JPH0132941B2 - - Google Patents

Info

Publication number
JPH0132941B2
JPH0132941B2 JP56178355A JP17835581A JPH0132941B2 JP H0132941 B2 JPH0132941 B2 JP H0132941B2 JP 56178355 A JP56178355 A JP 56178355A JP 17835581 A JP17835581 A JP 17835581A JP H0132941 B2 JPH0132941 B2 JP H0132941B2
Authority
JP
Japan
Prior art keywords
sample
temperature
container
heat
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56178355A
Other languages
Japanese (ja)
Other versions
JPS5880549A (en
Inventor
Yoichi Takahashi
Tadahiko Azumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Original Assignee
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd filed Critical Rigaku Denki Co Ltd
Priority to JP17835581A priority Critical patent/JPS5880549A/en
Publication of JPS5880549A publication Critical patent/JPS5880549A/en
Publication of JPH0132941B2 publication Critical patent/JPH0132941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/005Investigating or analyzing materials by the use of thermal means by investigating specific heat

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 粉末、液体あるいは蒸気圧の高い試料の熱容量
をフラツシユ法によつて測定するためには、アル
ミニウムのような熱伝導の良好な材料で形成した
適当な形状大きさを有する密閉容器にその試料を
収容する必要がある。しかし試料の熱伝導が悪い
場合は、容器の一方の面に瞬間的に照射された熱
線によつて熱伝導の良好な容器だけは比較的短時
間のうちに温度上昇を生ずるが、その熱が内部の
試料に伝ぱんして均一な温度になるまでには大き
な時間遅れがある。試料の熱容量は、このような
過程を経て容器の内部全体が均一な温度に達した
ときの値にもとづいて算定される。しかし上述の
ように熱線を照射した直後に熱伝導の良好な容器
のみが一旦異常な高温度に達し、その温度が再び
低下して均一な温度になるために、容器のみが高
温度になつた状態で熱の輻射あるいは更に対流に
よつて熱損失を生じ、かつこの熱損失に対しては
補償の手段がないから測定値に大きな誤差が含ま
れる欠点があつた。この欠点を除去するために従
来は、試料に熱伝導の良好な例えば銀の粉末等を
混入して、実効的に試料の熱伝導を良好にする手
段がとられていたが、その銀の粉末が熱伝導の悪
い本来の試料で囲まれて熱伝導率を充分高くする
ことができないために、満足すべき効果が得られ
なかつた。従つて本発明は簡単な構成によつて上
述の誤差を有効に軽減し得る容器を提供するもの
である。
[Detailed description of the invention] In order to measure the heat capacity of powder, liquid, or a sample with high vapor pressure by the flash method, it is necessary to use a material having an appropriate shape and size made of a material with good thermal conductivity such as aluminum. The sample must be placed in a closed container. However, if the heat conduction of the sample is poor, only the container with good heat conduction will undergo a temperature rise in a relatively short period of time due to the heat rays instantaneously irradiated on one side of the container; There is a long delay before the temperature spreads to the internal sample and reaches a uniform temperature. The heat capacity of the sample is calculated based on the value when the entire interior of the container reaches a uniform temperature through this process. However, as mentioned above, only the container with good heat conduction reaches an abnormally high temperature immediately after being irradiated with heat rays, and then the temperature drops again and becomes uniform, so only the container becomes high temperature. In this case, heat loss occurs due to heat radiation or convection, and since there is no means to compensate for this heat loss, there is a drawback that measurement values include large errors. In order to eliminate this drawback, conventional methods have been taken to effectively improve the thermal conductivity of the sample by mixing a material with good thermal conductivity, such as silver powder, into the sample. Because the sample was surrounded by the original sample, which has poor thermal conductivity, the thermal conductivity could not be made sufficiently high, and therefore a satisfactory effect could not be obtained. Therefore, the present invention provides a container that can effectively reduce the above-mentioned errors with a simple construction.

第1図は本発明実施例の縦断面図、第2図はそ
の横断面図である。このように本発明のフラツシ
ユ法熱容量測定試料容器は、アルミニウムのよう
な熱伝導の良好な金属薄板をもつて、平行な上下
の底面1,2とその周縁を連結する筒状の側面3
とよりなる中空の密閉筐体を形成し、更にその筐
体の上下の底面1,2を同様に熱伝導の良好な熱
伝導体4で連結して、該筐体内に粉状または液状
等の試料5を充填するようにしたもので、上記熱
伝導体4によつてその間に挟まれる試料5の厚み
dを充分小さくしてある。なお上述の試料容器の
製作に際しては、例えば図のようにまず上底面1
と側壁3とよりなる有底円筒状の本体をアルミニ
ウム板のプレス加工等によつて一体に形成し、こ
れに同様のアルミニウム帯状板を例えば図のよう
に渦巻状に形成した熱伝導体4および粉末等の試
料5を挿入または充填したのち周縁に浅い縁6を
設けた下底面2を嵌合して、縁6と側面3とを圧
着、溶接あるいはろう付により結着するもので、
熱伝導体4の一方の縁を少なくも一方の底面1に
接触させてある。またこのようにして形成した容
器の他方の底面2には必要に応じて熱電対接点7
を添着する。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. As described above, the flash method heat capacity measurement sample container of the present invention has a metal thin plate with good thermal conductivity such as aluminum, and has a cylindrical side surface 3 that connects the parallel upper and lower bottom surfaces 1 and 2 and the periphery thereof.
The upper and lower bottom surfaces 1 and 2 of the casing are similarly connected by a heat conductor 4 having good thermal conductivity, and powder or liquid, etc., is contained in the casing. The sample 5 is filled in the sample 5, and the thickness d of the sample 5 sandwiched between the heat conductors 4 is made sufficiently small. In addition, when manufacturing the above-mentioned sample container, first, for example, as shown in the figure, the upper bottom surface 1 is
A cylindrical body with a bottom and a side wall 3 are integrally formed by pressing an aluminum plate, and a heat conductor 4 and a similar aluminum strip plate are formed into a spiral shape as shown in the figure. After inserting or filling a sample 5 such as powder, the lower bottom surface 2 having a shallow edge 6 on the periphery is fitted, and the edge 6 and side surface 3 are bonded by crimping, welding, or brazing.
One edge of the heat conductor 4 is brought into contact with at least one bottom surface 1. Further, on the other bottom surface 2 of the container formed in this way, a thermocouple contact 7 is provided as necessary.
Attach.

フラツシユ法による試料5の熱容量測定に際し
ては、上述のような容器を装置の所定位置に設置
して第1図に矢印で示したように上底面1に既知
の強度を有するレーザ光等を瞬間的に照射し、下
底面2に添着した熱電対接点7等を利用して、該
底面の温度変化を記録する。第3図はこのように
して記録された温度曲線で、レーザ光の照射時点
および室温T0を原点とし、横軸に時間t、縦軸
に温度Tをとつてある。実線で示した曲線は第1
図、第2図における熱伝導体4を設けない従来の
容器を用いた場合で、上述のフラツシユ光による
熱エネルギが筐体の上底面1に吸収されるから、
熱電対接点7は熱伝導の良好な筐体壁を伝ばんす
る熱によつてその温度が急速に上昇する。しかし
その筐体壁の熱が更に内部の熱伝導の悪い試料5
へ徐々に伝ばんすると該筐体壁の温度は逆に低下
し始めるから曲線に極大部8が形成される。この
ような過程を経て筐体および内部の試料が均一な
温度になると、その後は熱輻射等によつて容器温
度が徐々に低下するために指数関数曲線9が観測
される。従つて曲線9を逆向きに延長して時刻0
における温度Tmを求めると、この温度は試料容
器に入射したレーザ光の熱エネルギQが該容器お
よび内部の全試料に時間遅れなく瞬間的に伝ばん
したものと仮定した値であるから、試料および容
器の熱容量CはQ/(Tm―T0)で与えられる。
しかし曲線9を延長して時刻0における温度Tm
を求めると、容器およびその内部の試料が均一な
温度を保持した状態における輻射等の熱損失は補
償されるが、第3図に斜線で示したような極大部
8によつて生じた熱損失は補償されない。かつこ
の部分は温度が高ために熱損失も大きく、測定に
大きな誤差を生ずる。
When measuring the heat capacity of the sample 5 using the flash method, the container as described above is placed in a predetermined position of the apparatus, and a laser beam or the like having a known intensity is instantaneously applied to the top surface 1 as indicated by the arrow in FIG. The temperature change on the bottom surface 2 is recorded using a thermocouple contact 7 attached to the bottom surface 2. FIG. 3 shows a temperature curve recorded in this manner, with the origin at the time of laser beam irradiation and the room temperature T 0 , with time t plotted on the horizontal axis and temperature T plotted on the vertical axis. The solid curve is the first
In the case of using the conventional container without the thermal conductor 4 shown in FIGS.
The temperature of the thermocouple contact point 7 rapidly increases due to the heat transmitted through the casing wall, which has good thermal conductivity. However, the heat from the casing wall is even worse inside Sample 5, where the heat conduction is poor.
As the temperature gradually spreads to the casing wall, the temperature of the casing wall begins to decrease, and a maximum portion 8 is formed in the curve. Once the temperature of the casing and the sample inside becomes uniform through such a process, an exponential curve 9 is observed since the temperature of the container gradually decreases due to thermal radiation or the like. Therefore, curve 9 is extended in the opposite direction to time 0.
When calculating the temperature Tm at The heat capacity C of the container is given by Q/(Tm-T 0 ).
However, by extending curve 9, the temperature Tm at time 0 is
, the heat loss due to radiation etc. is compensated for when the container and the sample inside it maintain a uniform temperature, but the heat loss caused by the maximum area 8 as shown by the hatched area in Figure 3 is compensated for. is not compensated. Moreover, since the temperature of this part is high, heat loss is also large, causing a large error in measurement.

これに対して筐体の内部に、その上底面1に接
触して下底面の方向へ延びる熱伝導体4を設け
て、それらの間に挟まれる試料5の厚みdを充分
小さくすると、上底面1に照射されてこの底面に
吸収された熱エネルギが上記熱伝導体4を伝ばん
して試料5の温度を迅速に上昇させる。従つて筐
体およびその内部の試料5が迅速に均一な温度に
達し、第3図の鎖線が観測される。すなわち極大
部10が極めて小さくなつて、この部分による熱
損失が防止されるから、試料容器全体が均一な温
度に達した状態における曲線11が前記曲線9よ
り上昇する。このため曲線11を逆方向へ延長し
て時刻0の温度Tpを求めることにより、正確な
熱容量を測定し得るものである。
On the other hand, if a heat conductor 4 is provided inside the casing that contacts the upper base 1 and extends toward the lower base, and the thickness d of the sample 5 sandwiched between them is made sufficiently small, the upper base Thermal energy irradiated onto the sample 1 and absorbed by the bottom surface is transmitted through the thermal conductor 4 and quickly raises the temperature of the sample 5. Therefore, the casing and the sample 5 inside it quickly reach a uniform temperature, and the dashed line in FIG. 3 is observed. That is, since the maximum portion 10 becomes extremely small and heat loss through this portion is prevented, the curve 11 rises higher than the curve 9 when the entire sample container reaches a uniform temperature. Therefore, by extending the curve 11 in the opposite direction and finding the temperature Tp at time 0, it is possible to accurately measure the heat capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の縦断面図、第2図は第
1図の容器の横断面図、第3図は本発明の作用を
説明するための曲線図である。なお図において、
1は上底面、2は下底面、3は側面、4は熱伝導
体、5は試料、6は下底面の縁、7は熱電対接点
である。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a cross-sectional view of the container shown in FIG. 1, and FIG. 3 is a curve diagram for explaining the operation of the present invention. In the figure,
1 is the top surface, 2 is the bottom surface, 3 is the side surface, 4 is the thermal conductor, 5 is the sample, 6 is the edge of the bottom surface, and 7 is the thermocouple contact.

Claims (1)

【特許請求の範囲】[Claims] 1 熱伝導の良好な板をもつて平行な上下の底面
とその周縁を連結する筒状の側面とよりなり内部
に粉状または液状等の試料を収容する密閉筐体を
形成し、かつ上記筐体の内部にフラツシユ光を照
射される一方の底面に接触して他方の底面の方向
へ延びる熱伝導の良好な熱伝導体を設けて、この
熱伝導体に挟まれる試料の厚みを充分小さくなし
たことを特徴とするフラツシユ法熱容量測定試料
容器。
1. A sealed casing is formed of parallel upper and lower bottom surfaces with plates with good heat conduction and a cylindrical side surface connecting the periphery of the cylindrical side surface, which accommodates a powdered or liquid sample inside, and the casing is A thermal conductor with good thermal conductivity is provided inside the body, and it contacts one bottom surface that is irradiated with flash light and extends toward the other bottom surface, and the thickness of the sample sandwiched between this thermal conductor is made sufficiently small. A sample container for flash method heat capacity measurement, characterized by:
JP17835581A 1981-11-09 1981-11-09 Sample vessel for measuring heat capacity by flash method Granted JPS5880549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17835581A JPS5880549A (en) 1981-11-09 1981-11-09 Sample vessel for measuring heat capacity by flash method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17835581A JPS5880549A (en) 1981-11-09 1981-11-09 Sample vessel for measuring heat capacity by flash method

Publications (2)

Publication Number Publication Date
JPS5880549A JPS5880549A (en) 1983-05-14
JPH0132941B2 true JPH0132941B2 (en) 1989-07-11

Family

ID=16047035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17835581A Granted JPS5880549A (en) 1981-11-09 1981-11-09 Sample vessel for measuring heat capacity by flash method

Country Status (1)

Country Link
JP (1) JPS5880549A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107556A (en) * 1983-11-17 1985-06-13 Shinku Riko Kk Method for measuring relative specific heat and absolute specific heat of sample such as powder by ac calorimeter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS451095Y1 (en) * 1965-05-07 1970-01-19
JPS545480A (en) * 1977-06-14 1979-01-16 Rigaku Denki Co Ltd Method of heat capacity measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS451095Y1 (en) * 1965-05-07 1970-01-19
JPS545480A (en) * 1977-06-14 1979-01-16 Rigaku Denki Co Ltd Method of heat capacity measurement

Also Published As

Publication number Publication date
JPS5880549A (en) 1983-05-14

Similar Documents

Publication Publication Date Title
KR100939062B1 (en) Measuring device for thermal diffusivity by the flash method and measuring method thereof
US5378875A (en) Microwave oven with power detecting device
US4726688A (en) Monitored background radiometer
JPH0132941B2 (en)
FR2793717A3 (en) Guide frame for welding on cooling ribs and support plate of cooling body
US4150657A (en) Solar collector
US4203201A (en) Methods for making lithium-iodine cell
US3778837A (en) Precision calibration target for radiometers
KR101964614B1 (en) Transfer Tank for Western Blot
US3557984A (en) Preparation of closures
FR2803370A3 (en) Heating apparatus includes conductive panels with conductive pins inserted in insolating box which is placed in protective envelope, and heat exchanging lamellae attached to outside of envelope
JP2001126679A (en) Sealed battery
JPS637618B2 (en)
US2476387A (en) Method of exhausting and closing vessels
JPS6033238B2 (en) End structure of refrigerant enclosure
KR20030083244A (en) Heat-flux gage, manufacturong method, and manufacturing device thereof
US3203228A (en) Melt indicating method and apparatus
KR102547866B1 (en) Jig and device for inspecting sealing surface of pouch-type secondary battery for contact heating
JP2530733Y2 (en) Heating equipment
SU1323869A1 (en) Calorimeter
JPS6351500B2 (en)
JPS5848594Y2 (en) Probe for surface thermometer
JP2567065B2 (en) Method for extracting water-soluble impurities in semiconductor encapsulation resin
JPS6245157Y2 (en)
JPH04184094A (en) Flat circular heat pipe