JPH01321012A - Surface treating method for continuous casting slab of stainless steel - Google Patents

Surface treating method for continuous casting slab of stainless steel

Info

Publication number
JPH01321012A
JPH01321012A JP15216388A JP15216388A JPH01321012A JP H01321012 A JPH01321012 A JP H01321012A JP 15216388 A JP15216388 A JP 15216388A JP 15216388 A JP15216388 A JP 15216388A JP H01321012 A JPH01321012 A JP H01321012A
Authority
JP
Japan
Prior art keywords
layer
stainless steel
slab
continuous casting
blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15216388A
Other languages
Japanese (ja)
Other versions
JPH0649209B2 (en
Inventor
Konosuke Fukuda
福田 幸之助
Keiji Yasuzawa
安沢 啓次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63152163A priority Critical patent/JPH0649209B2/en
Publication of JPH01321012A publication Critical patent/JPH01321012A/en
Publication of JPH0649209B2 publication Critical patent/JPH0649209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To efficiently remove defects on the surface and under surface affecting the surface quality caused by generating the work layer of microcracks on the surface of the continuous casting slab of stainless steel by treating through blasting and scaling off through hot rolling. CONSTITUTION:At first, the microcrack worked layer 8 generating nearly uniform and numerous microcracks 4' along with the surface of the continuous casting slab of stainless steel is formed. Then, it is heated >=1,100 deg.C, the heat is transferred to the microcracks 4' on this microcrack worked layer 8, oxidation is promoted rapidly to form an oxide layer 8'. Further, oxidation is advanced into the deep part to form the oxide scale layer 6 and sub-scale layer 6. Therefore, the formed oxide layer 9 consists of the microcrack oxide layer 8 and oxide scale layer 6 and only the thickness of the microcrack layer 8 is thickened and because it contains the deepest part of the under surface defect, by scaling off the oxide scale layer, each defect on the surface of the continuous casting slab is removed completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス鋼連鋳スラブの表面をショツトブ
ラストの如きブラスト処理と熱間圧延を伴う加熱処理と
を組み合せて手入れすることにより、熱間圧延後の圧延
製品の表面品質に影響を及ぼすスラブの表面欠陥、特に
スラブ表面の凹凸状オツシレーションマークの凹部に形
成される肌下欠陥を効率的に除去するステンレス鋼連鋳
スラブの表面手入れ方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides thermal treatment by treating the surface of continuously cast stainless steel slabs by a combination of blasting treatment such as shot blasting and heat treatment accompanied by hot rolling. Surface care of continuous cast stainless steel slabs to efficiently remove surface defects of slabs that affect the surface quality of rolled products after inter-rolling, especially subcutaneous defects formed in the concavities of uneven oscillation marks on the slab surface. It is about the method.

〔従来の技術〕[Conventional technology]

一般に、鋼板、形鋼等は直接にはスラブ等の圧延素材を
圧延して製造されるが、この圧延素材は古くから製鋼工
場で製造年れる鋼塊を分塊圧延して製造していたが、近
年生産性2作業性2品質及び歩留、製造コスト等の面で
総合的に優れている連続鋳造法による製造(以下、この
ようにして製造されたスラブを連鋳スラブと言う)が主
流となってきている。
In general, steel plates, sections, etc. are manufactured by directly rolling rolled materials such as slabs, but these rolled materials have traditionally been produced by blooming and rolling steel ingots manufactured in steel factories. In recent years, manufacturing using the continuous casting method (hereinafter, slabs manufactured in this way will be referred to as continuous casting slabs) has become mainstream, as it is comprehensively superior in terms of productivity, workability, quality, yield, manufacturing cost, etc. It is becoming.

この連続鋳造法は概路次のようである。すなわち、取鍋
からタンデイツシュに移された溶鋼は。
The outline of this continuous casting method is as follows. That is, the molten steel transferred from the ladle to the tundish.

冷却水で冷却されている縦長の鋳型にその上方から注入
され、鋳型の内面に接した表層部から順次凝固して鋳型
の下部から連続的に引き出され、続いて水スプレィによ
り冷却され、更に放冷帯を経て中心部まで凝固を完了し
てからスラブに切断される。このような連続鋳造法によ
り溶鋼を鋳型に注入し凝固させる過程において、凝固す
る溶鋼を下方へ移動促進させるために鋳型の上下振動方
式(オツシレーション方式)が採用されている。
It is injected from above into a vertical mold that is cooled with cooling water, solidifies sequentially from the surface layer in contact with the inner surface of the mold, and is continuously drawn out from the bottom of the mold, then cooled by water spray, and then released. After passing through the cold zone and solidifying to the center, it is cut into slabs. In the process of injecting molten steel into a mold and solidifying it using such a continuous casting method, a vertical vibration method (oscillation method) of the mold is employed to promote the downward movement of the solidifying molten steel.

さて、ステンレス鋼連鋳スラブも前述の如き連続鋳造法
によって製造されるのであるが、この連鋳スラブにはそ
の表面及び表面下(組下)に種々の欠陥が存在している
。例えば第2図に示すように、表面欠陥として前記鋳型
の上下振動(オツシレーション)によって生じ周期的な
凹凸状(山部1及び谷部2を有する状態)の外観を呈す
るオツシレーションマーク(05Mと略記することがあ
る)やこれに伴う割れなどがある。また、組下欠陥とし
ては、正常な08Mの山部1に対して谷部2に形成され
る成分偏析部3 (Ni、 SL酸成分ど、特にCr 
−Ni系ステンレス鋼スラブの場合に顕著)や極部的な
ミクロクラック4や後述説明するモールドパウダーの巻
き込み部5などがある。
Now, continuous cast stainless steel slabs are also manufactured by the above-mentioned continuous casting method, but these continuous cast slabs have various defects on the surface and under the surface (under assembly). For example, as shown in Fig. 2, oscillation marks (05M and (sometimes abbreviated) and cracks associated with this. In addition, as an assembly defect, component segregation parts 3 (Ni, SL acid components, etc., especially Cr
-Conspicuous in the case of Ni-based stainless steel slabs), local microcracks 4, and mold powder entrapment portions 5, which will be explained later.

このようなステンレス鋼連鋳スラブの表面や組下欠陥の
発生を抑止するための種々な連続鋳造対策技術が採られ
てきた。すなわち鋳造スラブの化学組成における成分面
での検討対策や、鋳型内面の材質2寸法形状等をはじめ
とする鋳造設備や関連装置などの設備対策や、鋳型内面
−凝固殻間の摩擦減と溶鋼上部の大気酸化防止及び保温
とのために鋳型内湾鋼上に散布する主としてCa、 S
i、 C。
Various continuous casting countermeasure techniques have been adopted to suppress the occurrence of such surface and assembly defects in continuously cast stainless steel slabs. In other words, measures to consider the chemical composition of the casting slab, equipment measures such as casting equipment and related equipment, including the material and two-dimensional shape of the inner surface of the mold, and reduction of friction between the inner surface of the mold and the solidified shell and the upper part of the molten steel. Mainly Ca and S are sprayed on the bay steel inside the mold to prevent atmospheric oxidation and to retain heat.
i, C.

Naから成るモールドパウダー自体の改善とその散布量
や散布方法などの対策や、鋳造温度及び速度。
Improving the molding powder itself, which consists of Na, and measures such as the amount and method of spraying, as well as casting temperature and speed.

冷却条件、凝固した熱スラブの表面圧下圧延、鋳型の上
下振動のショートストローク・ハイサイクル化など連続
鋳造条件の対策技術等々によって、連鋳スラブを正確に
矩形形状化するのみならずその表面O8Mの山谷の差を
極力消失せしめ表面を平滑化して組下欠陥部の深さを浅
くするなどの対策によって、連鋳スラブの表面性状は著
しく改善された。
By using cooling conditions, surface reduction rolling of the solidified hot slab, short stroke and high cycle of vertical vibration of the mold, and other countermeasures for continuous casting conditions, it is possible to not only form the continuous cast slab into an accurate rectangular shape, but also to improve its surface O8M. The surface quality of continuous cast slabs has been significantly improved by eliminating as much of the difference between peaks and valleys as possible, smoothing the surface, and reducing the depth of defects under assembly.

この改善の結果、連鋳スラブを表面手入れは全くせずに
加熱炉へ直送し、炉で加熱して熱間圧延する方法が一部
で実施されるようになった。事実。
As a result of this improvement, some methods have been implemented in which continuously cast slabs are directly sent to a heating furnace without any surface treatment, heated in the furnace, and hot rolled. fact.

普通鋼等の連鋳スラブでは、従来チッピングやスカーフ
ィングなどの手入れが施されていたが、圧延を伴う加熱
によるスケールオフ量(深さ)が組下欠陥部を含む深さ
に充分達することから、欠陥の除去を行うこれらの手入
れ作業が殆どの場合不必要となっている。
Continuously cast slabs of ordinary steel, etc. have traditionally been treated with chipping, scarfing, etc., but since the amount of scale-off (depth) due to the heating that accompanies rolling reaches the depth that includes the assembly defects, , these maintenance operations for eliminating defects are in most cases unnecessary.

しかしながら、ステンレス鋼連鋳スラブの場合には、以
下に述べる理由により通常冷間でスラブグラインダの砥
石研削によったり、あるいはミーリングマシンの刃物研
削による部分手入れ又は全面手入れを行っていた。
However, in the case of continuously cast stainless steel slabs, partial or complete maintenance has been performed by cold grinding with a slab grinder or by grinding with a blade of a milling machine for the reasons described below.

イ)ステンレス鋼は耐酸化性に優れているため。b) Stainless steel has excellent oxidation resistance.

加熱炉での加熱と熱間圧延とによるスケールオフされる
層(深さ)が浅くて表面や組下の欠陥部が除去されてい
ないで残り、これらが熱間圧延後の圧延鋼帯表面に肌ム
ラや肌荒れ、05Mに起因する模様、ヘゲ疵などの表面
模様や表面疵として残ること、 口)このような圧延鋼帯はそのまま製品にならず、また
このような圧延鋼帯を素材として最終冷延鋼帯や鋼板を
製造するときは厳しい表面品質の要求を満たすことがで
きないので。
The layer (depth) that is scaled off by heating in a heating furnace and hot rolling is shallow, and defects on the surface and under the assembly remain unremoved, and these remain on the surface of the rolled steel strip after hot rolling. Uneven skin, rough skin, patterns caused by 05M, remaining as surface patterns and surface flaws such as sludge marks, mouth) These rolled steel strips cannot be made into products as they are, and such rolled steel strips cannot be used as raw materials. Because the strict surface quality requirements cannot be met when producing the final cold-rolled steel strip or steel plate.

製造途中に表面模様や疵を除去するためにやむを得ずエ
ンドレス状の研削ベルトを使用するコイルグラインダー
による銅帯表面研削の手入れを行わざるを得なかった。
In order to remove surface patterns and flaws during manufacturing, the surface of the copper strip had to be ground using a coil grinder that uses an endless grinding belt.

前記の連鋳スラブの部分手入れは1表面割れや08Mが
乱れて生じる肌荒れなどのマクロ欠陥のみを除去する方
法であるが、この方法は後述する全面手入れに比べて幾
分歩留の向上は図れても表面の08Mに伴って生じてい
るモールドパウダーの巻き込み部、極部的なミクロクラ
ック、成分偏析部などの組下欠陥が残存しこれをそのま
ま放置して製造すれば最終冷延鋼板においても表面疵や
模様として表われ、要求される表面品質を満足できない
欠点がある。
The above-mentioned partial maintenance of continuous cast slabs is a method of removing only macroscopic defects such as surface cracks and surface roughness caused by disordered 08M, but this method does not improve the yield somewhat compared to the full-scale maintenance described later. However, assembly defects such as mold powder entrainment areas, local microcracks, and component segregation areas that occur due to 08M on the surface remain, and if these are left as they are and manufactured, the final cold-rolled steel sheet will be damaged. It appears as surface flaws and patterns, and has the disadvantage that the required surface quality cannot be satisfied.

また全面手入れはこれらの組下欠陥をも総て除去するこ
とはできるが、組下欠陥の殆どは○SM谷部で発生して
いるものであるから、山部の健全な部分から谷部の組下
欠陥の存在する深さ以上に大量に研削除去してしまうの
で、表面品質の要求に対しては満足できても手入れによ
る歩留の低下などによる製造原価の高騰を招く欠点があ
った。
In addition, cleaning the entire surface can remove all of these assembly defects, but since most assembly defects occur in the ○SM valleys, it is possible to remove all of these assembly defects from the healthy parts of the peaks to the valleys. Since a large amount of assembling defects are removed by grinding at a depth greater than the depth, there is a drawback that even if the surface quality requirements are satisfied, the manufacturing cost increases due to a decrease in yield due to cleaning.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記の如く種々の欠点を有する従来の手入れ
方法に代えて、手入れによる製造歩留の低下を極力少な
くして熱間圧延後の各圧延製品の表面品質に影響を及ぼ
す表面及びその組下の欠陥、特に表面のオツシレーショ
ンマークの谷部に形成される組下欠陥を効率的に除去す
ることができるようにステンレス鋼連鋳スラブの表面手
入れ方法を構成することを課題とする。
In place of the conventional care method which has various drawbacks as described above, the present invention minimizes the reduction in production yield due to care and improves the surface and its properties that affect the surface quality of each rolled product after hot rolling. It is an object of the present invention to provide a method for treating the surface of a continuously cast stainless steel slab so that defects in the assembling, particularly defects formed in the valleys of oscillation marks on the surface can be efficiently removed.

〔課題を解決するための手段〕[Means to solve the problem]

ショツトブラストなどのブラスト処理は、一般にデスケ
ーリング用、エツチング用、ピーニング用、研掃用、一
般清掃用などに用いられ、またスラブに関しては従来グ
ラインダー手入れ後の表面研削目をならして平滑化する
表面粗度の調整のために行われたことがあるだけで、連
鋳スラブの表面や組下の欠陥自体の除去法としては実施
されたことがない。本発明者らは種々検討した結果、こ
のようなブラスト処理により表面に一定深さ以上のミク
ロクラック加工層を生せしめ1次いで特定温度以上で加
熱した後に熱間圧延してスケールオフさせることによっ
て手入れによって生じる製造歩留の低下を少なくして各
欠陥を除去できることを究明して本発明を完成した。
Blast processing such as shot blasting is generally used for descaling, etching, peening, polishing, general cleaning, etc.For slabs, it is conventionally used to level out the surface grinding marks after cleaning with a grinder to smooth the surface. This method has only been used to adjust the surface roughness, but has never been used to remove defects on the surface of continuous cast slabs or in the assemblies themselves. As a result of various studies, the inventors of the present invention have found that by such blasting, a micro-cracked layer with a certain depth or more is created on the surface, and then it can be cleaned by heating it to a certain temperature or more and then hot-rolling it to scale it off. The present invention was completed by researching that each defect can be removed while reducing the decrease in manufacturing yield caused by this.

以下、本発明に係るステンレス鋼連鋳スラブの表面手入
れ方法を図面によって詳細に説明する。
Hereinafter, a method for treating the surface of a continuously cast stainless steel slab according to the present invention will be explained in detail with reference to the drawings.

第1図〜第5図の各回はステンレス鋼連鋳スラブの表面
部の鋳造方向に沿う断面説明図であって、第1図は本発
明方法によりスケールオフされる表面部の断面説明図、
第2図は組下欠陥の発生状況を示す断面説明図、第3図
は無手入れで加熱してスケールオフされる表面部の断面
説明図、第4図はスラブグラインダー研削などの後に加
熱してスケールオフされる表面部の断面説明図である。
Each of FIGS. 1 to 5 is an explanatory cross-sectional view of the surface portion of a continuously cast stainless steel slab along the casting direction, and FIG. 1 is an explanatory cross-sectional view of the surface portion to be scaled off by the method of the present invention;
Figure 2 is an explanatory cross-sectional view showing the occurrence of assembly defects, Figure 3 is an explanatory cross-sectional view of the surface area that is scaled off by heating without maintenance, and Figure 4 is an explanatory cross-sectional view of the surface area that is heated and scaled off after grinding with a slab grinder. FIG. 3 is a cross-sectional explanatory diagram of a surface portion to be scaled off.

第5図はブラスト処理後に加熱したときの加熱温度と表
面部の状況との関係を示し、(イ)は加熱前の。
FIG. 5 shows the relationship between the heating temperature and the condition of the surface area when heated after blasting, and (a) shows the state before heating.

(ロ)は900℃での加熱後の、(ハ)は1100℃以
上での加熱後の各状態を示す断面説明図であり、第6図
はブラスト処理の投射条件とミクロクラック加工層の深
さと圧延後の圧延製品表面の残存疵程度との関係を示す
図である。
(B) is a cross-sectional explanatory view showing each state after heating at 900°C, and (C) is after heating at 1100°C or higher. Figure 6 shows the projection conditions of blasting and the depth of the micro-cracked layer. FIG. 3 is a diagram showing the relationship between the amount of scratches and the degree of residual flaws on the surface of the rolled product after rolling.

表面欠陥の主要なものである08M及びそれに伴って発
生している組下欠陥の発生状況は第2図に示す如くであ
る。08Mの山部1と谷部2との高さの差すなわち08
Mの深さは通常150〜600−であり、谷部2には成
分偏析部3 (Niがあれば顕著に表われることが多い
)が100〜300pの深さの範囲にバラついて生じて
おり、またミクロクラック4やモールドパウダーの巻込
み部5も50〜300pの深さの範囲にバラついて発生
している。このような組下欠陥のあるステンレス鋼連鋳
スラブを無手入れで加熱(例えば1230℃で1時間)
すると、第3図に示す如く表面部分が酸化スケール層6
となりこれを熱間圧延すると剥離すなわちスケールオフ
するが、ステンレス鋼の場合にこの酸化スケール層6の
厚さは100〜300pであって薄いので、図示する如
くミクロクランク4やモールドパウダーの巻込み部5の
一部が残存して圧延後の圧延製品に表面疵となって残る
ことが多い。また、前記従来技術の如くステンレス鋼連
鋳スラブの表面にスラブグラインダー研削を施して先ず
ミクロクラック4やモールドパウダーの巻込み部5の大
部分を含むように研削除去しくこの部分を第4図では研
削部7として示す)、次いでこれを加熱すると、第4図
に示す如く更に酸化スケール層6を生じ、熱間圧延をす
ることによりこの酸化スケール層6が剥離して表面疵は
残存しないが、手入れ及び酸化スケールによる製造歩留
の低下は大きい。
The occurrence of 08M, which is a major surface defect, and the assembly defects that occur along with it are as shown in FIG. The difference in height between peak part 1 and valley part 2 of 08M, that is, 08
The depth of M is usually 150 to 600 mm, and component segregation zones 3 (often noticeable if Ni is present) occur in the valleys 2 at varying depths of 100 to 300 mm. , microcracks 4 and mold powder entrapment portions 5 also occur with varying depths in the range of 50 to 300p. Heat continuously cast stainless steel slabs with such assembly defects without maintenance (for example, at 1230°C for 1 hour)
Then, as shown in FIG. 3, the surface portion becomes an oxide scale layer 6.
When this is hot-rolled, it peels off, that is, scales off, but in the case of stainless steel, the thickness of this oxide scale layer 6 is 100 to 300p, which is thin. A part of 5 remains and often remains as surface flaws on the rolled product after rolling. In addition, as in the prior art, the surface of the continuously cast stainless steel slab is ground with a slab grinder to remove most of the micro cracks 4 and mold powder entrainment portions 5, as shown in FIG. Then, when this is heated, an oxide scale layer 6 is formed as shown in FIG. 4, and by hot rolling, this oxide scale layer 6 is peeled off and no surface flaws remain. The reduction in production yield due to cleaning and oxidized scale is significant.

本発明方法は、先ずステンレス鋼連鋳スラブの表面に鉄
製のショットやグリッドやカットワイヤなどの投射材を
投射するブラスト処理を施し表面に深さ50−以上のミ
クロクラック4′を生じさせ、次いで1100℃以上に
加熱された当該スラブを熱間圧延してスケールオフさせ
るのである。
In the method of the present invention, first, a blasting process is performed on the surface of a continuously cast stainless steel slab by projecting a blasting material such as iron shot, grid, or cut wire to create microcracks 4' with a depth of 50 mm or more on the surface. The slab heated to 1100° C. or higher is hot rolled to scale off.

このような方法により各欠陥が全面的に除去される理由
は次のようである。ブラスト処理により第1図に示す如
く表面に沿ってほぼ均−且つ無数のミクロクラック4′
の発生したミクロクラック加工層8が形成され1次いで
これを加熱するとこのミクロクラック加工層8ではミク
ロクラック4′を伝わって酸化が急速に進んで酸化層(
以下。
The reason why each defect is completely removed by this method is as follows. As shown in Figure 1, the blasting process creates almost uniform and numerous microcracks 4' along the surface.
A micro-cracked layer 8 is formed, which is then heated. In this micro-cracked layer 8, oxidation proceeds rapidly through the micro-cracks 4', forming an oxidized layer (
below.

ミクロクラック酸化層8′と言う)が形成され、更に深
部に向かって無手入れやスラブグラインダー研削の場合
の加熱と同様の酸化が進行して酸化スケール層6とサブ
スケール層6′が形成される。
A micro-crack oxide layer 8') is formed, and oxidation similar to heating during no-maintenance or slab grinder grinding progresses toward the deeper part, forming an oxide scale layer 6 and a subscale layer 6'. .

従ってこのように本発明方法によって形成される酸化ス
ケール層9はミクロクラック酸化層8′と酸化スケール
層6とから成り、その厚さはミクロクラック加工層8が
形成されていない場合に比べてミクロクラック酸化層8
′にほぼ相当するミクロクラック加工層8の厚さだけ厚
くなり、そしてこの増えた厚さが組下欠陥の最も深い部
分をも含むのに充分な厚さであることにより、酸化スケ
ール層9がスケールオフされたときはステンレス鋼連鋳
スラブの表面部から各欠陥がきれいに除去され、しかも
このようなスケールオフによる手入れ方法によれば歩留
の低下も少ないのである。
Therefore, the oxide scale layer 9 formed by the method of the present invention is composed of the microcrack oxide layer 8' and the oxide scale layer 6, and its thickness is microscopic compared to the case where the microcrack processed layer 8 is not formed. crack oxide layer 8
The oxide scale layer 9 is thickened by the thickness of the micro-cracked layer 8, which corresponds approximately to When the stainless steel slab is scaled off, all defects are cleanly removed from the surface of the continuously cast stainless steel slab, and furthermore, this cleaning method by scaling off reduces the yield loss.

この酸化スケール層9の厚さを前記の如く充分に増加さ
せるために、ミクロクラック加工層8を構成するミクロ
クラック4′の深さが50−以上必要であることは次の
ようにして判明した。ブラスト処理により生じるミクロ
クラック4′の深さは、ブラスト処理の強さに影響され
る。このブラスト処理の強さは、投射材の初速度V(m
/秒)と平均粒径D(am)との積Wで表わし、この値
Wを種々に変えてブラスト処理を行って種々な深さのミ
クロクラック4′のミクロクラック加工層8が形成され
たステンレス鋼連鋳スラブを得て更に1230℃に加熱
した後に熱間圧延してスケールオフした後、得られた圧
延鋼帯を素材として冷間圧延し、得られた各冷間圧延ス
テンレス鋼板の表面残存疵を検査した結果を示したのが
第6図である。なお、上記ブラスト処理の投射密度は1
00kg/rrrで行った。
In order to sufficiently increase the thickness of this oxide scale layer 9 as described above, it was found that the depth of the microcracks 4' constituting the microcracked layer 8 must be 50 mm or more. . The depth of microcracks 4' caused by the blasting process is influenced by the strength of the blasting process. The strength of this blasting treatment is determined by the initial velocity V (m
It is expressed as the product W of the average grain size D (am) and the average grain size D (am), and blasting was performed with various values W to form microcracked layers 8 with microcracks 4' of various depths. After obtaining a continuously cast stainless steel slab and further heating it to 1230°C, hot rolling it and scaling it off, the obtained rolled steel strip was cold rolled as a raw material, and the surface of each cold rolled stainless steel plate obtained was FIG. 6 shows the results of inspection for residual flaws. In addition, the projection density of the above blasting treatment is 1
00kg/rrr.

第6図に示されているように、冷間圧延ステンレス鋼板
の表面にステンレス鋼連鋳スラブからの残存疵の発生を
防止するには、ステンレス鋼連鋳スラブの表面に深さ5
0−以上のミクロクラック4′を生じさせることが必要
である。そしてブラスト処理の投射条件がW≧50の場
合には、ミクロクラック4′の深さを50Ia以上にさ
せることができることが判る。
As shown in Figure 6, in order to prevent the occurrence of residual flaws from the continuous cast stainless steel slab on the surface of the cold rolled stainless steel plate, the surface of the continuous cast stainless steel slab should be
It is necessary to generate microcracks 4' of 0- or more. It can be seen that when the projection conditions of the blasting treatment are W≧50, the depth of the micro-cracks 4' can be made to be 50 Ia or more.

またステンレス鋼連鋳スラブにブラスト処理を施した後
の加熱の程度が酸化スケール層9の形成に及ぼす影響を
調べた。
Furthermore, the effect of the degree of heating on the formation of the oxide scale layer 9 after blasting the continuously cast stainless steel slab was investigated.

ブラスト処理後の加熱温度が1100℃以上の条件では
、第5図(イ)の如くミクロクラック4′が生じている
ミクロクラック加工層8は、同図(ロ)に示す如く総て
ミクロクラック酸化層8′となり、その下層に酸化スケ
ール層6が形成されている。
When the heating temperature after blasting is 1100° C. or higher, the microcracked layer 8 in which microcracks 4' have occurred as shown in FIG. 5(a) is completely oxidized by microcracks as shown in FIG. A layer 8' is formed below the layer 8', and an oxide scale layer 6 is formed thereunder.

また酸化スケール層6の下層に形成されたサブスケール
層6′は粒界酸化部と金属/酸化物混合部から成ってお
り、その厚さは307a以下であることは無手入れやス
ラブグラインダー研削後に加熱した場合に生じるサブス
ケール層6′と同様であり、熱間圧延中に酸化を受けな
がら圧延製品表面のスケールと化す。そして前記ミクロ
クラック酸化層8′と酸化スケール層6とで組下欠陥を
きれいに除去する剥離し易い酸化スケール層9を構成し
ている。
Furthermore, the subscale layer 6' formed under the oxide scale layer 6 consists of a grain boundary oxidation part and a metal/oxide mixed part, and its thickness is 307a or less after no maintenance or after grinding with a slab grinder. This layer is similar to the subscale layer 6' that is produced when heated, and turns into scale on the surface of the rolled product while undergoing oxidation during hot rolling. The micro-crack oxide layer 8' and the oxide scale layer 6 constitute an oxide scale layer 9 which is easy to peel off and which cleanly removes assembly defects.

これに対し加熱温度が1100℃以下の場合には、第5
図(ハ)に示すように、ミクロクラック酸化層8′は薄
く酸化スケール層6は殆ど発達形成されず、ミクロクラ
ック4′に沿ってサブスケール層6′が疎らに発達して
剥離する厚さは薄くなり本発明方法の効果が表われない
On the other hand, if the heating temperature is 1100℃ or less, the fifth
As shown in Figure (c), the micro-crack oxide layer 8' is thin and the oxide scale layer 6 hardly develops, and the sub-scale layer 6' develops sparsely along the micro-crack 4' and peels off. becomes thinner, and the effect of the method of the present invention is not apparent.

ミクロクラツク4′自体の密度は充分な方が良いが、密
度が非常に低い場合はミクロクラック4′の深さが所定
長あって且つ加熱温度が1100℃以上であっても、結
果的に第5図(ハ)の場合と類似の状態となる場合があ
るにの点について種々試験をした結果、投射密度が10
0kg/r&以下ではミクロクラック4′の充分な密度
が゛得られ難く、1000kg/r&位でその効果が変
らなくなり、好ましい投射密度の範囲は100〜800
kg/−である。
It is better that the density of the micro-crack 4' itself is sufficient, but if the density is very low, even if the depth of the micro-crack 4' is a predetermined length and the heating temperature is 1100°C or higher, as a result, the fifth As a result of various tests, we found that a situation similar to that shown in Figure (c) may occur.
Below 0 kg/r&, it is difficult to obtain a sufficient density of micro-cracks 4', and at around 1000 kg/r&, the effect does not change, and the preferred projection density range is 100 to 800.
kg/-.

前記の如くにして得られた酸化スケール層9は、極めて
脆弱であるため、温度1050〜750℃程度、圧下率
数%以上で激しくスラブ表面のスケールを除去しながら
行われる熱間圧延で容易に剥離且つ除去され、圧延後の
圧延鋼帯表面の模様とか疵とかにはならないのである。
Since the oxide scale layer 9 obtained as described above is extremely fragile, it can be easily removed by hot rolling, which is performed at a temperature of about 1050 to 750°C and a reduction rate of several percent or more while vigorously removing scale from the slab surface. It is peeled off and removed, and does not result in patterns or flaws on the surface of the rolled steel strip after rolling.

〔実施例〕〔Example〕

本発明方法による実施例(1〜8)とその比較例(1〜
8)を以下に詳述するように実施し、その結果をまとめ
て次表に示す。
Examples (1 to 8) and comparative examples (1 to 8) according to the method of the present invention
8) was carried out as detailed below, and the results are summarized in the following table.

先ずオーステナイト系ステンレス鋼の代表鋼種である5
US304の溶鋼を連続鋳造して寸法200■(厚)x
1050m(幅) x 9000 m (長さ)の連鋳
スラブを多数製造した。
First, 5 is a representative type of austenitic stainless steel.
Continuously cast US304 molten steel to create dimensions 200cm (thickness) x
A large number of continuously cast slabs measuring 1050 m (width) x 9000 m (length) were produced.

これらの連鋳スラブに関して、次表の比較例1のものは
鋳造されたままの無手入れの状態で加熱後に熱間圧延し
たものであり、比較例2のものは従来通りスラブグライ
ンダーによりスラブ表面全面を深さ1 m(1000m
)程度研削してから加熱且つ熱間圧延したものである。
Concerning these continuously cast slabs, those in Comparative Example 1 in the following table were hot-rolled after heating in an untreated state as cast, while those in Comparative Example 2 were polished over the entire surface of the slab using a conventional slab grinder. to a depth of 1 m (1000 m
) and then heated and hot rolled.

そして、残りの実施例1〜8のものと比較例3〜8のも
のは総て以下に記す条件下にブラスト処理工程に通板し
て処理し、スラブエンド部よりサンプリングした。
The remaining Examples 1 to 8 and Comparative Examples 3 to 8 were all subjected to a blasting process under the conditions described below, and samples were taken from the end of the slab.

ブラスト処理条件: (A)投射機:平均粒径が0.2〜2.01の範囲にあ
る鉄製グリッド(投射機)。
Blasting conditions: (A) Projection machine: Iron grid (projection machine) with an average particle size in the range of 0.2 to 2.01.

(B)投射機の初速度(V)ニア0及び100m/秒。(B) Initial velocity of projector (V) near 0 and 100 m/s.

(C)投射密度: 50.100及び200kg/m2
(連鋳スラブの通板速度の調整による) 次いで総ての連鋳スラブを加熱温度1230.1130
゜1080及び1050℃に加熱し、圧延温度範囲12
00〜800℃且つ1パス当りの圧下率5〜40%の条
件下で熱間圧延して板厚約4mの熱間圧延鋼帯にした。
(C) Projection density: 50.100 and 200kg/m2
(By adjusting the threading speed of the continuous cast slabs) Next, all the continuous cast slabs were heated to a temperature of 1230.1130.
Heated to 1080°C and 1050°C, rolling temperature range 12
A hot rolled steel strip having a thickness of approximately 4 m was obtained by hot rolling at a temperature of 00 to 800°C and a rolling reduction rate of 5 to 40% per pass.

かかる鋼帯を素材とし、更に熱処理→酸洗→冷延→熱処
理→酸洗→剪断工程を経て、板厚2.0mの冷延鋼板を
得た。
Using this steel strip as a raw material, it was further subjected to heat treatment, pickling, cold rolling, heat treatment, pickling, and shearing to obtain a cold rolled steel plate with a thickness of 2.0 m.

前記におけるステンレス鋼連鋳スラブの表面手入れの効
果を表わすものとして、手入れ後の表面や皿上の欠陥の
残存状態の直接評価に代わり、得られた冷延ステンレス
鋼板の表面における模様や疵の残存状態により評価した
。冷延ステンレス鋼板の表面模様や表面疵の残存有無の
評価は、連鋳スラブの手入れ区分毎に得られた圧延総枚
数に対する表面模様や表面疵が認められた板枚数の比率
を次のように区分し記号により表示することにより行っ
た。
In order to express the effect of surface care of continuously cast stainless steel slabs in the above, instead of directly evaluating the remaining state of defects on the surface or plate after care, we evaluate the remaining patterns and flaws on the surface of the obtained cold-rolled stainless steel sheets. Evaluation was made according to the condition. To evaluate the presence or absence of surface patterns and surface flaws on cold-rolled stainless steel sheets, calculate the ratio of the number of sheets with surface patterns and surface flaws to the total number of sheets rolled obtained for each continuous cast slab care category as follows: This was done by classifying and displaying them using symbols.

0:比率3%未満(発生ナシ) Δ:比率3%以上15%未満(一部発生)×:15%以
上(発生) また、ブラスト処理後に採取したサンプルについて、ミ
クロクラック4′の深さ(ミクロクラック加工層の深さ
)を測定すると共に、熱間圧延する連鋳スラブの上に載
せて加熱炉へ装入して加熱し加熱後これらのサンプルは
熱間圧延することなく冷却し、表層部に生じた酸化スケ
ール層の厚さを測定した。なお、比較例1の無手入れの
連鋳スラブ及び比較例2のスラブグラインダー研削によ
り表面の全面研削を行った連鋳スラブについても同様に
測定した。
0: Ratio less than 3% (no occurrence) Δ: Ratio 3% or more and less than 15% (some occurrence) In addition to measuring the depth of the micro-cracked layer, the samples were placed on top of a continuously cast slab to be hot rolled, charged into a heating furnace, and heated. After heating, these samples were cooled without hot rolling, and the surface layer The thickness of the oxide scale layer formed in the area was measured. The continuous cast slab of Comparative Example 1 without maintenance and the continuous cast slab of Comparative Example 2 whose entire surface was ground by slab grinder grinding were similarly measured.

以下余白 前記衣から、本発明方法に定める条件下にブラスト処理
及び熱間圧延を伴う加熱を行ったステンレス鋼連鋳スラ
ブからは表面模様や表面疵の殆どない冷延ステンレス鋼
板を得ることができることが判る。これに対し、無手入
れ連鋳スラブは勿論、ブラスト処理及び熱間圧延を伴う
加熱を行ってもそれらの条件が本発明方法に定める範囲
外の場合は表面模様や疵のない冷延ステンレス鋼板は得
られない。このことから、本発明方法によれば、ステン
レス鋼連鋳スラブの表面欠陥は勿論、その皿上欠陥をも
ほぼ完全に除去できることが判る。なお、スラブグライ
ンダー研削を実施した場合には、表面模様や疵の発生は
なくなるが、研削及びスケールオフの両者による合計損
失厚さが約1250tJnに達して製造歩留の低下の大
きいことが判る。
From the above-mentioned coating, it is possible to obtain cold-rolled stainless steel sheets with almost no surface patterns or surface defects from continuous cast stainless steel slabs subjected to blasting and heating accompanied by hot rolling under the conditions specified in the method of the present invention. I understand. On the other hand, if the conditions are outside the range specified by the method of the present invention, not only continuous cast slabs without maintenance, but also blasting and heating accompanied by hot rolling, cold rolled stainless steel sheets without surface patterns or defects will be produced. I can't get it. From this, it can be seen that according to the method of the present invention, not only the surface defects of the continuously cast stainless steel slab but also the surface defects thereof can be almost completely removed. Note that when slab grinder grinding is performed, surface patterns and scratches are eliminated, but the total thickness loss due to both grinding and scale-off reaches approximately 1250 tJn, indicating a significant decrease in manufacturing yield.

以上に、鋼種5US304連鋳スラブの本発明に係る表
面手入れ方法の実施例について説明したが、本発明方法
に定める条件範囲内の表面手入れ方法を実施すれば、こ
の鋼種の連鋳スラブに限らず、同様なO3M表面欠陥及
びその皿上欠陥を有するフェライト系やマルテンサイト
系ステンレス鋼(具体的には5US430や5US41
0等)の連鋳スラブに対しても同様に良好な評価と結果
が得られるのである。
The embodiment of the surface care method according to the present invention for continuously cast slabs of steel type 5US304 has been described above, but if the surface care method is carried out within the condition range specified in the method of the present invention, it can be applied not only to continuously cast slabs of this steel type. , ferritic and martensitic stainless steels (specifically 5US430 and 5US41) that have similar O3M surface defects and their dish defects.
Similarly, good evaluations and results can be obtained for continuously cast slabs (e.g., 0, etc.).

〔発明の効果〕〔Effect of the invention〕

以上に詳述した本発明に係るステンレス鋼連鋳スラブの
表面手入れ方法は、以下に述べる効果により、作業性、
生産性及び特に製造歩留とコスト面で問題がある従来の
スラブグラインダーやミーリングマシンを用いた砥石研
削や刃物研削による手入れ方法にとって代わることがで
き、しかも完全無手入れで加熱炉へ直送し炉内で加熱し
た後に熱間圧延する理想方法に近づいたものとして、そ
の工業的価値は非常に大きなものである。
The surface care method for stainless steel continuously cast slabs according to the present invention described in detail above has the following effects:
It can replace the conventional cleaning methods using whetstone grinding and blade grinding using slab grinders and milling machines, which have problems in terms of productivity, especially manufacturing yield and cost.Moreover, it can be sent directly to the heating furnace without any maintenance, and can be heated directly into the furnace. It has great industrial value as it approaches the ideal method of hot rolling after heating.

イ)連鋳スラブのO8M表面欠陥のみならずその各種皿
上欠陥をも、作業性良く、生産性も良好に(従来の1/
15の処理時間で)、特に従来の研削手入れ方法より1
%近く歩留が上がりほぼ無手入れに近い製造歩留を確保
し、そのため従来の1720の製造コストで効果的に除
去することができる。
b) Not only the O8M surface defects of continuous casting slabs but also various plate defects can be removed with good workability and productivity (1/1/2 of the conventional method).
15 processing times), especially compared to traditional grinding care methods.
%, ensuring a manufacturing yield that is almost maintenance-free, and therefore can be effectively removed at the manufacturing cost of the conventional 1720.

ロ)そして、手入れ後、加熱且つ熱間圧延されてから得
られる圧延製品の表面品質も従来の手入れされたものと
同等に良好である。
(b) After being treated, the surface quality of the rolled product obtained after heating and hot rolling is as good as that of the conventionally treated product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図の各回はステンレス鋼連鋳スラブの表面
部の鋳造方向に沿う断面説明図であって。 第1図は本発明方法によりスケールオフされる表面部の
断面説明図、第2図は皿上欠陥の発生状況を示す断面説
明図、第3図は無手入れで加熱してスケールオフされる
表面部の断面説明図、第4図はスラブグラインダー研削
などの後に加熱してスケールオフされる表面部の断面説
明図である。第5図はブラスト処理後に加熱したときの
加熱温度と表面部の状況との関係を示し、(イ)は加熱
前の。 (ロ)は900℃での加熱後の、(ハ)は1100℃以
上での加熱後の各状態を示す断面説明図であり、第6図
はブラスト処理の投射条件とミクロクラック加工層の深
さと圧延後の圧延製品表面の残存疵程度との関係を示す
図である。 図面中 1・・・・オツシレーションマークの山部2・・・・オ
ツシレーションマークの谷部3・・・・成分偏析部 4.4′・・・・ミクロクラック 5・・・・モールドパウダーの巻込み部6・・・・酸化
スケール層 6′・・・・サブスケール層 7・・・・研削部 8・・・・ミクロクラック加工層 8′・・・・ミクロクラック酸化層
Each of FIGS. 1 to 5 is an explanatory cross-sectional view of the surface portion of a continuously cast stainless steel slab along the casting direction. Fig. 1 is a cross-sectional explanatory diagram of the surface portion to be scaled off by the method of the present invention, Fig. 2 is a cross-sectional explanatory diagram showing the occurrence of defects on the plate, and Fig. 3 is the surface to be scaled off by heating without maintenance. FIG. 4 is a cross-sectional view of the surface portion which is heated and scaled off after grinding with a slab grinder. FIG. 5 shows the relationship between the heating temperature and the condition of the surface area when heated after blasting, and (a) shows the state before heating. (B) is a cross-sectional explanatory view showing each state after heating at 900°C, and (C) is after heating at 1100°C or higher. Figure 6 shows the projection conditions of blasting and the depth of the micro-cracked layer. FIG. 3 is a diagram showing the relationship between the amount of scratches and the degree of residual flaws on the surface of the rolled product after rolling. In the drawings 1... Peaks of the oscillation mark 2... Valleys of the oscillation mark 3... Component segregation areas 4.4'... Micro cracks 5... of the mold powder Rolling part 6... Oxide scale layer 6'... Subscale layer 7... Grinding part 8... Micro crack processing layer 8'... Micro crack oxide layer

Claims (1)

【特許請求の範囲】 1 ステンレス鋼連鋳スラブの表面にブラスト処理によ
り深さ50μm以上のミクロクラック加工層を生じさせ
、次いで1100℃以上に加熱された当該スラブを熱間
圧延してスケールオフさせることを特徴とするステンレ
ス鋼連鋳スラブの表面手入れ方法。 2 ブラスト処理を下記の条件 (i)投射材の初速度V(m/秒)と平均粒径D(mm
)との積Wが W≧50 (ii)投射密度が100〜800kg/m^2の下に
行う請求項1に記載のステンレス鋼連鋳スラブの表面手
入れ方法。
[Claims] 1. A micro-cracked layer with a depth of 50 μm or more is created on the surface of a continuously cast stainless steel slab by blasting, and then the slab heated to 1100° C. or more is hot rolled to scale off. A method for surface care of continuously cast stainless steel slabs, characterized by the following. 2 The blasting process was carried out under the following conditions (i) initial velocity V (m/sec) of the blasting material and average particle diameter D (mm
) The method for surface care of a continuously cast stainless steel slab according to claim 1, wherein the product W is W≧50 (ii) the projection density is 100 to 800 kg/m^2.
JP63152163A 1988-06-22 1988-06-22 Surface care method for stainless steel continuous cast slab Expired - Lifetime JPH0649209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152163A JPH0649209B2 (en) 1988-06-22 1988-06-22 Surface care method for stainless steel continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152163A JPH0649209B2 (en) 1988-06-22 1988-06-22 Surface care method for stainless steel continuous cast slab

Publications (2)

Publication Number Publication Date
JPH01321012A true JPH01321012A (en) 1989-12-27
JPH0649209B2 JPH0649209B2 (en) 1994-06-29

Family

ID=15534402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152163A Expired - Lifetime JPH0649209B2 (en) 1988-06-22 1988-06-22 Surface care method for stainless steel continuous cast slab

Country Status (1)

Country Link
JP (1) JPH0649209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266416A (en) * 1991-02-20 1992-09-22 Kawasaki Steel Corp Method for finishing stainless steel cast slab
JP2006212671A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp METHOD FOR PREVENTING SURFACE FLAW AT THE TIME OF ROLLING IN Ni-CONTAINING STEEL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157627A (en) * 1984-12-28 1986-07-17 Kawasaki Steel Corp Manufacture of austenitic stainless steel
JPS61266588A (en) * 1985-05-22 1986-11-26 Nisshin Steel Co Ltd Method for descaling stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157627A (en) * 1984-12-28 1986-07-17 Kawasaki Steel Corp Manufacture of austenitic stainless steel
JPS61266588A (en) * 1985-05-22 1986-11-26 Nisshin Steel Co Ltd Method for descaling stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266416A (en) * 1991-02-20 1992-09-22 Kawasaki Steel Corp Method for finishing stainless steel cast slab
JP2006212671A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp METHOD FOR PREVENTING SURFACE FLAW AT THE TIME OF ROLLING IN Ni-CONTAINING STEEL
JP4514137B2 (en) * 2005-02-04 2010-07-28 新日本製鐵株式会社 Method for preventing rolling surface flaw of Ni-containing steel

Also Published As

Publication number Publication date
JPH0649209B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP2001170745A (en) Method and apparatus for treating surface of continuously cast steel product
TW201700751A (en) Ferrite-based stainless steel plate, cover element and manufacturing method of ferrite-based stainless steel plate
EP0463177A1 (en) Continuously cast thin piece and method of casting thereof
US5286315A (en) Process for preparing rollable metal sheet from quenched solidified thin cast sheet as starting material
KR930001127B1 (en) Process for producing cold-rolled strip or sheet of austenitic stainless steel
EP0481481B1 (en) Process for production of austenitic stainless steel thin cast strip and strip obtained thereby
EP0417318B1 (en) Method of producing rollable metal sheet based on quench-solidified thin cast sheet
JPH01321012A (en) Surface treating method for continuous casting slab of stainless steel
JP3830119B2 (en) Cut-wire iron shot for blasting
WO2016013186A1 (en) Method for continuous casting of steel
CN109719130B (en) Composite extra-thick slab and production method thereof
JP4001264B2 (en) Manufacturing method of steel with few surface defects
CA1110822A (en) Continuous casting
US2037732A (en) Process of producing composite articles containing nickel
JP2971292B2 (en) Manufacturing method of austenitic stainless steel with few surface defects
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
KR100490996B1 (en) Method For Manufacturing Cast Strip In Twin Roll Strip Casting Process
JP3621736B2 (en) Hot rolling method of pure titanium slab
JPS58141835A (en) Production of hot rolled plate or strip of stainless steel
JPH05293601A (en) Manufacture of cold rolled austenitic stainless steel having excellent surface quality
JP2003225742A (en) Method for casting austenitic stainless steel excellent in surface characteristic and its cast slab
JP2003247046A (en) Constant-strain steel with excellent cold forgeability
JP4655379B2 (en) Surface care method for billets
JP2003285141A (en) Method for manufacturing thin strip-like cast slab of austenitic stainless steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term