method and apparatus of forming alignment layer for liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728933B2 (en) 2005-02-07 2010-06-01 Lg Display Co., Ltd. Method and apparatus of forming alignment layer for liquid crystal display device
US8692965B2 (en) 2005-02-07 2014-04-08 Lg Display Co., Ltd. Method and apparatus of forming alignment layer for liquid crystal display device

Similar Documents

Publication Publication Date Title
US5596434A (en) Self-assembled monolayers for liquid crystal alignment
JPH06118413A (en) Orientation method for liquid crystal molecule
JPH02208633A (en) Liquid crystal display device
JPH0643457A (en) Formation of liquid crystal orienting film
JP3197992B2 (en) Liquid crystal device manufacturing method
JP2544945B2 (en) Ferroelectric liquid crystal element
JPH052169A (en) Production of liquid crystal oriented film
JPH02173614A (en) Formation of oriented film of liquid crystal element
JP3027523B2 (en) Method of forming alignment film for liquid crystal
JP3747559B2 (en) Method for forming alignment film and liquid crystal display element using alignment film by this forming method
JPH0416925A (en) Liquid crystal element and its manufacture
JPH054134U (en) Liquid crystal display element
JP3153281B2 (en) Vertical alignment treatment method for liquid crystal molecules
JPH04366920A (en) Liquid crystal oriented film
JP2532693B2 (en) Liquid crystal element manufacturing method
JPH05224209A (en) Formation of high polymer oriented film for liquid crystal
JP2541806B2 (en) Method for forming alignment film for liquid crystal display device
JPH0643458A (en) Liquid crystal orientation method and liquid crystal element
JPH04372932A (en) Manufacture of liquid crystal orientation film
JPH0627471A (en) Production of liquid crystal panel
JPH03210529A (en) Production of polyimide film
JPH10170925A (en) Production of liquid crystal element
JPH06148639A (en) Liquid crystal panel
JP2001249343A (en) Liquid crystal display device
JPH06148644A (en) Production of liquid crystal panel