JPH0132266B2 - - Google Patents

Info

Publication number
JPH0132266B2
JPH0132266B2 JP2087586A JP2087586A JPH0132266B2 JP H0132266 B2 JPH0132266 B2 JP H0132266B2 JP 2087586 A JP2087586 A JP 2087586A JP 2087586 A JP2087586 A JP 2087586A JP H0132266 B2 JPH0132266 B2 JP H0132266B2
Authority
JP
Japan
Prior art keywords
acid
fluorine
composition
resin composition
electrodeposition coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2087586A
Other languages
Japanese (ja)
Other versions
JPS62179575A (en
Inventor
Yoshitaka Mizushima
Masaki Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANII KASEI KK
Original Assignee
HANII KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANII KASEI KK filed Critical HANII KASEI KK
Priority to JP2087586A priority Critical patent/JPS62179575A/en
Publication of JPS62179575A publication Critical patent/JPS62179575A/en
Publication of JPH0132266B2 publication Critical patent/JPH0132266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電着塗装することにより艶消塗膜を
形成しうるフツ素系艶消電着塗料組成物に関す
る。 (従来技術) 従来、艶消電着塗料としては、有機又は無機の
微粉末を電着塗料に混合分散してなるものが知ら
れている。 例えば艶消剤としてシリカ微粉末を分散させた
電着塗料を使用した場合、シリカ微粉末は塗料中
で沈降する傾向を示し、このため被塗物の上面と
下面の艶消程度が大幅に異なり、又塗料自体も経
時により分離し不安定であるという問題があつ
た。一方、艶消し剤として溶剤不溶性の粒子状重
合反応生成物を塗料に添加すれば、従来の艶消剤
を粉砕又は分散等の機械的微細化工程が不要にな
るという利点があるが、前記の艶消剤添加の場合
と同様に塗料中においては粒子状重合反応生成物
が沈降する傾向は避けられず、このため均一な艶
消塗膜が得られないという問題が依然として残さ
れている。 本発明者等は、前記問題を解決するものとし
て、樹脂組成物が、(a)α,β―エチレン性不飽和
ポリカルボン酸樹脂及び(b)アルコキシル化メチロ
ールメラミンを塗膜形成成分とし、この(a)成分及
び(b)成分を含有する水系エマルジヨンを加熱して
得られる生成物を含有する組成物を艶消電着塗料
とすることを先に提案している。(特公昭60−
19942号公報参照) この樹脂組成物を電着塗装すると、従来の艶消
塗料の欠点は改良できるが特に耐侯性、耐アルカ
リ性、耐沸水性等の性質において未だ十分満足な
結果が得られずさらにその改良が望まれていた。 (発明が解決しようとする問題点) 本発明の目的は、前記従来の艶消塗料では得ら
れない優れた耐沸水性等の塗膜の物理的性質を有
する艶消電着塗膜を形成するフツ素系艶消電着塗
料組成物を提供することである。 (問題を解決するための手段) 本発明を概説すると、樹脂組成物が、(a)カルボ
キシル基及び水酸基を有し、酸価が5〜50水酸基
価が30〜150である含フツ素重合体及び(b)アルコ
キシ化メチロールメラミンを塗膜形成成分とし、
この(a)成分及び(b)成分を含有する水系エマルジヨ
ンを加熱して得られる生成物を含有する組成物で
あることを特徴とするフツ素系艶消電着塗料組成
物である。 本発明者等の研究によると、カルボキシル基及
び水酸基を有し酸価が5〜50、好ましくは7〜
40、水酸基価が30〜150である含フツ素重合体と
アルコキシル化メチロールメラミンとを混合加熱
すると単なる混合状態に止まることなく、含フツ
素重合体とアルコキシル化メチロールメラミンと
の反応生成物が一部生成することが確認された。 本発明の電着塗料組成物が艶消塗膜を形成する
理由はまだ究明されていないが、前記のように樹
脂組成物中に、含フツ素重合体とアルコキシル化
メチロールメラミンとの高分子量反応生成物が混
在することが、艶消塗膜の形成に関与するものと
推定されている。 本発明に用いられるカルボキシル基および水酸
基を含有する含フツ素重合体としては、例えば水
酸基含有含フツ素重合体に二塩基性酸無水物を反
応せしめてカルボキシル基を導入したものが挙げ
られる。(特開昭58−136605号公報参照)この含
フツ素重合体は、通常のポリカルボン酸樹脂とは
異なり、低酸価領域において水に分散し易く安定
であるという特徴を有し、本発明では酸価5〜
50、好ましくは7〜40の範囲の含フツ素重合体を
塗膜形成成分として使用する。 これは、酸価が5未満では水に十分に分散でき
ず、たとえ分散できたとしても不安定であり、一
方、酸価が50を越えると、前記したように、塗膜
の性能が低下し、又、電着塗装外観も低下する傾
向を示すため好ましくないという理由からであ
る。又、含フツ素重合体は、水酸基価が30〜150
の範囲のものを使用する。 この理由は、水酸基価が30未満ではアミノプラ
ストとの十分な架橋反応がなされず、塗膜性能に
劣り、一方150を越えると塗膜の硬化が過度にな
り好ましくない。 他方、アルコキシル化メチロールメラミンはメ
チロール基の少なくとも一部を低級アルコールで
アルコキシル化したものであればよい。低級アル
コールとしては、メチルアルコール、エチルアル
コール、プロピルアルコール、イソプロピルアル
コール、ブチルアルコール等の一種又は二種以上
を使用する。 本発明のフツ素系艶消電着塗料組成物における
前記含フツ素重合体と、アルコキシル化メチロー
ルメラミンとの組成割合は、含フツ素重合体5〜
95重量部、アルコキシル化メチロールメラミン95
〜5重量部の範囲で使用できる。 本発明の艶消電着塗料組成物は例えば次のよう
な方法で製造することができる。 かくはん装置、温度計及び還流冷却器を備えた
反応容器に、(a)含フツ素重合体、(b)アルコキシル
化メチロールメラミンを有機溶剤の存在下で混合
する。この混合時又は混合後にかくはんを続けな
がら親水性塩基を添加し、更に水を加えてエマル
ジヨン化を行う。次いで40℃〜還流温度に昇温し
更にかくはんを続けて反応を終了する。加熱温度
が低いほど、反応時間及び/又は常温放置時間が
長くなる。 有機溶剤としては、例えばメタノール、エタノ
ール、n―プロピルアルコール、イソプロピルア
ルコール、n―ブタノール、イソブタノール、
sec―ブタノール、t―ブタノール、ペンタノー
ルなどのようなアルコール類、メチルセロソル
ブ、エチルセロソルブ、イソプロピルセロソル
ブ、ブチルセロソルブ、sec―ブチルセロソルブ
などのようなセロソルブなどの使用する。 親水性塩基としてはアンモニア、モノメチルア
ミン、ジメチルアミン、トリメチルアミン、モノ
エチルアミン、ジエチルアミン、トリエチルアミ
ン、モノイソプロピルアミン、ジイソプロピルア
ミン、モノブチルアミン、ジブチルアミン、トリ
ブチルアミンなどのようなアルキルアミン類、モ
ノエタノールアミン、ジエタノールアミン、トリ
エタノールアミン、モノ(2―ヒドロキシプロピ
ル)アミン、ジ(2―ヒドロキシプロピル)アミ
ン、トリ(2―ヒドロキシプロピル)アミン、ジ
メチルアミノエタノール、ジエチルアミノエタノ
ールなどのアルカノールアミン類、エチレンジア
ミン、プロピレンアミン、ジエチレントリアミ
ン、トリエチレンテトラミンなどのアルキレンポ
リアミン類などのアルキレンイミン類、ピペラジ
ン、モルホリン、ピラジン、ピリジンの他、水酸
化ナトリウム、水酸化カリウム、水酸化リチウム
等の金属水酸化物が挙げられる。 親水性塩基は、含フツ素重合体のカルボキシル
基に対し、モル比が0.1〜0.8となるように添加す
ればよい。 本発明の艶消電着塗料組成物においては、酸を
配合すると反応時間の短縮及び塗膜焼付時間の短
縮がなされ、好ましい結果が得られる。これは酸
が含フツ素重合体とアルコキシル化メチロールメ
ラミンとの反応生成物の生成反応を促進し、ま
た、塗膜の加熱焼付時に架橋触媒として働くため
であると推定されている。 本発明で樹脂組成物に配合可能な酸としては有
機酸及び/又は無機酸がある。有機酸としては、
ギ酸、酢酸、シユウ酸、スルホン酸化合物などが
あり、一方、無機酸としては、硫酸、塩酸、硝
酸、リン酸などが上げられる。本発明では、有機
酸又は無機酸の少なくとも1種以上あるいは有機
酸と無機酸との混合いずれも使用できる。 本発明では、スルホン酸化合物の使用が、特に
優れた効果を発揮するため好ましい。スルホン酸
化合物としては、脂肪族スルホン酸あるいは芳香
族スルホン酸がある。脂肪族スルホン酸として
は、メタンスルホン酸、エタンスルホン酸等のア
ルカンスルホン酸、芳香族スルホン酸としては、
m―ノニルベンゼンスルホン酸、p―デシルベン
ゼンスルホン酸、p―ウンデシルベンゼンスルホ
ン酸、p―ドデシルベンゼンスルホン酸、p―ト
ルエンスルホン酸等のアルキルベンゼンスルホン
酸、ジノニルナフタレンスルホン酸、ジノニルナ
フタレンジスルホン酸、ジヘキシルナフタレンジ
スルホン酸、ジヘプチルナフタレンジスルホン
酸、ジオクチルナフタレンジスルホン酸、ジデシ
ルナフタレンジスルホン酸などのジアルキルナフ
タレンスルホン酸又はジスルホン酸など使用す
る。 酸の配合は任意になされ、その添加は塗膜形成
成分の混合時または混合後例えば親水性塩基の添
加前に行えばよい。また酸を添加するにあたり、
疎水性塩基と同時に又は別々に添加してもよく、
場合により該塩基との反応生成物を含む塩含有物
を配合してもよく、これらの場合は、酸単独添加
と同じ効果が得られる。 本発明において酸の中和に疎水性塩基を使用す
る理由は、酸は通常塩基により中和され水溶化す
るが、疎水性塩基を用いると中和されても疎水化
しており、このような疎水化した中和物は塗膜形
成成分の樹脂中に包含される形となるため塗料を
イオン交換処理しても除去されず、したがつて連
続稼動によつても塗料中の酸の量の変動を小さく
保持するためである。 前記酸又は塩含有物は樹脂組成物の塗膜形成成
分に対し10重量%以内好ましくは5重量%以内、
特に好ましくは1.0重量%以内の量を添加するこ
とが適当である。これは、得られる艶消塗膜の優
れた物理的性質を保持するために必要なことであ
る。 前記疎水性塩基としては、水難溶性又は水不溶
性のものが特に好ましい。その例としては、長鎖
アルキルアミン又はアラルキル基含有アミン等が
ある。 本発明のフツ素系艶消電着塗料組成物は、樹脂
固形分濃度が3〜50重量%の範囲で使用でき、各
種塗装手段により適当な濃度に水で希釈して使用
すればよい。その際、常用の着色剤その他塗料用
添加剤を混合して使用することもできる。 また、本発明のフツ素系艶消電着塗料組成物
は、光沢に優れる塗膜を形成する塗料組成物と混
合して、得られる塗膜の光沢を任意に調整するこ
ともできる。このように調整した艶消塗料で被塗
物を塗装すると被塗物の材質、形状、大きさにか
かわらず均一な艶消塗膜が形成できる。 本発明の艶消電着塗料組成物は、従来の電着塗
装のラインでそのまま同じ方法によつて塗装すれ
ばよく、艶消し剤配合電着塗料を使用する方法及
び電着塗膜を化学薬品で後処理する方法では不可
能な常に安定で、且つ光沢値の低い均一な艶消塗
膜が得られるという利点を有する。また、得られ
る艶消塗膜は被塗物との密着性に優れ、耐侯性、
耐アルカリ性、耐沸水性等の塗膜性能にも勝れ
る。以下、本発明をより詳細に説明するために実
施例を示す。しかし本発明はこれに限定されるも
のではない。 実施例 1 かくはん装置、温度計及び還流冷却器を備えた
反応容器に、酸価20、水酸基価80を有する含フツ
素重合体溶液(商品名ルミフロンLFX―HED
旭硝子社製)120部、メトキシブトキシ混合メチ
ロールメラミン(商品名MX―40三和ケミカル社
製)30部を仕込みかくはんを行ない混合した。次
いで、かくはんを続けならがらトリエチルアミン
4.2部を添加した後、更に脱イオン水を150部加え
エマルジヨン化した。このエマルジヨン化した内
容物を約90℃に昇温し、約24時間かくはんを続け
て反応を終了し樹脂組成物を調製した。 比較例 1 実施例1の方法においてエマルジヨン化した
後、常温で12時間かくはんを行う以外はすべて同
じ方法で樹脂組成物を得た。 比較例 2 実施例1の方法において含フツ素重合体溶液と
メトキシブトキシ混合メチロールメラミンとの混
合時にエチレングリコールモノブチルエーテル20
部及びイソプロピルアルコール80部を使用し、内
容物を約90℃に昇温し約12時間かくはんを続けた
後、常温にまで冷却し次いで、トリエチルアミン
10部を添加混合した後、更に脱イオン水150部を
加えて樹脂組成物を調製した。 実施例 2 実施例1と同様の方法において、酸価40、水酸
基価80を有する含フツ素重合体(商品名 ルミフ
ロンFLX―HED 旭硝子社製)120部、メトキシ
ブトキシ混合メチロ―ルメラミン(商品名 MX
―40 三和ケミカル社製)30部を混合した後、p
―ドデシルベンゼンスルホン酸0.8部を添加混合
した。次いでかくはんを続けながらトリエチルア
ミン2.5部を添加した後、更に脱イオン水150部を
加えてエマルジヨン化した。このエマルジヨン化
した内容物を約90℃に昇温し、約8時間かくはん
を続け反応を終了し樹脂組成物を調製した。 実施例 3 実施例2の方法においてp―ドデシルベンゼン
スルホン酸0.3部と共にトリ―n―ブチルアミン
0.2部を同時に添加配合する以外はすべて同じ方
法で樹脂組成物を調製した。 実施例 4 実施例2の方法において、p―ドデシルベンゼ
ンスルホン酸に代えてp―ドデシルベンゼンスル
ホン酸をトリ―n―ブチルアミンで中和して得ら
れる塩0.5部を配合して反応を行う以外はすべて
同じ方法で樹脂組成物を調製した。 比較例 3 かくはん装置、温度計及び還流冷却器を備えた
反応容器に、アクリル酸4部、2―ヒドロキシエ
チルアクリレート5部、2―ヒドロキシエチルメ
タクリレート15部、スチレン10部、オクチルアク
リレート15部、ブチルアクリレート15部、メチル
メタクリレート36部、アゾビスイソブチロニトリ
ル1.5部、エチレングリコールモノブチルエーテ
ル12部、イソプロピルアルコール35部を還流温度
下(約90℃)に6時間かくはんを行いα、β―エ
チレン性不飽和ポリカルボン酸樹脂溶液(酸価約
31)を調製した。 前記と同様のかくはん装置、温度計及び還流冷
却器を備えた別の反応容器に、前記のα、β―エ
チレン性不飽和ポリカルボン酸樹脂溶液100部、
メトキシブトキシ混合メチロールメラミン(商品
名MX―40 三和ケミカル社製)30部を仕込みか
くはんを行い混合した後、P―ドデシルベンゼン
スルホン酸0.8部を添加混合した。次いで、かく
はんを続けながらトリエチルアミン2.5部を添加
した後、更に脱イオン水を150部加えエマルジヨ
ン化した。このエマルジヨン化した内容物を約90
℃に昇温し、約8時間かくはんを続けて反応を終
了し樹脂組成物を調製した。 応用例 1 実施例1〜4及び比較例1〜3で得た樹脂組成
物を樹脂固形分濃度10重量%に調製し電着塗装用
塗料とした。各塗料中に陽極酸化処理を施し、更
にアンバー色に無機電解着色したアルミニウム板
を陽極に、陰極にステンレス板を結線して浸漬し
両極間に電圧180ボルトを印加し初期電流密度
1.0A/dmで2分間直流通電を行つた。電着塗装
終了後各アルミニウム板を取り出し、充分に水洗
処理をした後、150℃で30分間熱風乾燥を行つた。
この結果、各アルミニウム板上に形成された電着
塗膜は第1表に示すとおりであつた。そして、本
発明の実施例によるものでは、均一できめの細か
い艶消電着塗膜が形成されたがそれに対して、比
較例2のものは、きめの粗い艶消効果の少ない電
着塗膜であつた。
(Industrial Application Field) The present invention relates to a fluorine-based matte electrodeposition coating composition that can form a matte coating film by electrodeposition. (Prior Art) Conventionally, as a matte electrodeposition paint, one made by mixing and dispersing organic or inorganic fine powder into an electrodeposition paint is known. For example, when using an electrodeposition paint in which fine silica powder is dispersed as a matting agent, the fine silica powder tends to settle in the paint, resulting in a significant difference in the degree of matting between the top and bottom surfaces of the object being coated. Moreover, there was a problem that the paint itself separated over time and became unstable. On the other hand, if a solvent-insoluble particulate polymerization reaction product is added to the paint as a matting agent, there is an advantage that the conventional mechanical refining process such as crushing or dispersion of the matting agent is not necessary. As in the case of adding a matting agent, there is an unavoidable tendency for particulate polymerization reaction products to settle in paints, and for this reason, there still remains the problem that a uniform matte coating film cannot be obtained. The present inventors have proposed a resin composition containing (a) an α,β-ethylenically unsaturated polycarboxylic acid resin and (b) an alkoxylated methylolmelamine as coating film forming components to solve the above problem. It has previously been proposed to use a composition containing a product obtained by heating an aqueous emulsion containing components (a) and (b) as a matte electrodeposition coating. (Tokuko Showa 60-
(Refer to Publication No. 19942) When this resin composition is electrodeposited, the drawbacks of conventional matte paints can be improved, but satisfactory results have not yet been obtained, especially in properties such as weather resistance, alkali resistance, and boiling water resistance. Improvement was desired. (Problems to be Solved by the Invention) The purpose of the present invention is to form a matte electrodeposition coating film having physical properties such as excellent boiling water resistance that cannot be obtained with the conventional matte coatings. An object of the present invention is to provide a fluorine-based matte electrodeposition coating composition. (Means for Solving the Problems) To summarize the present invention, the resin composition includes (a) a fluorine-containing polymer having a carboxyl group and a hydroxyl group and having an acid value of 5 to 50 and a hydroxyl value of 30 to 150; and (b) alkoxylated methylolmelamine as a coating film forming component,
This fluorine-based matte electrodeposition coating composition is characterized in that it is a composition containing a product obtained by heating an aqueous emulsion containing the components (a) and (b). According to research by the present inventors, it has a carboxyl group and a hydroxyl group and has an acid value of 5 to 50, preferably 7 to 50.
40. When a fluorine-containing polymer with a hydroxyl value of 30 to 150 and alkoxylated methylol melamine are mixed and heated, the reaction product of the fluorine-containing polymer and alkoxylated methylol melamine does not remain in a mere mixed state. It was confirmed that some parts were generated. The reason why the electrodeposition coating composition of the present invention forms a matte coating film has not yet been investigated, but as mentioned above, the high molecular weight reaction between the fluorine-containing polymer and the alkoxylated methylol melamine in the resin composition. It is presumed that the presence of the products is involved in the formation of the matte coating. Examples of the fluorine-containing polymer containing carboxyl groups and hydroxyl groups used in the present invention include those obtained by reacting a hydroxyl group-containing fluorine-containing polymer with a dibasic acid anhydride to introduce carboxyl groups. (Refer to JP-A-58-136605.) Unlike ordinary polycarboxylic acid resins, this fluorine-containing polymer has the characteristics of being easily dispersible and stable in water in the low acid value region, and the present invention So the acid value is 5~
A fluorine-containing polymer having a molecular weight of 50, preferably 7 to 40, is used as a coating film-forming component. If the acid value is less than 5, it cannot be sufficiently dispersed in water, and even if it can be dispersed, it will be unstable. On the other hand, if the acid value exceeds 50, the performance of the coating will deteriorate as described above. This is also because the appearance of the electrodeposition coating also tends to deteriorate, which is undesirable. In addition, the fluorine-containing polymer has a hydroxyl value of 30 to 150.
Use a range of . The reason for this is that if the hydroxyl value is less than 30, sufficient crosslinking reaction with the aminoplast will not occur, resulting in poor coating film performance, while if it exceeds 150, the coating will be undesirably hardened. On the other hand, the alkoxylated methylol melamine may be one in which at least a portion of the methylol group is alkoxylated with a lower alcohol. As the lower alcohol, one or more of methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, etc. is used. In the fluorine-based matte electrodeposition coating composition of the present invention, the composition ratio of the fluorine-containing polymer and alkoxylated methylolmelamine is 5 to 5.
95 parts by weight, alkoxylated methylolmelamine 95
It can be used in a range of 5 parts by weight. The matte electrodeposition coating composition of the present invention can be produced, for example, by the following method. In a reaction vessel equipped with a stirring device, a thermometer, and a reflux condenser, (a) a fluorine-containing polymer and (b) an alkoxylated methylolmelamine are mixed in the presence of an organic solvent. During or after this mixing, a hydrophilic base is added while stirring, and water is further added to form an emulsion. Next, the temperature is raised to 40°C to reflux temperature, and stirring is continued to complete the reaction. The lower the heating temperature, the longer the reaction time and/or the room temperature standing time. Examples of organic solvents include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol,
Alcohols such as sec-butanol, t-butanol, pentanol, etc., cellosolves such as methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, sec-butyl cellosolve, etc. are used. Hydrophilic bases include ammonia, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine, alkylamines such as tributylamine, monoethanolamine, diethanolamine, etc. , triethanolamine, mono(2-hydroxypropyl)amine, di(2-hydroxypropyl)amine, tri(2-hydroxypropyl)amine, dimethylaminoethanol, alkanolamines such as diethylaminoethanol, ethylenediamine, propyleneamine, diethylenetriamine , alkylene imines such as alkylene polyamines such as triethylenetetramine, piperazine, morpholine, pyrazine, pyridine, and metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide. The hydrophilic base may be added in a molar ratio of 0.1 to 0.8 with respect to the carboxyl group of the fluorine-containing polymer. In the matte electrodeposition coating composition of the present invention, when an acid is added, the reaction time and coating baking time are shortened, and favorable results can be obtained. It is presumed that this is because the acid promotes the reaction of the fluorine-containing polymer and the alkoxylated methylol melamine to produce a reaction product, and also acts as a crosslinking catalyst during baking of the coating film. Acids that can be blended into the resin composition in the present invention include organic acids and/or inorganic acids. As an organic acid,
Examples include formic acid, acetic acid, oxalic acid, and sulfonic acid compounds, while examples of inorganic acids include sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid. In the present invention, at least one type of organic acid or inorganic acid, or a mixture of an organic acid and an inorganic acid can be used. In the present invention, it is preferable to use a sulfonic acid compound because it exhibits particularly excellent effects. Sulfonic acid compounds include aliphatic sulfonic acids and aromatic sulfonic acids. Examples of aliphatic sulfonic acids include alkanesulfonic acids such as methanesulfonic acid and ethanesulfonic acid; examples of aromatic sulfonic acids include
Alkylbenzenesulfonic acids such as m-nonylbenzenesulfonic acid, p-decylbenzenesulfonic acid, p-undecylbenzenesulfonic acid, p-dodecylbenzenesulfonic acid, p-toluenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalene disulfone Acid, dialkylnaphthalenesulfonic acid or disulfonic acid such as dihexylnaphthalenedisulfonic acid, diheptylnaphthalenedisulfonic acid, dioctylnaphthalenedisulfonic acid, didecylnaphthalenedisulfonic acid, etc. is used. The acid may be added as desired, and may be added at the time of mixing the coating film-forming components or after mixing, for example, before adding the hydrophilic base. Also, when adding acid,
It may be added simultaneously or separately with the hydrophobic base,
In some cases, a salt-containing substance containing a reaction product with the base may be added, and in these cases, the same effect as the addition of acid alone can be obtained. The reason why a hydrophobic base is used to neutralize an acid in the present invention is that an acid is normally neutralized by a base and becomes water-soluble, but when a hydrophobic base is used, it becomes hydrophobic even after being neutralized. Since the neutralized product is included in the resin of the paint film forming component, it is not removed even if the paint is treated with ion exchange, and therefore even with continuous operation, the amount of acid in the paint may fluctuate. This is to keep it small. The acid or salt-containing substance is within 10% by weight, preferably within 5% by weight, based on the coating film forming components of the resin composition.
Particularly preferably, it is added in an amount of 1.0% by weight or less. This is necessary in order to preserve the excellent physical properties of the resulting matte coating. The hydrophobic base is particularly preferably one that is sparingly soluble or insoluble in water. Examples include long chain alkyl amines or amines containing aralkyl groups. The fluorine-based matte electrodeposition coating composition of the present invention can be used in a resin solid concentration range of 3 to 50% by weight, and may be used by diluting with water to an appropriate concentration by various coating means. At that time, commonly used colorants and other paint additives may be mixed and used. Furthermore, the fluorine-based matte electrodeposition coating composition of the present invention can be mixed with a coating composition that forms a coating film with excellent gloss, and the gloss of the resulting coating film can be adjusted as desired. When an object is coated with a matte paint prepared in this way, a uniform matte coating can be formed regardless of the material, shape, or size of the object. The matte electrodeposition coating composition of the present invention can be applied directly on a conventional electrodeposition coating line using the same method, or by a method using an electrodeposition coating containing a matting agent or by using a chemical agent to form an electrodeposition coating film. It has the advantage that it is always stable and can provide a uniform matte coating film with a low gloss value, which is not possible with post-treatment methods. In addition, the resulting matte coating has excellent adhesion to the object being coated, and has excellent weather resistance and
It also has excellent coating performance such as alkali resistance and boiling water resistance. Examples are shown below to explain the present invention in more detail. However, the present invention is not limited thereto. Example 1 A fluorine-containing polymer solution (trade name Lumiflon LFX-HED) having an acid value of 20 and a hydroxyl value of 80 was placed in a reaction vessel equipped with a stirring device, a thermometer, and a reflux condenser.
120 parts of Asahi Glass Co., Ltd.) and 30 parts of methoxybutoxy-mixed methylolmelamine (trade name: MX-40, manufactured by Sanwa Chemical Co., Ltd.) were charged and mixed by stirring. Then add triethylamine while continuing to stir.
After adding 4.2 parts, 150 parts of deionized water was further added to form an emulsion. The emulsion-formed contents were heated to about 90° C. and stirred for about 24 hours to complete the reaction and prepare a resin composition. Comparative Example 1 A resin composition was obtained in the same manner as in Example 1, except that after emulsion formation, stirring was performed at room temperature for 12 hours. Comparative Example 2 In the method of Example 1, ethylene glycol monobutyl ether 20
1 part and 80 parts of isopropyl alcohol, the contents were heated to about 90°C, stirred for about 12 hours, cooled to room temperature, and then triethylamine
After adding and mixing 10 parts, 150 parts of deionized water was further added to prepare a resin composition. Example 2 In the same method as in Example 1, 120 parts of a fluorine-containing polymer having an acid value of 40 and a hydroxyl value of 80 (trade name: Lumiflon FLX-HED, manufactured by Asahi Glass Co., Ltd.), methoxybutoxy mixed methylolmelamine (trade name: MX)
-40 (manufactured by Sanwa Chemical Co.)) After mixing 30 parts, p
-0.8 part of dodecylbenzenesulfonic acid was added and mixed. Next, while stirring, 2.5 parts of triethylamine was added, followed by further addition of 150 parts of deionized water to form an emulsion. The emulsion-formed contents were heated to about 90° C. and stirred for about 8 hours to complete the reaction and prepare a resin composition. Example 3 In the method of Example 2, tri-n-butylamine was added with 0.3 parts of p-dodecylbenzenesulfonic acid.
A resin composition was prepared in the same manner except that 0.2 part was added at the same time. Example 4 The method of Example 2 was repeated except that 0.5 part of a salt obtained by neutralizing p-dodecylbenzenesulfonic acid with tri-n-butylamine was added instead of p-dodecylbenzenesulfonic acid and the reaction was carried out. All resin compositions were prepared in the same manner. Comparative Example 3 In a reaction vessel equipped with a stirring device, a thermometer, and a reflux condenser, 4 parts of acrylic acid, 5 parts of 2-hydroxyethyl acrylate, 15 parts of 2-hydroxyethyl methacrylate, 10 parts of styrene, 15 parts of octyl acrylate, and butyl were added. 15 parts of acrylate, 36 parts of methyl methacrylate, 1.5 parts of azobisisobutyronitrile, 12 parts of ethylene glycol monobutyl ether, and 35 parts of isopropyl alcohol were stirred at reflux temperature (approximately 90°C) for 6 hours to form α, β-ethylenic Unsaturated polycarboxylic acid resin solution (acid value approx.
31) was prepared. In a separate reaction vessel equipped with the same stirring device, thermometer and reflux condenser as above, 100 parts of the above α,β-ethylenically unsaturated polycarboxylic acid resin solution,
After 30 parts of methoxybutoxy mixed methylolmelamine (trade name MX-40, manufactured by Sanwa Chemical Co., Ltd.) was charged and mixed, 0.8 part of P-dodecylbenzenesulfonic acid was added and mixed. Next, 2.5 parts of triethylamine was added while stirring, and then 150 parts of deionized water was added to form an emulsion. Approximately 90% of this emulsion
The temperature was raised to .degree. C., and stirring was continued for about 8 hours to complete the reaction and a resin composition was prepared. Application Example 1 The resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were adjusted to a resin solid content concentration of 10% by weight and used as a paint for electrodeposition coating. An aluminum plate that has been anodized in each paint and inorganically colored amber is used as the anode, and a stainless steel plate is connected as the cathode and immersed in the coating. A voltage of 180 volts is applied between the two electrodes, and the initial current density is
Direct current was applied at 1.0 A/dm for 2 minutes. After the electrodeposition coating was completed, each aluminum plate was taken out, thoroughly washed with water, and then dried with hot air at 150°C for 30 minutes.
As a result, the electrodeposition coating films formed on each aluminum plate were as shown in Table 1. In the example of the present invention, a uniform and fine-grained matte electrodeposition coating film was formed, whereas in Comparative Example 2, a coarse-grained electrodeposition coating film with less matte effect was formed. It was hot.

【表】 実施例 5 実施例1と同様の方法において、含フツ素重合
体溶液(商品名 ルミフロンLFX―HED 旭硝
子社製)120部、メトキシ、ブトキシ混合メチロ
―ルメラミン(商品名 MX―40 三和ケミカル
社製)30部を混合した後、あらかじめp―ドデシ
ルベンゼンスルホン酸とジ―n―ブチルアミンと
から得た塩含有物0.1部を添加混合した。次いで
かくはんを続けながらトリエチルアミン4部を添
加し、更に脱イオン水150部を添加してエマルジ
ヨン化した。このエマルジヨン化した内容物を約
90℃に昇温し、約4時間かくはんを続け反応を終
了し樹脂組成物(艶消樹脂組成物)を調製した。 この樹脂組成物に比較例1の樹脂組成物(光沢
樹脂組成物)を第2表に示すように樹脂固形分比
を変量して添加し、十分に混合した後、それぞれ
樹脂固形分10重量%の艶消電着塗料とし応用例1
と同じ方法で無機電解着色を施した陽極酸化アル
ミニウム板に電着塗装を行つた。この結果、電着
塗膜の光沢値は第2表に示すとおりであつた。
[Table] Example 5 In the same method as in Example 1, 120 parts of a fluorine-containing polymer solution (trade name Lumiflon LFX-HED manufactured by Asahi Glass Co., Ltd.), methoxy and butoxy mixed methylolmelamine (trade name MX-40 Sanwa) After mixing 30 parts of (manufactured by Chemical Co., Ltd.), 0.1 part of a salt-containing material previously obtained from p-dodecylbenzenesulfonic acid and di-n-butylamine was added and mixed. Then, while stirring, 4 parts of triethylamine were added, followed by 150 parts of deionized water to form an emulsion. The contents of this emulsion are approx.
The temperature was raised to 90°C and stirring was continued for about 4 hours to complete the reaction and a resin composition (matte resin composition) was prepared. The resin composition of Comparative Example 1 (glossy resin composition) was added to this resin composition at varying resin solid content ratios as shown in Table 2, and after thorough mixing, each resin composition had a resin solid content of 10% by weight. Application example 1 as a matte electrodeposition paint
Electrodeposition coating was performed on an anodized aluminum plate that had been subjected to inorganic electrolytic coloring using the same method as described above. As a result, the gloss values of the electrodeposited coatings were as shown in Table 2.

【表】 比較例 4〜5 実施例1の方法において含フツ素重合体を酸価
が3及び55のものにかえて使用する以外はすべて
同じ方法で樹脂組成物を得、応用例と同様の方法
で電着塗料を調製し電着塗装を行つた。この結
果、酸価3の場合は樹脂粒子が十分な電気泳動性
を示さず、不均質で膜厚の薄い電着塗膜しかえら
れず、一方、酸価55の場合は電着塗装外観に劣る
ものであつた。 (発明の効果) 以上、実施例の結果より明らかなように本発明
のフツ素系艶消電着塗料組成物によると耐侯性、
耐アルカリ性、耐沸水性等の塗膜性能に優れる艶
消電着塗膜が形成される。
[Table] Comparative Examples 4 to 5 Resin compositions were obtained in the same manner as in Example 1 except that the fluorine-containing polymer was replaced with one having an acid value of 3 and 55, and the same method as in the application example was used. Electrodeposition paint was prepared using the method and electrocoating was performed. As a result, when the acid value is 3, the resin particles do not show sufficient electrophoresis, and only a non-uniform and thin electrodeposited film can be obtained, while when the acid value is 55, the appearance of the electrodeposited coating is poor. It was hot. (Effects of the Invention) As is clear from the results of the Examples, the fluorine-based matte electrodeposition coating composition of the present invention has excellent weather resistance,
A matte electrodeposition coating film with excellent coating performance such as alkali resistance and boiling water resistance is formed.

Claims (1)

【特許請求の範囲】 1 樹脂組成物が、(a)カルボキシル基及び水酸基
を有し、酸価が5〜50水酸基価が30〜150である
含フツ素重合体及び(b)アルコキシル化メチロール
メラミンを塗膜形成成分とし、この(a)成分及び(b)
成分を含有する水系エマルジヨンを加熱して得ら
れる生成物を含有する組成物であることを特徴と
するフツ素系艶消電着塗料組成物。 2 該樹脂組成物が、(a)成分及び(b)成分の混合時
又は混合後に親水性塩基及び水を添加しエマルジ
ヨン化させた後、加熱して得られる生成物を含有
する組成物である特許請求の範囲第1項に記載の
フツ素系艶消電着塗料組成物。 3 該樹脂組成物が、(a)成分及び(b)成分の混合時
又は混合後に無機酸及び/又は有機酸を添加混合
し、これに親水性塩基及び水を添加しエマルジヨ
ン化させた後、加熱して得られる生成物を含有す
る組成物である特許請求の範囲第1項に記載のフ
ツ素系艶消電着塗料組成物。 4 該樹脂組成物が、(a)成分及び(b)成分の混合時
又は混合後に無機酸及び/又は有機酸と疎水性塩
基とを添加混合し、これに親水性塩基及び水を添
加しエマルジヨン化させた後、加熱して得られる
生成物を含有する組成物である特許請求の範囲第
1項に記載のフツ素系艶消電着塗料組成物。 5 該樹脂組成物が、(a)成分及び(b)成分の混合時
又は混合後に無機酸及び/又は有機酸と疎水性塩
基とから得られる塩含有物を添加混合し、これに
親水性塩基及び水を添加しエマルジヨン化させた
後、加熱して得られる生成物を含有する組成物で
ある特許請求の範囲第1項に記載のフツ素系艶消
電着塗料組成物。 6 該樹脂組成物が、加熱を40℃〜還流温度で行
つて得られる生成物を含有する組成物である特許
請求の範囲第1項〜第5項のいずれかに記載のフ
ツ素系艶消電着塗料組成物。
[Scope of Claims] 1. The resin composition comprises (a) a fluorine-containing polymer having a carboxyl group and a hydroxyl group and having an acid value of 5 to 50 and a hydroxyl value of 30 to 150, and (b) an alkoxylated methylolmelamine. are the coating film-forming components, and these (a) components and (b)
A fluorine-based matte electrodeposition coating composition, characterized in that it is a composition containing a product obtained by heating an aqueous emulsion containing the components. 2. The resin composition is a composition containing a product obtained by adding a hydrophilic base and water during or after mixing components (a) and (b) to form an emulsion, and then heating the mixture. A fluorine-based matte electrodeposition coating composition according to claim 1. 3. After the resin composition is mixed with an inorganic acid and/or an organic acid during or after mixing components (a) and (b), and a hydrophilic base and water are added thereto to form an emulsion, The fluorine-based matte electrodeposition coating composition according to claim 1, which is a composition containing a product obtained by heating. 4 The resin composition is formed by adding and mixing an inorganic acid and/or an organic acid and a hydrophobic base during or after mixing components (a) and (b), and adding a hydrophilic base and water to this to form an emulsion. The fluorine-based matte electrodeposition coating composition according to claim 1, which is a composition containing a product obtained by heating after oxidation. 5 The resin composition is obtained by adding and mixing a salt-containing substance obtained from an inorganic acid and/or an organic acid and a hydrophobic base during or after mixing components (a) and (b), and adding and mixing a salt-containing substance obtained from an inorganic acid and/or an organic acid and a hydrophobic base. The fluorine-based matte electrodeposition coating composition according to claim 1, which is a composition containing a product obtained by adding and water to form an emulsion and then heating the product. 6. The fluorine-based matte according to any one of claims 1 to 5, wherein the resin composition is a composition containing a product obtained by heating at 40°C to reflux temperature. Electrodeposition paint composition.
JP2087586A 1986-01-31 1986-01-31 Fluorine-containing matte electrodeposition paint composition Granted JPS62179575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087586A JPS62179575A (en) 1986-01-31 1986-01-31 Fluorine-containing matte electrodeposition paint composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087586A JPS62179575A (en) 1986-01-31 1986-01-31 Fluorine-containing matte electrodeposition paint composition

Publications (2)

Publication Number Publication Date
JPS62179575A JPS62179575A (en) 1987-08-06
JPH0132266B2 true JPH0132266B2 (en) 1989-06-30

Family

ID=12039352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087586A Granted JPS62179575A (en) 1986-01-31 1986-01-31 Fluorine-containing matte electrodeposition paint composition

Country Status (1)

Country Link
JP (1) JPS62179575A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508815B2 (en) * 1988-08-23 1996-06-19 旭硝子株式会社 Electrodeposition coating composition

Also Published As

Publication number Publication date
JPS62179575A (en) 1987-08-06

Similar Documents

Publication Publication Date Title
US4968399A (en) Multiple electrocoating process
JPS649347B2 (en)
EP0272500B1 (en) Cationic micro gel praticle dispersion and a coating composition therefrom
US3960688A (en) Process for electrodepositing coatings on metal
JPH0637599B2 (en) Electrodeposition coating method
JPH0132266B2 (en)
JP3443455B2 (en) Microgel-containing anionic water-dispersible resin composition and electrodeposition coating composition containing the same
KR0149852B1 (en) Method of making dibutyltinoxide containing catalyst pastes and use thereof
EP0276655B1 (en) Anionic micro gel particle dispersion and a coating composition therefrom
JP3371926B2 (en) Matte electrodeposition coating composition and matte electrodeposition coating method
JPH01259595A (en) Electrodeposition-painting for ic metal board
JPH0339370A (en) Dull electrodeposition coating composition
JPS6216226B2 (en)
JPH07331133A (en) Matte electrodeposition coating composition containing fluororesin and method of coating therewith
JPS6019942B2 (en) Resin composition for matte coating
JPH021867B2 (en)
JP2543746B2 (en) Low temperature curable electrodeposition coating resin composition
JPH0131792B2 (en)
JPH0633004A (en) Resin composition for flat electrodeposition coating
JPH0637601B2 (en) Resin composition for electrodeposition coating
JPS61188474A (en) Mat coating of trim parts for automobile
JPH0637598B2 (en) Resin composition for electrodeposition coating
JPH0212511B2 (en)
JP4627101B2 (en) Matte electrodeposition paint and its electrodeposition coating method
JPS6336357B2 (en)