JPH0132853B2 - - Google Patents

Info

Publication number
JPH0132853B2
JPH0132853B2 JP8794681A JP8794681A JPH0132853B2 JP H0132853 B2 JPH0132853 B2 JP H0132853B2 JP 8794681 A JP8794681 A JP 8794681A JP 8794681 A JP8794681 A JP 8794681A JP H0132853 B2 JPH0132853 B2 JP H0132853B2
Authority
JP
Japan
Prior art keywords
torr
temperature plasma
fluorine
treated
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8794681A
Other languages
Japanese (ja)
Other versions
JPS57202323A (en
Inventor
Susumu Ueno
Hirokazu Nomura
Kyoshi Imada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8794681A priority Critical patent/JPS57202323A/en
Priority to EP82100417A priority patent/EP0057835B1/en
Priority to DE8282100417T priority patent/DE3276155D1/en
Publication of JPS57202323A publication Critical patent/JPS57202323A/en
Publication of JPH0132853B2 publication Critical patent/JPH0132853B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯電防止性ふつ素系樹脂成形品に関す
るものであり、これは有機けい素化合物の低温プ
ラズマにより表面特性を改質し、耐久性、恒久性
ある帯電防止性を付与したふつ素系樹脂成形品の
提供を目的とする。 ポリテトラフルオロエチレンで代表されるふつ
素系樹脂は、一般に、きわめてすぐれた化学的安
定性と熱安定性を有し、また、電気特性、すべり
特性、耐候性等の諸性質にもすぐれているという
特長をもつており、これら諸性質を生かすべくフ
イルム、シート、被覆電線などの各種成形品が製
造販売されている。例えば近年、電気・電子技術
の進歩とともに電線材料は高性能化、小形化の要
求が強く、この分野に対し特に耐熱性、耐食性、
誘電特性にすぐれているふつ素樹脂の需要が増加
しており、同軸ケーブル、フツクアツプワイヤ
ー、航空機用電線、耐食電線等、さらにはコンピ
ユーター用電線、電子機器部品の同軸フイダー、
電話交換器のパネルワイヤー、電話回線等に広く
使用されている。 しかし、ふつ素系樹脂成形品は著しく帯電し易
い欠点がある。このため、この成形品はほこり、
じんあい等の付着により外観の汚れがもたらさ
れ、また、電子機器配線、電話回線ワイヤー等に
使用された場合、蓄積した静電気により、ノイズ
や混線現象が生じる問題点があり、さらには人体
への影響(電気シヨツク)、火花放電等の問題点
もある。 この帯電(静電気の蓄積)を防止するために、
ふつ素系樹脂成形品の表面をコロナ放電処理や低
温プラズマ処理により親水化させ、これにより帯
電を抑制する試みがなされているが、単なる低温
プラズマ処理やコロナ処理のみではすぐれた帯電
防止効果を得ることは困難である。また、薬品処
理や活性線(電子線、紫外線、放射線等)による
表面グラフトもしくは表面酸化処理を行い、親水
性官能基を導入することによつて帯電防止をはか
る試みもあるが、処理プロセスが複雑であり、ま
た十分な帯電防止効果を得るにはいたらない。 本発明者らは、かかる問題点を解決すべく鋭意
研究を重ねた結果、本発明を完成したもので、こ
れはふつ素系樹脂成形品の表面を一般式 RaHbSiX4-a-b (式中のRは置換もしくは非置換の一価炭化水素
基、Xはハロゲン原子もしくはアルコキシ基を示
し、aは1、2または3、bは0または1、ただ
しa+bは1、2または3である)で示されるオ
ルガノシランもしくはこの加水分解縮合物から選
ばれる有機けい素化合物の低温プラズマで処理し
てなる帯電防止性ふつ素系樹脂成形品に関するも
のである。 この有機けい素化合物の低温プラズマで処理し
たふつ素系樹脂成形品は、他の有機化合物、無機
化合物の低温プラズマで処理した場合に比べ、帯
電防止性の効果が顕著でその持続性、耐久性も抜
群にすぐれているという長所を有する。これはふ
つ素系樹脂成形品の表面を前記した有機けい素化
合物の低温プラズマで処理すると、その成形品表
面に極薄の改質層が形成され、この層はふつ素系
樹脂に対して強固に結合する特徴があり、またこ
の改質層の形成速度は成形品が他のポリマーから
なるものに比べて速く、その低温プラズマ処理に
よる効果が顕著に現れることによるものと考えら
れる。 本発明が対象とするふつ素系樹脂成形品には、
フイルム、シートその他一般成形品およびプラス
チツク電線等各種被覆物のすべてが包含され、上
述の効果はそれらいずれの成形品に対してもふつ
素系樹脂が本来有するパルク特性(化学的安定
性、熱的安定性等)を何ら損うことなく発揮され
る。 本発明に使用される有機けい素化合物は、前記
した一般式で示されるオルガノシランおよびその
加水分解縮合物であり、式中のRはメチル基、エ
チル基、プロピル基、ブチル基等のアルキル基、
ビニル基、アリル基等のアルケニル基、エチニル
基、プロピニル基、ブチニル基等のアルキニル
基、フエニル基、ナフチル基等のアリール基など
の一価炭化水素基、およびこれら一価炭化水素基
の水素原子が一部他の原子(ハロゲンなど)また
は基(シアノ基など)で置換された置換一価炭化
水素基を示し、また式中のXは塩素、臭素などの
ハロゲン、メトキシ基、エトキシ基、ブトキシ基
などのアルコキシ基を示す。 このような有機けい素化合物の具体的例示をあ
げるとつぎのとおりである。まず、式R3SiXで示
されるものとしては、トリメチルクロロシラン、
トリメチルメトキシシラン、トリメチルエトキシ
シラン、ビニルジメチルクロロシラン、ビニルジ
メチルメトキシシラン、ビニルジメチルエトキシ
シラン、エチニルジメチルメトキシシラン、エチ
ニルジメチルクロロシラン、メチルクロロメチル
メトキシクロロシラン、トリエチルメトキシシラ
ン、ジメチルクロロメチルエトキシシラン、ジメ
チルクロロメチルクロロシラン、ジメチルフエニ
ルメトキシシラン、2−クロロエチニルジメチル
クロロシラン、2−クロロエチルジメチルメトキ
シシランなどが、式R2SiX2で示されるものとし
てはジメチルジクロロシラン、ジメチルジメトキ
シシラン、ジエチルジメトキシシラン、ジメチル
ジエトキシシラン、ビニルメチルジクロロシラ
ン、ビニルメチルジメトキシシラン、2−クロロ
エチルメチルジメトキシシラン、ビニルメチルジ
エトキシシラン、クロロメチルメチルジクロロシ
ラン、ジメトキシメチルフエニルシラン、クロロ
メチルメチルジメトキシシランなどが、さらに式
RSiX3で示されるものとしてはメチルトリメトキ
シシラン、メチルトリエトキシシラン、ビニルト
リメトキシシラン、フエニルトリメトキシシラ
ン、クロロメチルトリメトキシシラン、2−クロ
ロエチルトリメトキシシランなどがそれぞれ例示
される。また≡Si−H結合のあるものすなわち式 (R)(H)Si(X)2、(R)2(H)Si(X)に相当するも
のがあげられる。上記においてXがアルコキシ基
および塩素である場合を例示したが、Xが臭素な
ど他のハロゲン元素である場合も同様である。 有機けい素化合物として以上例示したものはい
ずれもオルガノシラン化合物に相当するものであ
るが、本発明においてはこれらの加水分解縮合物
も使用することができ、これにはジビニルテトラ
メチルジシロキサン、ジクロロメチルテトラメチ
ルジシロキサン、ジエチニルテトラメチルジシロ
キサン、テトラメチルジシロキサンなどが例示さ
れる。もちろんこのほかの加水分解縮合物も使用
することができるが、ガス化困難な高縮合物は不
適当である。 本発明で使用されるふつ素系樹脂としては、分
子内にC−F結合をもつホモポリマーおよびコポ
リマーのいずれでもよく、一般的なものとしてポ
リテトラフルオロエチレン、ポリクロロトリフル
オロエチレン、ポリビニリデンフルオライド、ポ
リビニルフルオライド、テトラフルオロエチレ
ン・ヘキサフルオロプロペン共重合体、テトラフ
ルオロエチレン・パーフルオロアルキルビニルエ
ーテル共重合体、テトラフルオロエチレン・エチ
レン共重合体、クロロトリフルオロエチレン・エ
チレン共重合体、ビニリデンフルオライド・ヘキ
サフルオロイソブテン共重合体、ふつ化エチレン
−ふつ化プロピレン共重合体等が例示される。 これらのふつ素系樹脂から成形品を得る方法
は、圧縮成形法、ラム押出法、ペースト押出法、
カレンダー成形法、デイスパージヨン加工法、溶
融成形法等従来ふつ素系樹脂の成形で採用されて
いる成形手段によればよく、したがつてこれら成
形品についてはその種類、形状等は一切制限がな
く、さらには成形加工時等に添加するガラスフア
イバー、グラフアイト、2硫化モリブデン、ブロ
ンズ粉末等の充填剤、あるいは界面活性剤、乳化
剤、安定剤、ふつ素油等の可塑剤などが添加配合
されていることは自由であり、これら成分の存在
は本発明の効果達成にほとんど影響を与えない。 本発明はこのようなふつ素系樹脂成形品を前記
した有機けい素化合物の低温プラズマで処理する
ことにより、この成形品の表面特性を改質し、耐
久性、持続性にすぐれた帯電防止性を付与するも
のである。 ふつ素系樹脂成形品をかかる低温プラズマで処
理する方法としては、低温プラズマ発生装置内に
ふつ素系樹脂成形品を装入し、この装置内に有機
けい素化合物のガスを流通させながら装置内を10
トル以下の圧力に調整保持し、このガス圧力下に
低温プラズマを発生させ、該成形品を低温プラズ
マにさらす方法によればよい。なお、有機けい素
化合物と共にヘリウム、アルゴン等の不活性ガ
ス、窒素、酸素、空気、水素、水蒸気、二酸化炭
素、一酸化炭素等の無機ガス、有機けい素化合物
以外の有機化合物ガスを共存させてもよい。 上記処理方法において、有機けい素化合物の装
置内における圧力が10トル以上であると、帯電防
止性にすぐれた処理成形品を得ることが困難とな
るので、この低温プラズマのガス圧力は10トル以
下であることが好ましく、特には1〜0.005トル
の範囲であることが望ましい。このガス圧力にお
ける低温プラズマ処理ですぐれた帯電防止性が付
与されるが、ガス圧力が10トル以上になると、帯
電防止性が急激に減少する(表面抵抗性の増大を
ともなう)。このような現象は、従来のプラズマ
重合、プラズマ処理で得られた知見からは全く予
想し得ないことである。 低温プラズマを発生させる条件としては、例え
ば電極に10KHz〜100MHz、10W〜100KWの電力
を印加すればよく、内部電極、外部電極(無電
極)のいずれの方式を使用してもよい。また、放
電の種類(グロー放電、コロナ放電等)にかかわ
らず十分な改質効果が得られる。プラズマ処理時
間は印加電力等によつても相違するが、一般には
数秒〜数十分で充分である。 なお、低温プラズマ処理にあたつて、有機けい
素化合物はその2種以上を混合または併用して使
用しても差支えなく、場合によつて相乗効果を期
待できることもある。また、ふつ素系樹脂成形品
に帯電防止性だけでなく、さらにほかの特性をも
付与するために、有機けい素化合物に他の有機化
合物および/または前記した無機ガスを混合また
は併用することは有効であり、これによれば耐久
性、持続性にすぐれた良好な帯電防止性(表面抵
抗性の減少)が付与されるのみならず、ぬれ性、
印刷性、接着性等も付与されるという利点が与え
られる。 つぎに具体的実施例をあげる。 実施例 1 Teflon TFE(デユポン社製商品名、ポリテト
ラフルオロエチレン)シートをプラズマ発生装置
内にセツトし、装置内を10-4トルまで減圧にした
後、大気を導入し大気流通下、装置内を0.1トル
に調整保持後トリメチルクロロシラン蒸気を導入
して流通大気と混合し、流通下大気分圧0.1トル、
トリメチルクロロシラン分圧0.1トルに調整保持
し、13.56MHz300Wの高周波電力を与えて低温プ
ラズマを発生させ、シートを2分間処理した。 このようにして処理したシートおよびプラズマ
処理を行わなかつたシート(未処理シート)につ
いて、タバコ灰吸着距離(cm)、表面固有抵抗値
(ohm)、摩擦帯電圧値(ボルト)を測定し、帯電
防止性を評価した。結果は第1表に示すとおりで
あつた。 タバコ灰吸着距離:試料表面を木綿布にて10回摩
擦後、タバコ灰に近づけ、タバコ灰が付着しは
じめる距離(cm)を測定。条件:25℃60%RH 表面固有抵抗値:東亜電波工業(株)製SM−10によ
り測定(ohm)。 摩擦帯電圧値:興亜商会製ロータリースタテイツ
クテスターにより測定(ボルト)。条件:木綿
布、200g荷重、750rpm、60秒。
The present invention relates to an antistatic fluorine-based resin molded product, which is a fluorine-based resin whose surface properties are modified by low-temperature plasma of an organosilicon compound to provide durable and permanent antistatic properties. The purpose is to provide molded products. Fluorine-based resins, such as polytetrafluoroethylene, generally have excellent chemical and thermal stability, as well as excellent properties such as electrical properties, slip properties, and weather resistance. Various molded products such as films, sheets, and coated wires are manufactured and sold to take advantage of these properties. For example, in recent years, with advances in electrical and electronic technology, there has been a strong demand for higher performance and smaller size for wire materials, and in this field, there has been a strong demand for high performance, corrosion resistance,
Demand for fluorine resins with excellent dielectric properties is increasing, and they are used in coaxial cables, hook-up wires, aircraft wires, corrosion-resistant wires, etc., as well as computer wires, coaxial feeders for electronic equipment parts, etc.
Widely used for telephone exchange panel wires, telephone lines, etc. However, fluorine-based resin molded products have the drawback of being extremely easily charged. For this reason, this molded product is dusty and
The appearance may become dirty due to the adhesion of dust, etc., and when used in electronic equipment wiring, telephone line wire, etc., there is a problem that the accumulated static electricity may cause noise and crosstalk phenomena, and furthermore, it may cause damage to the human body. There are also problems such as the influence of electricity (electric shock) and spark discharge. To prevent this charging (accumulation of static electricity),
Attempts have been made to make the surface of fluororesin molded products hydrophilic through corona discharge treatment or low-temperature plasma treatment, thereby suppressing static charging, but simple low-temperature plasma treatment or corona treatment alone does not provide an excellent antistatic effect. That is difficult. There are also attempts to prevent static electricity by introducing hydrophilic functional groups through chemical treatment or surface grafting or surface oxidation treatment using active rays (electron beams, ultraviolet rays, radiation, etc.), but the treatment process is complicated. Therefore, it is not possible to obtain a sufficient antistatic effect. The present inventors have completed the present invention as a result of intensive research to solve these problems.This invention is based on the general formula R a H b SiX 4-ab ( In the formula, R is a substituted or unsubstituted monovalent hydrocarbon group, X is a halogen atom or an alkoxy group, a is 1, 2 or 3, b is 0 or 1, where a+b is 1, 2 or 3. This invention relates to an antistatic fluorine-based resin molded article formed by treating with low-temperature plasma an organosilicon compound selected from the organosilane shown in () or its hydrolyzed condensate. Fluorine-based resin molded products treated with low-temperature plasma of this organosilicon compound have a more pronounced antistatic effect than those treated with low-temperature plasma of other organic or inorganic compounds, and their sustainability and durability are longer. It also has the advantage of being extremely superior. This is because when the surface of a fluorine-based resin molded product is treated with the low-temperature plasma of the organosilicon compound described above, an extremely thin modified layer is formed on the surface of the molded product, and this layer is strong against the fluorine-based resin. It is thought that this is because the formation rate of this modified layer is faster than when the molded product is made of other polymers, and the effect of the low-temperature plasma treatment is noticeable. The fluorine-based resin molded products targeted by the present invention include:
This includes films, sheets, other general molded products, and various coverings such as plastic wires. stability, etc.) without any loss. The organosilicon compound used in the present invention is an organosilane represented by the above-mentioned general formula and a hydrolyzed condensate thereof, where R is an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, etc. ,
Monovalent hydrocarbon groups such as alkenyl groups such as vinyl groups and allyl groups, alkynyl groups such as ethynyl groups, propynyl groups, butynyl groups, aryl groups such as phenyl groups and naphthyl groups, and hydrogen atoms of these monovalent hydrocarbon groups. represents a substituted monovalent hydrocarbon group partially substituted with another atom (such as a halogen) or group (such as a cyano group), and X in the formula represents a halogen such as chlorine or bromine, a methoxy group, an ethoxy group, or a butoxy group. Indicates an alkoxy group such as a group. Specific examples of such organic silicon compounds are as follows. First, those represented by the formula R 3 SiX include trimethylchlorosilane,
Trimethylmethoxysilane, trimethylethoxysilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyldimethylethoxysilane, ethynyldimethylmethoxysilane, ethynyldimethylchlorosilane, methylchloromethylmethoxychlorosilane, triethylmethoxysilane, dimethylchloromethylethoxysilane, dimethylchloromethyl Chlorosilane, dimethylphenylmethoxysilane, 2-chloroethynyldimethylchlorosilane, 2-chloroethyldimethylmethoxysilane, etc., and those represented by the formula R 2 SiX 2 include dimethyldichlorosilane, dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldimethoxysilane, etc. Ethoxysilane, vinylmethyldichlorosilane, vinylmethyldimethoxysilane, 2-chloroethylmethyldimethoxysilane, vinylmethyldiethoxysilane, chloromethylmethyldichlorosilane, dimethoxymethylphenylsilane, chloromethylmethyldimethoxysilane, etc.
Examples of RSiX 3 include methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, chloromethyltrimethoxysilane, and 2-chloroethyltrimethoxysilane. Further, examples include those having a ≡Si-H bond, that is, those corresponding to the formulas (R)(H)Si(X) 2 and (R) 2 (H)Si(X). Although the case where X is an alkoxy group and chlorine is illustrated above, the same applies to the case where X is another halogen element such as bromine. All of the organosilicon compounds exemplified above correspond to organosilane compounds, but in the present invention, hydrolyzed condensates of these compounds can also be used, including divinyltetramethyldisiloxane, dichlorosiloxane, Examples include methyltetramethyldisiloxane, diethynyltetramethyldisiloxane, and tetramethyldisiloxane. Of course, other hydrolysis condensates can also be used, but high condensates that are difficult to gasify are unsuitable. The fluorine-based resin used in the present invention may be either a homopolymer or a copolymer having a C-F bond in the molecule, and common examples include polytetrafluoroethylene, polychlorotrifluoroethylene, and polyvinylidene fluoroethylene. Ride, polyvinyl fluoride, tetrafluoroethylene/hexafluoropropene copolymer, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene/ethylene copolymer, chlorotrifluoroethylene/ethylene copolymer, vinylidene fluoride Examples include Ride-hexafluoroisobutene copolymer and fluorinated ethylene-fluorinated propylene copolymer. Methods for obtaining molded products from these fluorine-based resins include compression molding, ram extrusion, paste extrusion,
Any molding method conventionally used for molding fluorine-based resins, such as calendar molding, dispersion processing, or melt molding, may be used; therefore, there are no restrictions on the type, shape, etc. of these molded products. In addition, fillers such as glass fiber, graphite, molybdenum disulfide, and bronze powder, which are added during molding, and plasticizers such as surfactants, emulsifiers, stabilizers, and fluorine oil are added. The presence of these components has little effect on achieving the effects of the present invention. The present invention improves the surface properties of such fluorine-based resin molded products by treating them with low-temperature plasma of the organosilicon compound described above, resulting in highly durable and long-lasting antistatic properties. It is intended to give. A method for treating fluorine-based resin molded products with such low-temperature plasma is to charge the fluorine-based resin molded products into a low-temperature plasma generator, and to flow the organosilicon compound gas through the device. 10
A method may be used in which the pressure is adjusted and maintained at a pressure of Torr or less, low-temperature plasma is generated under this gas pressure, and the molded article is exposed to the low-temperature plasma. In addition, inert gases such as helium and argon, inorganic gases such as nitrogen, oxygen, air, hydrogen, water vapor, carbon dioxide, and carbon monoxide, and organic compound gases other than organosilicon compounds are allowed to coexist with the organosilicon compound. Good too. In the above treatment method, if the pressure inside the organosilicon compound device is 10 Torr or more, it will be difficult to obtain a treated molded product with excellent antistatic properties, so the gas pressure of this low-temperature plasma should be 10 Torr or less. is preferably in the range of 1 to 0.005 Torr. Low-temperature plasma treatment at this gas pressure imparts excellent antistatic properties, but when the gas pressure exceeds 10 Torr, the antistatic properties rapidly decrease (accompanied by an increase in surface resistance). Such a phenomenon is completely unexpected from the knowledge obtained in conventional plasma polymerization and plasma treatment. As conditions for generating low-temperature plasma, for example, a power of 10 KHz to 100 MHz and 10 W to 100 KW may be applied to the electrodes, and either an internal electrode method or an external electrode (electrodeless) method may be used. Further, a sufficient reforming effect can be obtained regardless of the type of discharge (glow discharge, corona discharge, etc.). The plasma processing time varies depending on the applied power and the like, but generally several seconds to several tens of minutes is sufficient. In the low-temperature plasma treatment, two or more organosilicon compounds may be mixed or used in combination, and a synergistic effect may be expected in some cases. In addition, in order to impart not only antistatic properties but also other properties to fluorine-based resin molded products, it is not possible to mix or use the organosilicon compound with other organic compounds and/or the above-mentioned inorganic gases. This method not only provides good antistatic properties (reduced surface resistance) with excellent durability and sustainability, but also provides wettability and
It has the advantage that printability, adhesiveness, etc. are also provided. Next, specific examples will be given. Example 1 A Teflon TFE (trade name, polytetrafluoroethylene manufactured by DuPont) sheet was set in a plasma generator, and after reducing the pressure inside the device to 10 -4 Torr, the atmosphere was introduced and the inside of the device was heated under atmospheric circulation. After adjusting and holding at 0.1 torr, trimethylchlorosilane vapor is introduced and mixed with the circulating atmosphere, and the atmospheric partial pressure under the circulating air is 0.1 torr.
The partial pressure of trimethylchlorosilane was adjusted and maintained at 0.1 torr, and a high frequency power of 13.56 MHz and 300 W was applied to generate low temperature plasma, and the sheet was treated for 2 minutes. The tobacco ash adsorption distance (cm), surface specific resistance value (ohm), and frictional charging voltage value (volts) were measured for the sheet treated in this way and the sheet that was not subjected to plasma treatment (untreated sheet). The preventive properties were evaluated. The results were as shown in Table 1. Cigarette ash adsorption distance: After rubbing the sample surface 10 times with a cotton cloth, bring it close to cigarette ash and measure the distance (cm) at which cigarette ash begins to adhere. Conditions: 25℃60%RH Surface specific resistance value: Measured using SM-10 manufactured by Toa Denpa Kogyo Co., Ltd. (ohm). Frictional charge voltage value: Measured using a rotary static tester manufactured by Koa Shokai (volts). Conditions: Cotton cloth, 200g load, 750rpm, 60 seconds.

【表】 実施例 2 前例で用いたと同様のTeflon TFEシートをプ
ラズマ発生装置内にセツトし、装置内を10-4トル
まで減圧にした状態でビニルジメチルクロロシラ
ン蒸気を導入し、流通下装置内を0.05トルに調整
保持した。この系に13.56MHz200Wの高周波電力
を与えて低温プラズマを発生させ、シートを5分
間処理した。この処理シートについて、実施例1
と同様の物性試験を行い帯電防止性を評価した。
結果は下記に示すとおりであつた。 タバコ灰吸着距離 0cm 表面固有抵抗値 2×109ohm 摩擦帯電圧値 250ボルト 実施例 3 実施例1で用いたと同様のTeflon TFEシート
をプラズマ発生装置内にセツトし、装置内を10-5
トルまで減圧にした後、窒素ガスを導入し、窒素
ガス流通下、装置内を0.1トルに調整保持した。 つぎに、トリメチルメトキシシラン蒸気を導入
して流通窒素ガスと混合しつつ、窒素ガス分圧お
よびトリメチルメトキシシラン分圧を第2表に示
すとおりに調整保持後、110KHz2KWの高周波電
力を与えて低温プラズマを発生させ、シートを30
秒間処理した。この処理シートについて、実施例
1と同様の物性試験を行い帯電防止性を評価し
た。結果は第2表に示すとおりであつた。
[Table] Example 2 A Teflon TFE sheet similar to that used in the previous example was set in a plasma generator, and while the pressure inside the device was reduced to 10 -4 Torr, vinyldimethylchlorosilane vapor was introduced and the inside of the device was circulated. Adjusted and held at 0.05 Torr. A high frequency power of 13.56 MHz and 200 W was applied to this system to generate low temperature plasma, and the sheet was treated for 5 minutes. Regarding this treated sheet, Example 1
The same physical property test was conducted to evaluate the antistatic property.
The results were as shown below. Cigarette ash adsorption distance 0 cm Surface specific resistance value 2×10 9 ohm Frictional charging voltage value 250 volts Example 3 A Teflon TFE sheet similar to that used in Example 1 was set in a plasma generator, and the inside of the device was set at 10 -5
After reducing the pressure to Torr, nitrogen gas was introduced and the inside of the apparatus was adjusted and maintained at 0.1 Torr while nitrogen gas was flowing. Next, while introducing trimethylmethoxysilane vapor and mixing it with circulating nitrogen gas, adjust and maintain the nitrogen gas partial pressure and trimethylmethoxysilane partial pressure as shown in Table 2, and then apply high frequency power of 110KHz2KW to generate a low-temperature plasma. generate 30 sheets
Processed for seconds. This treated sheet was subjected to the same physical property test as in Example 1 to evaluate its antistatic properties. The results were as shown in Table 2.

【表】【table】

【表】 実施例 4 Tedlar(デユポン社製商品名、ポリビニルフル
オライド)シートをプラズマ発生装置内にセツト
し、装置内を0.01トルまで減圧後アルゴンガスを
導入し、アルゴン流通下、装置内を0.2トルに調
整保持した。 つぎにジメチルジメトキシシラン蒸気を導入
し、流通アルゴンガスと混合しつつ、アルゴンガ
ス分圧0.2トル、ジメチルジメトキシシラン分圧
0.2トルに調整保持後、13.56MHz200Wの高周波
電力を与えて低温プラズマを発生させ、シートを
4分間処理した。この処理シートについて実施例
1と同様の物性試験を行い、帯電防止性を評価し
た。結果は下記のとおりであつた。 タバコ灰吸着距離 0cm 表面固有抵抗値 8×109ohm 摩擦帯電圧値 300ボルト 実施例 5 実施例4で用いたと同様のTedlarシートをプ
ラズマ発生装置内にセツトし、装置内を10-5トル
まで減圧にした後、大気を導入し、大気流通下装
置内を0.1トルに調整保持した。 つぎにジメチルジクロロシラン蒸気を導入し、
流通大気と混合しつつ、大気分圧0.1トル、ジメ
チルジクロロシラン分圧0.5トルに調整保持後、
13.56MHz300Wの高周波電力を与えて低温プラズ
マを発生させ、シートを3分間処理した。このよ
うにして処理したシートおよびプラズマ処理を行
わなかつたシート(未処理シート)について、実
施例1と同様の物性試験を行い、帯電防止性を評
価した。結果は第3表に示すとおりであつた。
[Table] Example 4 A Tedlar (trade name, polyvinyl fluoride, manufactured by Dupont) sheet was set in a plasma generator, and after reducing the pressure inside the device to 0.01 Torr, argon gas was introduced, and under argon flow, the pressure inside the device was reduced to 0.2 Torr. Adjusted and held to the torque. Next, dimethyldimethoxysilane vapor was introduced, and while mixing with circulating argon gas, the argon gas partial pressure was 0.2 Torr, and the dimethyldimethoxysilane partial pressure was
After adjusting and maintaining the temperature at 0.2 Torr, high-frequency power of 13.56 MHz and 200 W was applied to generate low-temperature plasma, and the sheet was treated for 4 minutes. This treated sheet was subjected to the same physical property test as in Example 1 to evaluate its antistatic properties. The results were as follows. Cigarette ash adsorption distance 0 cm Surface specific resistance value 8×10 9 ohm Frictional charging voltage value 300 volts Example 5 A Tedlar sheet similar to that used in Example 4 was set in a plasma generator, and the inside of the device was heated to 10 -5 Torr. After reducing the pressure, atmospheric air was introduced, and the inside of the apparatus was adjusted and maintained at 0.1 Torr under atmospheric circulation. Next, dimethyldichlorosilane vapor is introduced,
After adjusting and maintaining atmospheric partial pressure at 0.1 torr and dimethyldichlorosilane partial pressure at 0.5 torr while mixing with the circulating atmosphere,
A high-frequency power of 13.56 MHz and 300 W was applied to generate low-temperature plasma, and the sheet was treated for 3 minutes. The sheets thus treated and the sheets not subjected to plasma treatment (untreated sheets) were subjected to the same physical property tests as in Example 1 to evaluate antistatic properties. The results were as shown in Table 3.

【表】 実施例 6 実施例4で用いたと同様のTedlarシートをプ
ラズマ発生装置内にセツトし、装置内を10-4トル
まで減圧にした状態でジメチルジクロロシラン蒸
気を導入し、流通下、装置内を0.005トルに調整
保持した。 この系に13.56MHz200Wの高周波電力を与えて
低温プラズマを発生させてシートを5分間処理し
た。この処理シートについて、実施例1と同様の
物性試験を行い、帯電防止性を評価した。結果は
下記のとおりであつた。 タバコ灰吸着距離 2cm 表面固有抵抗値 1×1011ohm 摩擦帯電圧値 1600ボルト 実施例 7 アフレツクス(旭硝子社製商品名、テトラフル
オロエチレン・エチレン共重合体)シートをプラ
ズマ発生装置内にセツトし、装置内を10-5トルま
で減圧にした後、乾燥空気を導入しつつ装置内を
0.1トルに調整保持した。 つぎにビニルメチルジメトキシシラン蒸気を導
入して流通乾燥空気と混合しつつ、乾燥空気分圧
0.1トル、ビニルメチルジメトキシシラン分圧0.1
トルに調整保持後、13.56MHz200Wの高周波電力
を与えて低温プラズマを発生させ、シートを2分
間処理した。この処理シートについて実施例1と
同様の物性試験を行い、帯電防止性を評価した。
結果は下記のとおりであつた。 タバコ灰吸着距離 0cm 表面固有抵抗値 7×109ohm 摩擦帯電圧値 80ボルト 実施例 8 実施例7で用いたと同様のアフレツクスシート
をプラズマ発生装置内にセツトし、装置内を10-5
トルまで減圧にした後、炭酸ガスを導入しつつ装
置内を0.01トルに調整保持した。 つぎに、メチルトリメトキシシラン蒸気を導入
して流通炭酸ガスと混合しつつ、炭酸ガス分圧
0.01トル、メチルトリメトキシシラン分圧0.2ト
ルに調整保持後、13.56MHz200Wの高周波電力を
与えて低温プラズマを発生させ、シートを10分間
処理した。 この処理シートについて実施例1と同様の物性
試験を行い、帯電防止性を評価した。結果は下記
のとおりであつた。 タバコ灰吸着距離 0cm 表面固有抵抗値 6×109ohm 摩擦帯電圧値 150ボルト 実施例 9 アフレツクスで被覆したコンピユーター向けラ
ツピング接続用電線をプラズマ発生装置内にセツ
トし、装置内を0.001トルまで減圧にした後、空
気を導入しつつ装置内を0.1トルに調整保持した。 つぎに、ビニルジメチルメトキシシラン蒸気を
導入して流通空気と混合しつつ、空気分圧0.05ト
ル、ビニルジメチルメトキシシラン分圧0.05トル
に調整保持後、13.56MHz2KWの高周波電力を与
えて低温プラズマを発生させ、被覆電線を30秒間
処理した。 このようにして処理した被覆電線の表面固有抵
抗値は下記のとおりであり、未処理の場合に比べ
て、帯電防止性が飛躍的に向上した。 表面固有抵抗値(ohm) プラズマ処理 2×109 未処理 6×1014 実施例 10 Teflon TFEで被覆した航空機用高電圧イグニ
ツシヨンケーブルをプラズマ発生装置内にセツト
し、装置内を0.001トルまで減圧にした後、ジメ
チルクロロメチルクロロシラン蒸気を導入しつ
つ、0.1トルに調整保持した。13.56MHz200Wの
高周波電力を与えて低温プラズマを発生させ、被
覆ケーブルを5分間処理した。 このようにして処理した被覆ケーブルの表面固
有抵抗値は下記のとおりであり、未処理の場合に
比べて、帯電防止性が飛躍的に向上した。 表面固有抵抗値(ohm) プラズマ処理 3×109 未処理 1×1015
[Table] Example 6 A Tedlar sheet similar to that used in Example 4 was set in a plasma generator, and dimethyldichlorosilane vapor was introduced while the pressure inside the device was reduced to 10 -4 Torr. The inside was adjusted and maintained at 0.005 Torr. A high-frequency power of 13.56 MHz and 200 W was applied to this system to generate low-temperature plasma, and the sheet was treated for 5 minutes. This treated sheet was subjected to the same physical property test as in Example 1 to evaluate its antistatic properties. The results were as follows. Cigarette ash adsorption distance 2 cm Surface specific resistance value 1×10 11 ohm Frictional charging voltage value 1600 volts Example 7 Afrex (trade name, manufactured by Asahi Glass Co., Ltd., tetrafluoroethylene-ethylene copolymer) sheet was set in the plasma generator, After reducing the pressure inside the device to 10 -5 Torr, dry air was introduced into the device.
Adjusted and held at 0.1 Torr. Next, vinylmethyldimethoxysilane vapor is introduced and mixed with the circulating dry air, and the partial pressure of the dry air is
0.1 torr, vinylmethyldimethoxysilane partial pressure 0.1
After adjusting and maintaining the torque, high-frequency power of 13.56 MHz and 200 W was applied to generate low-temperature plasma, and the sheet was treated for 2 minutes. This treated sheet was subjected to the same physical property test as in Example 1 to evaluate its antistatic properties.
The results were as follows. Cigarette ash adsorption distance 0 cm Surface specific resistance value 7×10 9 ohm Frictional charging voltage value 80 volts Example 8 An Afflex sheet similar to that used in Example 7 was set in a plasma generator, and the inside of the device was heated to 10 -5
After reducing the pressure to 0.0 Torr, the inside of the apparatus was adjusted and maintained at 0.01 Torr while introducing carbon dioxide gas. Next, methyltrimethoxysilane vapor is introduced and mixed with circulating carbon dioxide gas, and the partial pressure of carbon dioxide gas is
After adjusting and maintaining the partial pressure of methyltrimethoxysilane at 0.01 torr and 0.2 torr, a high frequency power of 13.56 MHz and 200 W was applied to generate low temperature plasma, and the sheet was treated for 10 minutes. This treated sheet was subjected to the same physical property test as in Example 1 to evaluate its antistatic properties. The results were as follows. Cigarette ash adsorption distance 0 cm Surface specific resistance value 6×10 9 ohm Frictional charge voltage value 150 volts Example 9 A wrapping connection wire for a computer covered with Afrex was set in the plasma generator, and the pressure inside the device was reduced to 0.001 Torr. After that, the inside of the device was adjusted and maintained at 0.1 torr while introducing air. Next, vinyl dimethylmethoxysilane vapor is introduced and mixed with circulating air, and after adjusting and maintaining the partial pressure of air at 0.05 torr and the partial pressure of vinyldimethylmethoxysilane at 0.05 torr, high-frequency power of 13.56MHz2KW is applied to generate low-temperature plasma. The coated wire was then treated for 30 seconds. The surface resistivity values of the coated wire treated in this manner are as shown below, and the antistatic property was dramatically improved compared to the untreated case. Surface specific resistance value (ohm) Plasma treatment 2×10 9 Untreated 6×10 14 Examples 10 Teflon A high voltage ignition cable for aircraft coated with TFE is set in a plasma generator, and the inside of the device is heated to 0.001 Torr. After reducing the pressure, the pressure was adjusted and maintained at 0.1 torr while introducing dimethylchloromethylchlorosilane vapor. High-frequency power of 13.56 MHz and 200 W was applied to generate low-temperature plasma, and the coated cable was treated for 5 minutes. The surface resistivity values of the coated cable treated in this manner are as shown below, and the antistatic property was dramatically improved compared to the untreated case. Surface resistivity value (ohm) Plasma treatment 3×10 9 Untreated 1×10 15

Claims (1)

【特許請求の範囲】 1 ふつ素系樹脂成形品の表面を一般式 RaHbSiX4-a-b (式中のRは置換もしくは非置換の一価炭化水素
基、Xはハロゲン原子もしくはアルコキシ基を示
し、aは1、2または3、bは0または1、ただ
しa+bは1、2または3である)で示されるオ
ルガノシランもしくはこの加水分解縮合物から選
ばれる有機けい素化合物の低温プラズマで処理し
てなる帯電防止性ふつ素系樹脂成形品。
[Claims] 1. The surface of the fluorine-based resin molded product is defined by the general formula R a H b SiX 4-ab (wherein R is a substituted or unsubstituted monovalent hydrocarbon group, and X is a halogen atom or an alkoxy group). , a is 1, 2 or 3, b is 0 or 1, where a+b is 1, 2 or 3) or a hydrolyzed condensate thereof. Antistatic fluorine-based resin molded product made by processing.
JP8794681A 1981-01-26 1981-06-08 Antistatic fluorine-contained resin molded article Granted JPS57202323A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8794681A JPS57202323A (en) 1981-06-08 1981-06-08 Antistatic fluorine-contained resin molded article
EP82100417A EP0057835B1 (en) 1981-01-26 1982-01-21 Shaped articles of synthetic resins having improved surface properties and method for making same
DE8282100417T DE3276155D1 (en) 1981-01-26 1982-01-21 Shaped articles of synthetic resins having improved surface properties and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8794681A JPS57202323A (en) 1981-06-08 1981-06-08 Antistatic fluorine-contained resin molded article

Publications (2)

Publication Number Publication Date
JPS57202323A JPS57202323A (en) 1982-12-11
JPH0132853B2 true JPH0132853B2 (en) 1989-07-10

Family

ID=13929050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8794681A Granted JPS57202323A (en) 1981-01-26 1981-06-08 Antistatic fluorine-contained resin molded article

Country Status (1)

Country Link
JP (1) JPS57202323A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612738A (en) * 1984-06-13 1986-01-08 Sumitomo Electric Ind Ltd Surface treatment of synthetic resin molded article
JP2011148968A (en) * 2009-12-21 2011-08-04 Arai Seisakusho Co Ltd Surface modifying method, manufacturing method for elastic composite material, and elastic composite material

Also Published As

Publication number Publication date
JPS57202323A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US3969308A (en) Polymer compositions
CN107207861B (en) Use of silicone rubber composition for preparing high voltage direct current insulator applications
US4396641A (en) Method for improving surface properties of shaped articles of synthetic resins
JPS6144890B2 (en)
US3096210A (en) Insulated conductors and method of making same
JPH0329824B2 (en)
JPH01502676A (en) polymer composition
JPH0315664B2 (en)
GB1590723A (en) Hv insulation materials
JP2017531899A (en) Electrical device comprising a cross-linked layer
CN110612316A (en) Self-fusing highly dielectric silicone rubber composition and self-fusing highly dielectric tape
JPH0132853B2 (en)
EP0057835B1 (en) Shaped articles of synthetic resins having improved surface properties and method for making same
JP2000248074A (en) Silane-crosslinked polyolefin formed product, and wire and cable
JP2023518721A (en) silicone rubber composition
JPS6157332B2 (en)
JPH01100803A (en) Electric insulator for wire and cable
JPS6138935B2 (en)
JP3442492B2 (en) Semiconductive rubber composition
JPH0150582B2 (en)
JPS5884828A (en) Molded antistatic high polymeric resin article
JPS603096B2 (en) Polyethylene resin composition
JPH11297122A (en) Semiconductive resin composition and wire/cable
JPH04190503A (en) Semiconductive composition and power cable
JP2023546234A (en) Non-curable silicone composition containing carbon black