JPH01320367A - Automatic tensioner for belt - Google Patents

Automatic tensioner for belt

Info

Publication number
JPH01320367A
JPH01320367A JP15092588A JP15092588A JPH01320367A JP H01320367 A JPH01320367 A JP H01320367A JP 15092588 A JP15092588 A JP 15092588A JP 15092588 A JP15092588 A JP 15092588A JP H01320367 A JPH01320367 A JP H01320367A
Authority
JP
Japan
Prior art keywords
belt
outer diameter
tensioner
pulley
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15092588A
Other languages
Japanese (ja)
Inventor
Kenichiro Ito
健一郎 伊藤
Hiromi Nojiri
博海 野尻
Tateo Adachi
健郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP15092588A priority Critical patent/JPH01320367A/en
Publication of JPH01320367A publication Critical patent/JPH01320367A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • F16H7/1254Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0808Extension coil springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

PURPOSE:To automatically adjust the tension of a belt and to absorb the impact and vibration caused on a tensioner by bridging the spring for setting tension on a sliding ring and making the distance between the outer diameter of a pulley and the shaft center of a tensioner bearing variable. CONSTITUTION:A sleeve 9 is fitted by its pressure fitting to the outer diameter of the outer wheel 4 of a tensioner bearing 1. A pair of sliding rings 10, 11 are inserted slidably in the axial direction on the outer diameter of the sleeve 9. The spring 17 for setting tension is bridged by the specified energizing force on the sliding rings 10, 11. The tension of a belt is automatically adjusted by making the distance between the outer diameter of the pulley 18 to which the belt is locked and the shaft center of the tensioner bearing 1 variable. The impact and vibration caused on the tensioner can be absorbed with a simple structure without occupying any fitting space.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、機関に使用させる動力伝達用ベルトのオー
トテンショナ、例えば自動車のエンジンにおいて、クラ
ンクシャフトのプーリとカムシャフトのプーリとの間に
掛け渡された歯付きタイミングベルトの張力を調整する
ベルトのオートテンショナに関するものである。
This invention relates to an auto-tensioner for a power transmission belt used in an engine, such as a belt that adjusts the tension of a toothed timing belt stretched between a crankshaft pulley and a camshaft pulley in an automobile engine. It concerns auto tensioners.

【従来技術】[Prior art]

例えば、自動車のエンジンにおいて、クランクシャフト
のプーリとカムシャフトのプーリとの間に掛け渡された
歯付きタイミングベルトの弛みを防止し張力を調整する
オートテンショナ装置として第15図に示すものが知ら
れている。(特開昭58−121344号公報参照)そ
の種の装置において、アイドラ70を回転可能に支持す
るプラケット71は、エンジン本体72のような固定物
体に揺動可能に支持される。このブラケット71と固定
物体72との間にダンパ73が配される。 ダンパ75はシリンダ74とピストン75とピストンロ
ンドア6とからなり、ピストン75により区切られて形
成された2つの液室77.78と両液室77.78を連
通ずる絞り79とを有する。このダンパ73に、ベルト
80に張力を付加するコイルばね81が外装され、シリ
ンダ74及びピストン76の一方が固定物体72に、他
方がブラケット71にそれぞれ連係されている。従って
、雰囲気温度に関係なく、ベルトの張力を実質的に一定
の状態に保持し、高温時の騒音、低温時のシャツピング
等が起こらず、又ベルトやエンジンのような振動体から
アイドラへ伝えられる振動に対してはダンパによる制御
効果が発揮されるのでアイドラが共振することはない。
For example, the auto tensioner device shown in Fig. 15 is known as an auto tensioner device that prevents loosening and adjusts the tension of a toothed timing belt stretched between a crankshaft pulley and a camshaft pulley in an automobile engine. ing. (See Japanese Unexamined Patent Publication No. 58-121344.) In this type of device, a placket 71 that rotatably supports the idler 70 is swingably supported by a fixed object such as an engine body 72. A damper 73 is arranged between the bracket 71 and the fixed object 72. The damper 75 is composed of a cylinder 74, a piston 75, and a piston door 6, and has two liquid chambers 77,78 separated by the piston 75, and a throttle 79 that communicates the two liquid chambers 77,78. A coil spring 81 that applies tension to the belt 80 is mounted on the damper 73, and one of the cylinder 74 and the piston 76 is linked to the fixed object 72, and the other is linked to the bracket 71. Therefore, regardless of the ambient temperature, the belt tension is maintained in a substantially constant state, noise at high temperatures, shirting at low temperatures, etc. do not occur, and the tension is not transmitted from the vibrating body such as the belt or engine to the idler. Since the damper exerts a control effect on the vibrations generated, the idler does not resonate.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来のベルトのオートテンショナ装置に
あっては、各部品をエンジン本体に別個に取り付けなけ
ればならず、作業性はもとよりベルトの張力調整に手間
がかかり、又取り付はスペースを大きくとらなければな
らないという課題を内在していた。
However, with conventional belt auto-tensioner devices, each part must be installed separately on the engine body, which not only improves work efficiency but also requires time and effort to adjust the belt tension, and installation requires a large amount of space. There was an inherent problem in not being able to do so.

【課題を解決するための手段】[Means to solve the problem]

上記の!1題を解決するために本発明は、テンショナ軸
受と、該テンショナ軸受の外径に嵌合されたスリーブと
、該スリーブの外径に軸方向摺動可能に嵌挿され、傾斜
した外径面を有する摺動リングと、該摺動リングの傾斜
外径面に嵌合されるプーリとからなり、上記慴動リング
に所定の付勢力にて張力設定用バネを掛け渡し、ベルト
が係止する上記プーリの外径と、上記テンショナ軸受の
軸心との距離を可変となしてベルトの張力を自動的に調
整した。
above! In order to solve one problem, the present invention includes a tensioner bearing, a sleeve fitted on the outer diameter of the tensioner bearing, and a sloped outer diameter surface fitted on the outer diameter of the sleeve so as to be slidable in the axial direction. It consists of a sliding ring having a slanted outer diameter surface, and a pulley that is fitted on the inclined outer diameter surface of the sliding ring, and a tension setting spring is stretched around the sliding ring with a predetermined biasing force, and the belt is locked. The tension of the belt was automatically adjusted by making the distance between the outer diameter of the pulley and the axis of the tensioner bearing variable.

【作用】[Effect]

テンショナ軸受の外径に嵌合されたスリーブ上を摺動リ
ングが、張力設定用バネ力により軸方向に摺動すると、
それに外嵌されたプ一りの外径寸法が変化する。この変
化はベルトのエンジンに対する相対的な縮みや伸びによ
る張力と釣り合った位置で停止し、自動的にベルトの張
力を調整する。 一方、ベルトを介してテンショナに生じるラジアル荷重
に対しては、瞬間的に変化しない。即ち、テンショナに
生じる衝撃、高周波などの振動等は、この摩擦力で吸収
する。
When the sliding ring slides in the axial direction on the sleeve fitted on the outer diameter of the tensioner bearing due to the tension setting spring force,
The outer diameter of the plug that is fitted onto it changes. This change automatically adjusts the belt tension by stopping at a position that balances the tension caused by the contraction and expansion of the belt relative to the engine. On the other hand, the radial load generated on the tensioner via the belt does not change instantaneously. That is, shocks, high-frequency vibrations, etc. that occur in the tensioner are absorbed by this frictional force.

【実施例】【Example】

以下、この発明の実施例を第1図〜第14図に従って詳
細に説明する。 第1図はこの発明の第1の実施例を示す縦断面図、第2
図は同上側面図である。 テンショナ軸受1は輪状内方部材2と、複列のボール3
を介して回転自在に嵌合された外輪4からなり、内方部
材2はアーム5に一体固定されている。このアーム5に
は揺動中心となるビン(図示せず)装着用孔6、初期の
ベルト張力設定用バネ(図示せず)を係止させるバネ係
止孔7.及びアーム5固定用ボルト(図示せず)を装着
する長孔8が夫々形成されている。この初期のベルト張
力設定用バネの付勢力を選定することにより、初期のベ
ルトの張力、即ちテンショナの位置を自動的に設定する
ことができ、固定用ボルトを締結しアームを固定してし
まえばこのバネは不要となる。 9は外輪4の外径に圧入嵌合されたスリーブで、外輪4
よりも幅広に形成されている。 スリーブ9の外径には一対の摺動リング10.11が軸
方向に摺動可能に嵌挿されている、12は摺動リング1
0.11の回動を防止するためのキーである。摺動リン
グ10.11は傾斜外径面13.14を有し、一対で略
V字状溝を構成する。又、摺動リング10゜11には軸
方向貫通孔15.16が円周等配位置に複数個形成され
、ベルト張力設定用バネ17が内装されている。 ベルト張力設定用バネ17は、貫通孔15、16の開口
部に形成された適宜な係止手段により係止され、一対の
摺動リング10,11を弾性的に連結している。18は
一対の摺動リング10.11に外嵌された環状のプーリ
であって、両端にはベルトを案内するための環状の鍔1
9.19が一体に形成されている。プーリ18の内12
0.21は中央から端面に拡がる対称なテーパ状に形成
され、且つ一対の摺動リング10.11が衝合したとき
その傾斜外径面に全面当りするように形成されている。 今、エンジン周りの温度が上昇し、熱膨張によりベルト
プーリ間の距離が長くなってベルトの張力が増大した場
合、プーリ18を介して摺動リング10.11に径方向
の荷重が生ずる。この荷重の一部は傾斜外径面13.1
4の傾斜度により摺動リング10.11を軸方向に離間
させる力に分配され、ベルト張力設定用バネ17のバネ
力と釣合う位置までベルト張力設定用バネ17を伸長さ
せる。その状態を第3図に示すが、一対の慴動リング1
0.11の傾斜外径面13.14によって構成される略
■字状の環状溝の外径は縮径し、プーリ18の内径20
.21とは部分当りをして他の部分は隙間をもつように
なる。即ち、テンショナ軸受1の軸心Oと、プーリ18
の軸心Oとはeだけ偏心し、熱膨張によりベルトプーリ
間距離が長くなった量を補正する。従って、常にベルト
の張力は一定に保持される。22は一対のtW動リング
10.11の位置を規制するためスリーブ9の外径に突
設された環状の係止片である。 第4図はこの発明の第2の実施例を示す縦断面図で、同
一部品、同一部分には同一の符号を付してその説明を省
略する。 テンショナ軸受lの外輪4の外径に圧入嵌合されたスリ
ーブ23は鋼板プレス製で、両端にはフランジ24.2
4が折曲形成されている。このスリーブ23の外径には
一対の鋼板プレス製摺動リング25.26が摺動自在に
嵌挿されており、スリーブ23との間に一対のベルト張
力設定用バネ27.28が介在している。 摺動リング25.26は断面略コの字状に形成され、外
径29.30は所定の角度に傾斜して折曲形成されてい
る。プーリ31の内径32.33はこの外径29.30
の傾斜角度と同一角度に形成され、ベルトの張力によっ
て軸心が偏移する。ここで、ベルト張力設定用バネ27
.28は所定のベルト張力を保持するようなコイルバネ
が選定され、スリーブ23に外嵌されている。従って、
第1の実施例のようにキー12等の手段によって一対の
摺動リング25.26の円周方向の位置ずれを規制する
必要はない。又、摺動リング25.26は鋼板プレス製
のため、その外径29.30の傾斜角度にバラツキがあ
っても、それ自体の弾性によって角度誤差を吸収し、プ
ーリ31との良好な接触を維持し、滑りによるトルク伝
達効率の低下を防止することができる。 第5図はこの発明の第3の実施例を示す縦断面図である
。 テンシ3す軸受1の外輪4の外径に正大固定されたスリ
ーブ34は鋼板プレス製で、両端にフランジ35.36
が折曲形成されている。一方のフランジ35は後述する
ベルト張力設定用バネ37を係止するフランジで、他方
のフランジ36は、プーリ38を案内する案内壁を形成
している。 39は鋼板プレス製摺動リングで、外径40′は所定の
角度に傾斜して折曲形成され、円筒状内径41はスリー
ブ34の外径上を摺動することができる。プーリ38は
摺動リング39の傾斜外径面40とスリーブ34の案内
壁によって構成される略V字状環状溝の外郭をする断面
形状をなし、ベルトの張力の変化により軸心が偏移する
。ベルト張力設定用バネ37はスリーブ34とスリーブ
34に嵌挿された摺動リング39上に外嵌され、所定の
ベルト張力に対応するバネ力を有する適当なコイルバネ
が選定される。 以上、この発明の第1.2.3の実施例におけるプーリ
は、環状のリングで金属、ゴム。 合成樹脂等の材質で形成することができる。 又、金属製のときは、剛性が高過ぎるため、摺動リング
との接触面にゴム等を埋め込み、接触力を向上させると
良い。 プーリは前述した環状のリングに限らず、以下に述べる
種々の形式が考えられる。第6図〜第11図は、この発
明に適用されるプーリの実施例を示すものである。 第6図及び第7図において、プーリ42は円周−箇所側
れている有端環であり、その衝合面43.44は夫々段
付き形状をなし、軸方向のズレを防止する。夫々の衝合
面43゜44は、ベルトの張力変化に応じてガイド部4
5.46で摺接しながら離間する。47はプーリ42の
外径に形成された環状溝で、スプリング4日が装着され
ている。スプリング48はプーリの衝合面43.44の
口開きを防止するため、常にプーリ42が縮径するよう
に付勢されており、前述した摺動リングの外径に全面接
触する。 第8図において、プーリ49は一対の薄肉鋼板製ベルト
50に金属製ブロック51を多数個積層させて構成され
、摺動リング(図示せず)の摺動により縮径、拡径自在
になっている。又ブロック51間には緩衝材を介在させ
、プーリ49の径方向の寸法変化に追従できるようにし
ても良い。更に、ブロック51の中央に穴を開け、第6
図及び第7図の実施例と同様、スプリングを装着して、
常にプーリ49を最小寸法に縮径するように作用させて
も良い。 第9図及び第10図において、プーリ52はゴム、合成
樹脂等からなるセグメント53と、その中央に内挿され
、各セグメント53を連結する縮径用バネ54と、夫々
セグメント53間に介在された緩衝用バネ55とから構
成されている。 第11図において、プーリ56は断面台形状に巻回され
たコイルバネ57をリング状に形成したもので、それ自
体の弾性により、縮径拡径自在となっている。 第12図はこの発明の第一4の実施例を示す縦断面図、
第13図は同上側面図である。同一部品には同一符号を
付してその説明を省略する。58はテンショナ軸受1の
外輪4の外径に圧入嵌合されたスリーブで、外径には一
対の摺動リング59.60が軸方向に摺動可能に嵌挿さ
れている。この摺動リング59゜60は第1の実施例の
ものとは逆向きの傾斜外径面61.62を有し、その間
にはベルト張力設定用バネ63が付勢配置されている。 摺動リング59.60の傾斜外径面61,62に外嵌さ
れた一対のプーリ64.65は一体で加工されたリング
を例えば熱処理後、自然割りし、テンシロナを組み立て
た後、再びリベット66にて一体固定したものである。 このプーリ64.65にベルトを介して径方向の荷重が
生ずると、摺動リング59.60の傾斜外径面61.6
2の傾斜度によりその荷重の一部が摺動リング59.6
0を軸方向に摺動させ、ベルト張力設定用バネ63を圧
縮する。そしてこのベルト張力設定用バネ63のバネ力
と釣合う位置まで摺動リング59.60が接近し、第1
4図の作動図に示すように、プーリ64,65は元の軸
心から偏心し、プーリ64.65の外径と軸心との距離
が小さくなり、ベルトの張力増大分を補正する。 前述したプーリは減速機に用いられるようなプーリとは
異なり、雰囲気温度の変化に応じて極めて緩慢に変化す
るベルトの張力を調整するものであるから、その変化量
は微少であり、テンシッナに無理な荷重は生じない。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 14. FIG. 1 is a vertical cross-sectional view showing the first embodiment of the present invention, and the second
The figure is a side view of the same as above. The tensioner bearing 1 includes an annular inner member 2 and a double row of balls 3.
The inner member 2 is integrally fixed to the arm 5. The inner member 2 is integrally fixed to the arm 5. This arm 5 includes a hole 6 for attaching a bottle (not shown), which is the center of swing, and a spring locking hole 7 for locking a spring (not shown) for setting the initial belt tension. and a long hole 8 into which a bolt (not shown) for fixing the arm 5 is mounted. By selecting the biasing force of the spring for setting the initial belt tension, the initial belt tension, that is, the position of the tensioner, can be automatically set, and once the fixing bolt is tightened and the arm is fixed, This spring is no longer needed. 9 is a sleeve press-fitted to the outer diameter of the outer ring 4;
It is formed wider than the A pair of sliding rings 10 and 11 are fitted onto the outer diameter of the sleeve 9 so as to be slidable in the axial direction, and 12 is the sliding ring 1.
This is a key to prevent rotation of 0.11. The sliding ring 10.11 has an inclined outer diameter surface 13.14, and the pair forms a substantially V-shaped groove. Further, a plurality of axial through holes 15, 16 are formed in the sliding ring 10° 11 at equidistant positions on the circumference, and a belt tension setting spring 17 is installed inside. The belt tension setting spring 17 is locked by appropriate locking means formed at the openings of the through holes 15 and 16, and elastically connects the pair of sliding rings 10 and 11. 18 is an annular pulley fitted around a pair of sliding rings 10 and 11, and has an annular collar 1 at both ends for guiding the belt.
9.19 are integrally formed. 12 out of 18 pulleys
0.21 is formed in a symmetrical taper shape that spreads from the center to the end surface, and is formed so that when the pair of sliding rings 10.11 abut against each other, the entire surface of the sliding ring 10.11 contacts the inclined outer diameter surface thereof. Now, when the temperature around the engine increases and the distance between the belt pulleys increases due to thermal expansion, increasing the belt tension, a radial load is created on the sliding ring 10.11 via the pulley 18. Part of this load is on the inclined outer diameter surface 13.1
The degree of inclination of the belt tension setting spring 17 is distributed to a force that moves the sliding ring 10.11 apart in the axial direction, and stretches the belt tension setting spring 17 to a position where it balances the spring force of the belt tension setting spring 17. The state is shown in FIG. 3, where a pair of sliding rings 1
The outer diameter of the approximately ■-shaped annular groove formed by the inclined outer diameter surfaces 13 and 14 of 0.11 is reduced, and the inner diameter of the pulley 18 is 20.
.. 21, there will be some contact, and other parts will have gaps. That is, the axis O of the tensioner bearing 1 and the pulley 18
The belt is eccentric from the axis O by e to compensate for the increase in the distance between the belt pulleys due to thermal expansion. Therefore, the belt tension is always maintained constant. Reference numeral 22 denotes an annular locking piece protruding from the outer diameter of the sleeve 9 in order to restrict the position of the pair of tW drive rings 10.11. FIG. 4 is a longitudinal cross-sectional view showing a second embodiment of the present invention, in which the same parts and portions are given the same reference numerals and their explanations will be omitted. The sleeve 23 press-fitted onto the outer diameter of the outer ring 4 of the tensioner bearing l is made of pressed steel plate, and has flanges 24.2 at both ends.
4 is formed by bending. A pair of pressed steel sliding rings 25 and 26 are slidably fitted onto the outer diameter of the sleeve 23, and a pair of belt tension setting springs 27 and 28 are interposed between the sleeve 23 and the sleeve 23. There is. The sliding rings 25, 26 have a substantially U-shaped cross section, and the outer diameters 29, 30 are bent at a predetermined angle. The inner diameter of the pulley 31 is 32.33, which is the outer diameter of 29.30.
It is formed at the same angle as the inclination angle of the belt, and the axis is shifted by the tension of the belt. Here, the belt tension setting spring 27
.. A coil spring 28 is selected to maintain a predetermined belt tension, and is fitted onto the sleeve 23. Therefore,
It is not necessary to restrict displacement of the pair of sliding rings 25, 26 in the circumferential direction by means such as the key 12 as in the first embodiment. Furthermore, since the sliding rings 25 and 26 are made of pressed steel plates, even if there are variations in the inclination angle of their outer diameters 29 and 30, their own elasticity absorbs the angle error and ensures good contact with the pulley 31. The torque transmission efficiency can be prevented from decreasing due to slipping. FIG. 5 is a longitudinal sectional view showing a third embodiment of the invention. The sleeve 34 fixed to the outer diameter of the outer ring 4 of the three-tensile bearing 1 is made of pressed steel and has flanges 35 and 36 at both ends.
is formed by bending. One flange 35 is a flange that locks a belt tension setting spring 37, which will be described later, and the other flange 36 forms a guide wall that guides a pulley 38. Reference numeral 39 denotes a sliding ring made of pressed steel plate, the outer diameter 40' of which is bent at a predetermined angle, and the cylindrical inner diameter 41 capable of sliding on the outer diameter of the sleeve 34. The pulley 38 has a cross-sectional shape that outlines a substantially V-shaped annular groove formed by the inclined outer diameter surface 40 of the sliding ring 39 and the guide wall of the sleeve 34, and its axial center shifts due to changes in belt tension. . The belt tension setting spring 37 is fitted onto the sleeve 34 and a sliding ring 39 fitted into the sleeve 34, and an appropriate coil spring having a spring force corresponding to a predetermined belt tension is selected. As described above, the pulley in Embodiment 1.2.3 of this invention is an annular ring made of metal or rubber. It can be formed from a material such as synthetic resin. Also, when it is made of metal, the rigidity is too high, so it is better to embed rubber or the like in the contact surface with the sliding ring to improve the contact force. The pulley is not limited to the annular ring described above, and various types described below can be considered. 6 to 11 show examples of pulleys applied to the present invention. In FIGS. 6 and 7, the pulley 42 is a circumferentially offset ring whose abutting surfaces 43, 44 each have a stepped shape to prevent axial displacement. The respective abutting surfaces 43 and 44 are arranged in the guide portion 4 according to changes in belt tension.
5. Separate while making sliding contact at 46. Reference numeral 47 denotes an annular groove formed on the outer diameter of the pulley 42, into which a spring is attached. The spring 48 is always biased to reduce the diameter of the pulley 42 in order to prevent the abutment surfaces 43, 44 of the pulley from opening, and is in full contact with the outer diameter of the sliding ring mentioned above. In FIG. 8, the pulley 49 is constructed by stacking a large number of metal blocks 51 on a pair of belts 50 made of thin-walled steel plates, and can be freely contracted and expanded in diameter by sliding a sliding ring (not shown). There is. Further, a buffer material may be interposed between the blocks 51 so as to be able to follow dimensional changes in the pulley 49 in the radial direction. Furthermore, a hole is made in the center of the block 51, and a sixth hole is made in the center of the block 51.
Similar to the embodiments shown in Figures and Figure 7, a spring is installed,
The pulley 49 may be operated to always reduce its diameter to the minimum size. In FIGS. 9 and 10, the pulley 52 includes segments 53 made of rubber, synthetic resin, etc., a diameter reducing spring 54 inserted in the center of the segments and connecting each segment 53, and a diameter-reducing spring 54 interposed between the segments 53, respectively. and a buffer spring 55. In FIG. 11, the pulley 56 is a ring-shaped coil spring 57 wound with a trapezoidal cross section, and can be expanded or contracted due to its own elasticity. FIG. 12 is a vertical sectional view showing a fourth embodiment of the present invention;
FIG. 13 is a side view of the same as above. Identical parts are given the same reference numerals and their explanations will be omitted. A sleeve 58 is press-fitted onto the outer diameter of the outer ring 4 of the tensioner bearing 1, and a pair of sliding rings 59 and 60 are fitted onto the outer diameter so as to be slidable in the axial direction. This sliding ring 59.60 has sloped outer diameter surfaces 61, 62 opposite to those of the first embodiment, between which a spring 63 for setting the belt tension is biased. A pair of pulleys 64, 65 fitted onto the inclined outer diameter surfaces 61, 62 of the sliding ring 59, 60 are formed by natural splitting after heat treatment of the integrally processed ring, and after assembling the Tensilona, the rivet 66 is inserted again. It is fixed in one piece. When a radial load is applied to this pulley 64.65 via the belt, the inclined outer diameter surface 61.6 of the sliding ring 59.60
Due to the degree of inclination of 2, part of the load is transferred to the sliding ring 59.6
0 in the axial direction to compress the belt tension setting spring 63. Then, the sliding ring 59, 60 approaches the position where it balances the spring force of the belt tension setting spring 63, and the first
As shown in the operation diagram of FIG. 4, the pulleys 64 and 65 are eccentric from their original axes, and the distance between the outer diameter of the pulleys 64 and 65 and the axes becomes smaller, thereby compensating for the increase in belt tension. Unlike the pulleys used in reduction gears, the pulleys mentioned above are used to adjust belt tension, which changes extremely slowly in response to changes in ambient temperature, so the amount of change is minute and the tensioner is not forced to do so. No significant load will occur.

【効果】【effect】

以上のような構成にしたので、この発明は簡単な構成で
、取付スペースをとらず、ベルトの張力調整に手間がか
からない。更に、適正な張力を常にベルトに付与できる
と共に、エンジン等の熱膨張に伴う緩慢な変化だけでな
く、振動等も吸収することができる。
With the above-described configuration, the present invention has a simple configuration, does not take up much installation space, and does not require time and effort to adjust the tension of the belt. Furthermore, it is possible to always apply appropriate tension to the belt, and it is also possible to absorb not only slow changes due to thermal expansion of an engine, etc., but also vibrations and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るベルトのオートテンショナの第
1の実施例を示す縦断面図、第2図は同上側面図、第3
図は同上作動を示す縦断面図、第4図及び第5図はこの
発明に係るベルトのオートテンショナの第2及び第3の
実施例を示す縦断面図、第6図はこの発明に通用される
プーリの第1の実施例を示す平面図、第7図は同上横断
面図、第8図はプーリの第2の実施例を示す斜視図、第
9図はプーリの第3の実施例を示す縦断面図、第10図
は同上横断面図、第11図はプーリの第4の実施例を示
す部分斜視図、第12図はこの発明の第4の実施例を示
す縦断面図、第13図は同上側面図、第14図は同上作
動を示す縦断面図、第15図はこの発明の従来例を示す
正面図である。
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of a belt auto-tensioner according to the present invention, FIG. 2 is a side view of the same, and FIG.
4 and 5 are longitudinal sectional views showing second and third embodiments of the belt auto-tensioner according to the present invention, and FIG. 6 is a longitudinal sectional view showing the operation of the same as above. 7 is a cross-sectional view of the same as above, FIG. 8 is a perspective view of the second embodiment of the pulley, and FIG. 9 is a plan view of the third embodiment of the pulley. 10 is a cross-sectional view of the same as above, FIG. 11 is a partial perspective view showing a fourth embodiment of the pulley, and FIG. 12 is a longitudinal sectional view showing a fourth embodiment of the present invention. FIG. 13 is a side view of the same, FIG. 14 is a longitudinal sectional view showing the operation of the same, and FIG. 15 is a front view of a conventional example of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  テンショナ軸受と、該テンショナ軸受の外径に嵌合さ
れたスリーブと、該スリーブの外径に軸方向に摺動可能
に嵌挿され、傾斜した外径面を有する摺動リングと、該
摺動リングの傾斜外径面に嵌合されるプーリとからなり
、上記摺動リングに所定の付勢力にて張力設定用バネを
掛け渡し、ベルトが係止する上記プーリの外径と、上記
テンショナ軸受の軸心との距離を可変となしてベルトの
張力を自動的に調整したことを特徴とするベルトのオー
トテンショナ。
A tensioner bearing, a sleeve fitted to the outer diameter of the tensioner bearing, a sliding ring fitted to the outer diameter of the sleeve so as to be slidable in the axial direction and having an inclined outer diameter surface, and the sliding ring. a pulley fitted to the inclined outer diameter surface of the ring, a tension setting spring is stretched around the sliding ring with a predetermined biasing force, and the outer diameter of the pulley to which the belt is engaged, and the tensioner bearing. An automatic belt tensioner characterized in that the tension of the belt is automatically adjusted by making the distance from the axis of the belt variable.
JP15092588A 1988-06-17 1988-06-17 Automatic tensioner for belt Pending JPH01320367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15092588A JPH01320367A (en) 1988-06-17 1988-06-17 Automatic tensioner for belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15092588A JPH01320367A (en) 1988-06-17 1988-06-17 Automatic tensioner for belt

Publications (1)

Publication Number Publication Date
JPH01320367A true JPH01320367A (en) 1989-12-26

Family

ID=15507406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15092588A Pending JPH01320367A (en) 1988-06-17 1988-06-17 Automatic tensioner for belt

Country Status (1)

Country Link
JP (1) JPH01320367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857977B1 (en) * 1999-08-17 2005-02-22 INA Wälzlager Schaeffler oHG Tensioner for a traction drive
DE102006035756A1 (en) * 2006-08-01 2008-02-28 Schaeffler Kg Deflection roller device for use as tensioning roller for belt drive of internal-combustion engine i.e. motor vehicle engine, has connection arrangement with insertion pin unit and retaining opening section formed in supporting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857977B1 (en) * 1999-08-17 2005-02-22 INA Wälzlager Schaeffler oHG Tensioner for a traction drive
DE102006035756A1 (en) * 2006-08-01 2008-02-28 Schaeffler Kg Deflection roller device for use as tensioning roller for belt drive of internal-combustion engine i.e. motor vehicle engine, has connection arrangement with insertion pin unit and retaining opening section formed in supporting structure

Similar Documents

Publication Publication Date Title
JP3792160B2 (en) Tensioner
CA1287505C (en) Belt tensioner with spring actuated band brake damping
US4834694A (en) Belt tensioning apparatus
US7153227B2 (en) Isolator for alternator pulley
US4808148A (en) Temperature compensated self-tensioning idler pulley
KR100208042B1 (en) Damping device
KR970008227B1 (en) Autotensioner
EP0884504B1 (en) Variable diameter pulley
KR950002995B1 (en) Tensioner with increased arcuate movement
KR20140045600A (en) Tensioner for an endless drive
JPS61140661A (en) Belt stretcher
JPH01255750A (en) Auto-tensioner
US20100069185A1 (en) Tensioner
JPH0681915A (en) Tensioner
KR20220007721A (en) decoupler
JPH01320367A (en) Automatic tensioner for belt
EP1056956B1 (en) Compliant coupling
KR20030011214A (en) Autotensioner
JP2001165253A (en) Auto-tensioner
KR100352262B1 (en) Mechanic type auto tensioner
JP3424737B2 (en) Auto tensioner
JPH0640910Y2 (en) Engine auto-tensioner device
JP3979459B2 (en) Auto tensioner
JPH10231906A (en) Idler pulley unit
JPH0318064B2 (en)