JPH0132167B2 - - Google Patents

Info

Publication number
JPH0132167B2
JPH0132167B2 JP11099985A JP11099985A JPH0132167B2 JP H0132167 B2 JPH0132167 B2 JP H0132167B2 JP 11099985 A JP11099985 A JP 11099985A JP 11099985 A JP11099985 A JP 11099985A JP H0132167 B2 JPH0132167 B2 JP H0132167B2
Authority
JP
Japan
Prior art keywords
aqueous solution
inorganic cation
fine powder
inorganic
sicl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11099985A
Other languages
Japanese (ja)
Other versions
JPS61270208A (en
Inventor
Hiroshi Namikawa
Kazuo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11099985A priority Critical patent/JPS61270208A/en
Publication of JPS61270208A publication Critical patent/JPS61270208A/en
Publication of JPH0132167B2 publication Critical patent/JPH0132167B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えばガラス、セラミツクスなど
無機材料の原料となる組成制御された多成分系無
機微粉末の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a compositionally controlled multi-component inorganic fine powder that is a raw material for inorganic materials such as glass and ceramics.

(従来の技術) ガラス、セラミツクスなどの無機材料にとつて
一般に組成がその特性を決定する最も重要な要因
であり、組成を完全に制御し得るか否かが優れた
無機材料開発の決め手となる。
(Prior art) For inorganic materials such as glass and ceramics, the composition is generally the most important factor that determines their properties, and whether or not the composition can be completely controlled is the deciding factor for the development of excellent inorganic materials. .

例えば、ある種のセラミツクスではその特性を
最高度に発揮させるために厳密な化学量論組成を
有することが要求され、逆に他のセラミツクスで
は化学量論組成から故意に組成をずらしてはじめ
て特性が発揮される場合もある。更に他のセラミ
ツクスでは微量の添加物を導入することによつて
はじめて機能が賦与される場合がある。
For example, some types of ceramics are required to have a strict stoichiometric composition in order to maximize their properties, while other ceramics only achieve their properties by intentionally shifting the composition from the stoichiometric composition. Sometimes it is demonstrated. Furthermore, in other ceramics, functions may only be imparted by introducing trace amounts of additives.

一方ガラスにおいても原料の組成制御が重要な
意味をもち、光学ガラスや光フアイバーなどの屈
折率を制御するために厳密な組成制御が要求され
ている。
On the other hand, controlling the composition of raw materials is also important for glass, and strict composition control is required to control the refractive index of optical glasses and optical fibers.

更に本願発明者等は石英ガラスにNd3+のよう
な活イオンとAl2O3あるいは2O5のような共ドー
パントを組み合わせてドープすることによつて優
れた特性を有するガラスレーザを開発したが(特
開昭60−11245号)、この場合においても活イオン
と共ドーパントの相対比が極めて敏感にレーザ特
性に反映される。例えばNd3+を活イオンとし
Al2O3を共ドーパントとする場合の最適値は
Al2O3/Nd2O3〜10で、それ以下では発光効率を
充分に高くすることができず、逆にそれ以上にな
ると母体ガラスは耐熱負荷特性の低下、光損傷の
誘発などレーザ特性にとつて好ましくないことが
起る。したがつてこの場合も微量な添加物同志の
組成比が厳密に制御されなければならない。
Furthermore, the inventors have developed a glass laser with excellent characteristics by doping silica glass with a combination of active ions such as Nd 3+ and co-dopants such as Al 2 O 3 or 2 O 5 . However, even in this case, the relative ratio of active ions and co-dopants is extremely sensitively reflected in the laser characteristics (Japanese Patent Laid-Open No. 60-11245). For example, if Nd 3+ is used as an active ion,
The optimal value when using Al 2 O 3 as a co-dopant is
Al 2 O 3 /Nd 2 O 3 ~ 10, below which the luminous efficiency cannot be made sufficiently high, and on the other hand, when it is above that, the base glass will deteriorate its laser properties such as a decline in heat load resistance and induction of optical damage. Something bad happens to you. Therefore, in this case as well, the composition ratio of trace amounts of additives must be strictly controlled.

これまで無機材料は多くの場合、各成分の原料
粉末を所定の割合で物理的に混合し、更に成分の
均一分散を促進するため仮焼―粉砕あるいは熔融
―粉砕の過程を繰り返した後、焼結あるいは、熔
融することによつて目的の組成をもつた材料を合
成してきた。
Until now, inorganic materials have often been produced by physically mixing the raw material powders of each component in a predetermined ratio, and then repeating the calcining-pulverization or melting-pulverization process to promote uniform dispersion of the components, followed by sintering. Materials with desired compositions have been synthesized by freezing or melting them.

(発明が解決しようとする問題点) しかし、このような方法では非常に手間がかか
り、またその間に不純物の混入も避けがたい。特
に微量の添加物を均一に分散させることはこの方
法ではほとんど不可能に近い。
(Problems to be Solved by the Invention) However, such a method is very time consuming and it is also difficult to avoid the contamination of impurities during the process. In particular, it is almost impossible to uniformly disperse trace amounts of additives using this method.

このような問題を避けるため、最近では所定の
組成に調合した金属アルコキシド溶液を加水分解
することによつて組成制御された微粉末を合成す
る方法が開発されているが、この場合は出発原料
が高価につくという欠点がある。
In order to avoid such problems, a method has recently been developed to synthesize fine powder with a controlled composition by hydrolyzing a metal alkoxide solution prepared to a predetermined composition. It has the disadvantage of being expensive.

更に、気相法によつて所定の組成を調合し、微
粉末を合成する方法が知られている。この場合成
分の均一分散は保証されるが、厳密に組成制御す
るためには、成分ガスの蒸気圧、流量などを制御
するのに高度の技術が要求される。特に二種以上
の微量成分のドープ量を制御するような場合、そ
の技術的困難は飛躍的に増大する。
Furthermore, a method is known in which fine powder is synthesized by preparing a predetermined composition by a gas phase method. In this case, uniform dispersion of the components is guaranteed, but in order to strictly control the composition, advanced technology is required to control the vapor pressure, flow rate, etc. of the component gases. In particular, when controlling the amount of doping of two or more trace components, the technical difficulties increase dramatically.

これに対して溶液状態では、一般に固体や気体
に比べて所定の組成比のものを調製することが技
術的に比較的容易である。したがつてそのような
溶液を超音波などで物理的にエアゾル化し、それ
を目的の化合物になるように反応させれば、溶液
に含まれている金属の組成比を保持した化合物の
微粉末を得ることができるはずである。
On the other hand, in a solution state, it is generally technically easier to prepare a predetermined composition ratio than in a solid or gaseous state. Therefore, if such a solution is physically aerosolized using ultrasonic waves and reacted to form the desired compound, fine powder of the compound that maintains the composition ratio of the metals contained in the solution can be created. You should be able to get it.

この発明は、上記所見に基いて高度な制御技術
を必要とせずに、組成制御された微粉末を得る方
法の開発を目的として鋭意研究の結果完成したも
のである。
This invention was completed as a result of intensive research based on the above findings with the aim of developing a method for obtaining fine powder with a controlled composition without requiring sophisticated control technology.

(問題点を解決するための手段) 以上の問題点を解決するため、本願の第1発明
は液状の無機カチオン塩中に、他の無機カチオン
塩の1種又は2種以上を所定の割合で溶かし込ん
で非水溶液を調整し、更に該非水溶液をエアゾー
ル化して反応系に導びき、上記非水溶液中のカチ
オンを反応させて各種カチオン化合物からなる無
機微粉末を製造するようにしたものである。
(Means for Solving the Problems) In order to solve the above problems, the first invention of the present application includes one or more other inorganic cation salts in a predetermined ratio in a liquid inorganic cation salt. A non-aqueous solution is prepared by dissolving the non-aqueous solution, and the non-aqueous solution is aerosolized and introduced into a reaction system, and the cations in the non-aqueous solution are reacted to produce inorganic fine powders made of various cationic compounds.

ここで、液状の無機カチオン塩としてはSiCl4
TiCl4、BBr3、GeCl4等の常温で液状のものが使
用され、また他の無機カチオン塩としては上記液
状の無機カチオン塩に任意の割合で溶解する
POCl3等や、その共存下で溶解度の大きいNd
(ClO43等の希土類の過塩素酸塩を使用すること
ができる。
Here, the liquid inorganic cation salt is SiCl 4 ,
Those that are liquid at room temperature such as TiCl 4 , BBr 3 , GeCl 4 are used, and other inorganic cation salts can be dissolved in any ratio in the above liquid inorganic cation salts.
POCl 3 etc. and Nd which has high solubility in the coexistence of POCl 3 etc.
Rare earth perchlorates such as (ClO 4 ) 3 can be used.

また、反応系では酸化、加水分解等の反応を行
なわせて各種カチオンの酸化物等からなる無機微
粉末を製造する。
Further, in the reaction system, reactions such as oxidation and hydrolysis are carried out to produce inorganic fine powders made of oxides of various cations.

しかし、本願の第1発明のように液状の無機カ
チオン塩中に溶かし込める無機カチオン塩の種類
と量は極めて制限されている。
However, as in the first invention of the present application, the type and amount of the inorganic cation salt that can be dissolved in the liquid inorganic cation salt is extremely limited.

そこで、本願の第2発明は1種又は2種以上の
無機カチオン塩を所定量溶かし込んで水溶液を調
整し、一方反応系にはエアゾール化された上記水
溶液とガス化された他の無機カチオン塩を導びい
て加水分解反応させて各種カチオンの酸化物から
なる微粉末を製造するものである。
Therefore, in the second invention of the present application, an aqueous solution is prepared by dissolving a predetermined amount of one or more inorganic cation salts, and on the other hand, the aerosolized aqueous solution and another gasified inorganic cation salt are added to the reaction system. A fine powder consisting of oxides of various cations is produced by introducing the ions and causing a hydrolysis reaction.

ここで、1種又は2種以上の無機カチオン塩と
しては水溶液になるものであれば塩のかたちには
限定されず、硝酸塩等でもよい。
Here, the one or more inorganic cation salts are not limited to the salt form as long as they form an aqueous solution, and may be nitrates or the like.

またガス化される他の無機カチオン塩としては
容易に加水分解されるものであればいずれでもよ
く、SiCl4のほかTiCl4、BBr3、Si(OC2H54など
を使用することができる。
In addition, any other inorganic cation salt to be gasified may be used as long as it is easily hydrolyzed, and in addition to SiCl 4 , TiCl 4 , BBr 3 , Si(OC 2 H 5 ) 4 , etc. can be used. can.

(作用) 本願の第1発明によれば液状の無機カチオン塩
中に、他の無機カチオン塩の1種又は2種以上を
所定の割合で溶かし込んで非水溶液で調整し、こ
の非水溶液をエアゾール化して反応系に導びき、
ここで非水溶液中のカチオンを加水分解等の反応
を行なわせるため、各種カチオン化合物を所定量
含む組成制御された無機微粉末を得ることができ
る。
(Function) According to the first invention of the present application, a non-aqueous solution is prepared by dissolving one or more other inorganic cation salts in a predetermined ratio into a liquid inorganic cation salt, and this non-aqueous solution is used as an aerosol. into the reaction system,
Here, since the cations in the non-aqueous solution undergo reactions such as hydrolysis, it is possible to obtain a compositionally controlled inorganic fine powder containing a predetermined amount of various cationic compounds.

しかし、上述のように液状の無機カチオン塩中
に、溶かし込める無機カチオン塩の種類と量は極
めて制限されているが、本願の第2発明によれば
上記のような制限がなく、しかも高度な制御技術
を必要とせずに組成制御された微粉末を得ること
ができる。
However, as mentioned above, the type and amount of the inorganic cation salt that can be dissolved in the liquid inorganic cation salt is extremely limited, but according to the second invention of the present application, there is no such limitation and moreover, Fine powder with controlled composition can be obtained without the need for control technology.

これは、1種又は2種以上の無機カチオン塩を
所定量溶かし込んだ水溶液をエアゾール化して反
応系に導びき、反応系ではガス化された他の無機
カチオン塩とともに加水分解させた結果得られる
無機カチオン塩の酸化物生成量は上記水溶液の濃
度により定まることを利用したものである。
This is obtained by aerosolizing an aqueous solution containing a predetermined amount of one or more inorganic cation salts and introducing it into a reaction system, where it is hydrolyzed together with other gasified inorganic cation salts. This method utilizes the fact that the amount of oxide produced from the inorganic cation salt is determined by the concentration of the aqueous solution.

この方法を、Nd3+とAl2O3を共ドープした
SiO2微粉末の合成例について説明する。
This method was applied to co-doped Nd 3+ and Al 2 O 3
An example of synthesis of SiO 2 fine powder will be explained.

この場合原料としてSiCl4、NdCl3、AlCl3を使
用するが、一般にSiCl4に比べてNdCl3やAlCl3
加水分解されにくいこと、更に微粉末を得る必要
性から次のような手続きが必要となる。
In this case, SiCl 4 , NdCl 3 , and AlCl 3 are used as raw materials, but in general, NdCl 3 and AlCl 3 are more difficult to hydrolyze than SiCl 4 , and the following procedure is required because it is necessary to obtain fine powder. becomes.

先ず、NdCl3とAlCl3を所定量含む水溶液を調
整し、この水溶液を超音波ネブライザーなど適当
な方法でエアゾル化し、Arなどの不活性気体と
ともに1000℃以上のところを通過させ、エアゾル
中のNdCl3およびAlCl3を加水分解させNd2O3
Al2O3あるいはこれらの混合体の超微粒子と水蒸
気の混合ガスを生成してからこの混合ガスと
SiCl4のガスを反応させる。
First, an aqueous solution containing a predetermined amount of NdCl 3 and AlCl 3 is prepared, this aqueous solution is aerosolized using an appropriate method such as an ultrasonic nebulizer, and passed through a temperature of 1000°C or higher together with an inert gas such as Ar. 3 and AlCl 3 to hydrolyze Nd 2 O 3 ,
After generating a gas mixture of ultrafine particles of Al 2 O 3 or a mixture thereof and water vapor, this gas mixture is
React the SiCl 4 gas.

これによりSiCl4は水蒸気によつて直ちに加水
分解され、SiO2超微粒子が生成される。
As a result, SiCl 4 is immediately hydrolyzed by the water vapor, and ultrafine SiO 2 particles are generated.

この時に、SiO2超微粒子の生成量はSiCl4の量
が十分であれば、混合ガス中の水蒸気量を決定さ
れ、過剰のSiCl4は系外に去る。この結果、
Nd2O3とAl2O3のSiO2への導入量は、NdCl3
AlCl3の水溶液の濃度で一義的に決定されること
になる。
At this time, if the amount of SiCl 4 is sufficient, the amount of SiO 2 ultrafine particles produced is determined by the amount of water vapor in the mixed gas, and excess SiCl 4 leaves the system. As a result,
The amount of Nd 2 O 3 and Al 2 O 3 introduced into SiO 2 is
It is uniquely determined by the concentration of the aqueous solution of AlCl 3 .

今、モル比で xNdCl3+yAlCl3+(100−x−y)H2O (1) の水溶液をエアゾル化し、NdCl3とAlCl3が加水
分解によつて酸化物を形成するに充分な温度で反
応させると、 xNdCl3+3/2xH2O →x/2Nd2O3+3HCl↑ (2) yAlCl3+3/2yH2O →y/2Al2O3+3HCl↑ (3) となり、この時残存するH2O量は (100−x−y−3/2x−3/2y)H2O =(100−5/2x−5/2y)H2O (4) となる。
Now, an aqueous solution of the molar ratio xNdCl 3 + yAlCl 3 + (100−x−y)H 2 O (1) is aerosolized at a temperature sufficient for NdCl 3 and AlCl 3 to form oxides by hydrolysis. When reacted, xNdCl 3 +3/2xH 2 O →x/2Nd 2 O 3 +3HCl↑ (2) yAlCl 3 +3/2yH 2 O →y/2Al 2 O 3 +3HCl↑ (3), and the remaining H 2 The amount of O is (100-x-y-3/2x-3/2y) H2O = (100-5/2x-5/2y) H2O (4).

このH2Oが充分な量のSiCl4と反応すると (100−5/2x−5/2y)H2O+1/2(100−
5/2x−5/2y)SiCl4 →1/2(100−5/2x−5/2y)SiO2
2(100−5/2x−5/2y)HCl↑(5) この結果、(2)、(3)、(5)から xNd2O3・yAl2O3・(100-5/2x-5/2y)SiO2 (6) の組成を持つ微粉末が形成されることになる。
When this H 2 O reacts with a sufficient amount of SiCl 4 (100-5/2x-5/2y) H 2 O + 1/2 (100-
5/2x-5/2y) SiCl 4 → 1/2 (100-5/2x-5/2y) SiO 2 +
2(100-5/2x-5/2y)HCl↑(5) As a result, from (2), (3), and (5), xNd 2 O 3・yAl 2 O 3・(100-5/2x-5 /2y)SiO 2 (6) A fine powder with the composition will be formed.

今、x=0.3、y=3の水溶液から出発すると 0.3Nd2O3・3.2Al2O3・96.5SiO2 (7) の微粉末が形成されたことになる。 Now, starting from an aqueous solution with x=0.3 and y=3, a fine powder of 0.3Nd 2 O 3・3.2Al 2 O 3・96.5SiO 2 (7) is formed.

(実施例) 以下、この発明の実施例を示す。(Example) Examples of this invention will be shown below.

Nd3+を活イオンとして石英ガラスを母体とす
るレーザガラスの原料粉末を得る目的で、Nd3+
を0.3モル%含み、P2O5をP/Nd〜10になるよう
に共ドープされた粉末の製造を行なつた。
In order to obtain a raw material powder for laser glass that uses Nd 3+ as an active ion and uses silica glass as a matrix, Nd 3+
A powder containing 0.3 mol% of P 2 O 5 and co-doped with P/Nd to 10 was produced.

P2O5の原料としては、POCl3を用いNd原料と
してはNd(ClO43を用いた。SiCl4とPOCl3とは
全組成域で混合する。一方Nd(ClO43はSiCl4
混合しにくいが、POCl3を入れると均一に混合す
る。したがつてNd(ClO430.3モル%、POCl33モ
ル%、SiCl496.7モル%の混合非水溶液を調整し
た。以上のように調整した混合非水溶液を超音波
ネブライザーでエアゾル化し、炉内で1000℃で水
蒸気と反応させたところ、分析誤差内で上記非水
溶液組成から計算される酸化物組成比と一致する
微粉末が得られた。
POCl 3 was used as a raw material for P 2 O 5 and Nd(ClO 4 ) 3 was used as a raw material for Nd. SiCl 4 and POCl 3 are mixed in the entire composition range. On the other hand, Nd(ClO 4 ) 3 is difficult to mix with SiCl 4 , but when POCl 3 is added, it mixes uniformly. Therefore, a mixed non-aqueous solution containing 0.3 mol % of Nd(ClO 4 ) 3 , 3 mol % of POCl 3 , and 96.7 mol % of SiCl 4 was prepared. The mixed non-aqueous solution prepared above was aerosolized using an ultrasonic nebulizer and reacted with water vapor at 1000℃ in a furnace. A powder was obtained.

実施例 2 図面は、実施例2に使用される無機微粉末の製
造装置を示すもので、1は底部に超音波振動子2
を有する公知の超音波ネブライザー、3はその外
周に電気炉4を有する石英製あるいは磁製の反応
管、5はバブラー、超音波ネブライザー1の頂部
には輸送管6を接続し、輸送管6の先端にはエア
ゾル導入管7を接続してエアゾル導入管7を反応
管3内に挿入する。
Example 2 The drawing shows an apparatus for producing inorganic fine powder used in Example 2, in which 1 has an ultrasonic vibrator 2 at the bottom.
3 is a quartz or magnetic reaction tube having an electric furnace 4 on its outer periphery; 5 is a bubbler; a transport pipe 6 is connected to the top of the ultrasonic nebulizer 1; An aerosol introduction tube 7 is connected to the tip, and the aerosol introduction tube 7 is inserted into the reaction tube 3.

またバブラー5の頂部には輸送管8を接続し、
輸送管8の先端には導入管9を接続し、該導入管
9は反応管3内に挿入する。
In addition, a transport pipe 8 is connected to the top of the bubbler 5,
An introduction tube 9 is connected to the tip of the transport tube 8, and the introduction tube 9 is inserted into the reaction tube 3.

なお、反応管3の底部には捕集ビン10を設け
る。
Note that a collection bottle 10 is provided at the bottom of the reaction tube 3.

超音波ネブライザー1内には所定の割合で調整
されたNdCl3とAlCl3水溶液を入れ、バブラー5
内にはSiCl4液を入れてある。
An aqueous solution of NdCl 3 and AlCl 3 adjusted at a predetermined ratio is put into the ultrasonic nebulizer 1, and the bubbler 5
Four SiCl liquids are placed inside.

超音波ネブライザー1内に収容された水溶液は
超音波振動子2でエアゾル化され、このエアゾル
化された水溶液は導入管11より導入されたアル
ゴンガスに輸送され、反応管3の中心部に放出さ
れる。一方反応管3内は電気炉4によつてその中
心部が1000℃以上になるように加熱されており、
したがつてエアゾル中のNdCl3とAlCl3は加水分
解され、Nd2O3、Al2O3あるいはこれらの化合物
の超微粒子となり、エアゾルから蒸発した水蒸気
とともに反応管3内に放出される。
The aqueous solution contained in the ultrasonic nebulizer 1 is aerosolized by the ultrasonic vibrator 2, and this aerosolized aqueous solution is transported to the argon gas introduced through the introduction tube 11 and released into the center of the reaction tube 3. Ru. On the other hand, the inside of the reaction tube 3 is heated by an electric furnace 4 to a temperature of 1000°C or higher at its center.
Therefore, NdCl 3 and AlCl 3 in the aerosol are hydrolyzed to become ultrafine particles of Nd 2 O 3 , Al 2 O 3 or their compounds, which are released into the reaction tube 3 together with the water vapor evaporated from the aerosol.

一方バブラー5内のSiCl4液はアルゴンガスに
輸送されて導入管9の先端より反応管3に導入さ
れ、ここでSiCl4はエアゾルから蒸発した水蒸気
によつて直ちに加水分解され、SiO2微粒子とな
る。この際、SiO2微粒子はNd2O3、Al2O3などの
超微粒子を核として形成されることが期待され
る。
On the other hand, the SiCl 4 liquid in the bubbler 5 is transported by argon gas and introduced into the reaction tube 3 from the tip of the introduction tube 9, where the SiCl 4 is immediately hydrolyzed by the water vapor evaporated from the aerosol and converted into SiO 2 fine particles. Become. At this time, it is expected that the SiO 2 fine particles are formed using ultrafine particles such as Nd 2 O 3 and Al 2 O 3 as nuclei.

このように生成された微粉末12は捕集ビン1
0に集められ、未反応SiCl4および反応生成ガス
HClは排気口13より排出される。
The fine powder 12 generated in this way is collected in the collection bottle 1.
0, unreacted SiCl 4 and reaction product gas
HCl is exhausted from the exhaust port 13.

上記の実施例を0.3NdCl3・3AlCl3・96.7H2Oの
水溶液を超音波ネブライザー1内に収容して行な
つたところ、上記(7)式の理論値に分析誤差内で組
成制御された微粉末を得ることができた。更に
Cr2O3・Nd2O3・Al2O3、SiO2の4成分の組成制
御微粉末もこの方法で得ることができる。
When the above example was carried out with an aqueous solution of 0.3NdCl 3 3AlCl 3 96.7H 2 O housed in the ultrasonic nebulizer 1, the composition was controlled to the theoretical value of equation (7) above within analytical error. A fine powder could be obtained. Furthermore
A composition-controlled fine powder containing four components, Cr 2 O 3 .Nd 2 O 3 .Al 2 O 3 and SiO 2 , can also be obtained by this method.

なお、この方法で組成制御された微粉末を得る
ための重要な条件はエアゾルから発生する水蒸気
が加水分解されるより過剰のSiCl4を反応管に導
入することであるが、SiCl4の導入量はバブラー
5の温度と輸送アルゴンガスの流量を調節する公
知の方法で容易に制御できる。
An important condition for obtaining fine powder with a controlled composition using this method is to introduce SiCl 4 into the reaction tube in excess of the amount of water vapor generated from the aerosol that is hydrolyzed; however, the amount of SiCl 4 introduced can be easily controlled by a known method of adjusting the temperature of the bubbler 5 and the flow rate of the argon gas to be transported.

一方、エアゾルの量は超音波ネブライザーへの
入力、エアゾル輸送用のアルゴン流量によつて容
易に制御できる。この際、水溶液の水位を一定に
保つために超音波ネブライザー1の下側部に設け
た水位保持装置(図示せず)に連結される、供給
管14から水溶液を補充することが必要となる。
On the other hand, the amount of aerosol can be easily controlled by the input to the ultrasonic nebulizer and the flow rate of argon for aerosol delivery. At this time, in order to keep the water level of the aqueous solution constant, it is necessary to replenish the aqueous solution from the supply pipe 14, which is connected to a water level holding device (not shown) provided on the lower side of the ultrasonic nebulizer 1.

(発明の効果) 以上要するに、この発明によれば組成比を精密
に調整した非水溶液あるいは水溶液を使用するこ
とにより極めて容易な製造条件で精密に組成制御
された多成分系の無機微粉末を製造することがで
き、したがつてこれより精密に組成制御された各
種類のガラス、セラミツクスの原料微粉末を製造
でき、極めて広い応用範囲を有する。
(Effects of the Invention) In summary, according to the present invention, a multi-component inorganic fine powder with a precisely controlled composition can be produced under extremely easy manufacturing conditions by using a non-aqueous solution or an aqueous solution with a precisely adjusted composition ratio. Therefore, it is possible to produce raw material fine powders for various types of glasses and ceramics whose compositions are more precisely controlled, and has an extremely wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の一実施例を示す概略図であ
る。 図中、1は超音波ネブライザー、2は超音波振
動子、3は反応管、5はバブラー。
The drawings are schematic diagrams showing one embodiment of the invention. In the figure, 1 is an ultrasonic nebulizer, 2 is an ultrasonic vibrator, 3 is a reaction tube, and 5 is a bubbler.

Claims (1)

【特許請求の範囲】 1 液状の無機カチオン塩中に、他の無機カチオ
ン塩の1種又は2種以上を所定の割合で溶かし込
んで非水溶液を調整し、更に該非水溶液をエアゾ
ール化して反応系に導びき、上記非水溶液中のカ
チオンを反応させて各種カチオン化合物からなる
無機微粉末を製造するようにしたことを特徴とす
る多成分系無機微粉末の製造法。 2 液状の無機カチオン塩としてSiCl4TiCl4
BBr3、GeCl4を使用する特許請求の範囲第1項記
載の方法。 3 他の無機カチオン塩として希土類の過塩素酸
塩、POCl3を使用する特許請求の範囲第1項記載
の方法。 4 1種又は2種以上の無機カチオン塩を所定量
溶かし込んで水溶液を調整し、一方反応系にはエ
アゾール化された上記水溶液とガス化された他の
無機カチオン塩を導びいて加水分解反応させ、各
種カチオンの酸化物からなる無機微粉末を製造す
るようにしたことを特徴とする多成分系無機微粉
末の製造法。 5 ガス化された他の無機カチオン塩を上記水溶
液に対して過剰に反応系に供給する特許請求の範
囲第4項に記載の方法。
[Claims] 1. A non-aqueous solution is prepared by dissolving one or more other inorganic cation salts in a predetermined ratio into a liquid inorganic cation salt, and the non-aqueous solution is further aerosolized to form a reaction system. A method for producing a multi-component inorganic fine powder, characterized in that the cations in the non-aqueous solution are reacted to produce an inorganic fine powder comprising various cationic compounds. 2 SiCl 4 TiCl 4 as a liquid inorganic cation salt,
The method according to claim 1, wherein BBr 3 and GeCl 4 are used. 3. The method according to claim 1, wherein a rare earth perchlorate, POCl 3 , is used as the other inorganic cation salt. 4 Prepare an aqueous solution by dissolving a predetermined amount of one or more inorganic cation salts, and introduce the aerosolized aqueous solution and other gasified inorganic cation salts into the reaction system to carry out a hydrolysis reaction. 1. A method for producing a multi-component inorganic fine powder, characterized in that the inorganic fine powder is made of oxides of various cations. 5. The method according to claim 4, wherein the gasified other inorganic cation salt is supplied to the reaction system in excess of the aqueous solution.
JP11099985A 1985-05-23 1985-05-23 Production of multicomponent inorganic fine powder Granted JPS61270208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11099985A JPS61270208A (en) 1985-05-23 1985-05-23 Production of multicomponent inorganic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11099985A JPS61270208A (en) 1985-05-23 1985-05-23 Production of multicomponent inorganic fine powder

Publications (2)

Publication Number Publication Date
JPS61270208A JPS61270208A (en) 1986-11-29
JPH0132167B2 true JPH0132167B2 (en) 1989-06-29

Family

ID=14549833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11099985A Granted JPS61270208A (en) 1985-05-23 1985-05-23 Production of multicomponent inorganic fine powder

Country Status (1)

Country Link
JP (1) JPS61270208A (en)

Also Published As

Publication number Publication date
JPS61270208A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
Saravanapavan et al. Mesoporous calcium silicate glasses. I. Synthesis
Epifani et al. Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films
EP0529189B1 (en) Method of making fused silica
Xu et al. Modern inorganic synthetic chemistry
JPS62501699A (en) Multi-component optical fiber and its manufacturing method
CN1011138B (en) Glass body formed from vapour-derived gel and process for producing same
Guizard et al. Sol-gel transition in zirconia systems using physical and chemical processes
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
US4432781A (en) Method for manufacturing fused quartz glass
US6360564B1 (en) Sol-gel method of preparing powder for use in forming glass
Uhlmann et al. The ceramist as chemist-opportunities for new materials
JPH0132167B2 (en)
JP2524174B2 (en) Method for producing quartz glass having optical functionality
EP0581358B1 (en) Method for preparing boron-containing porous gels
KR20030093814A (en) Method to manufacture silica powder using ultrasonic aerosol pyrolysis
EP0034053A2 (en) Method of producing phosphate glass and optical bodies formed therefrom
JPH03150262A (en) Production of codierite
JPH06122523A (en) Production of chalcogenide glass containing rare earth metal ion
JPS6144823B2 (en)
JPS6129893B2 (en)
JPH01192707A (en) Production of oxide form
JP2768624B2 (en) Heat-resistant siliceous foam and method for producing the same
JPS63236719A (en) Production of quartz laser glass containing cerium
JPS6156172B2 (en)
Riman Fluoride optical materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term