JPH01320280A - Foamed concrete structural body and production thereof - Google Patents
Foamed concrete structural body and production thereofInfo
- Publication number
- JPH01320280A JPH01320280A JP15363588A JP15363588A JPH01320280A JP H01320280 A JPH01320280 A JP H01320280A JP 15363588 A JP15363588 A JP 15363588A JP 15363588 A JP15363588 A JP 15363588A JP H01320280 A JPH01320280 A JP H01320280A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- air
- concrete
- foaming agent
- foamed concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011381 foam concrete Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000004568 cement Substances 0.000 claims abstract description 46
- 239000004088 foaming agent Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000004898 kneading Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 8
- 238000005187 foaming Methods 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000004567 concrete Substances 0.000 abstract description 33
- 239000000463 material Substances 0.000 abstract description 15
- 230000035699 permeability Effects 0.000 abstract description 9
- 239000006260 foam Substances 0.000 abstract description 7
- 238000010009 beating Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 32
- 238000009415 formwork Methods 0.000 description 14
- 238000009413 insulation Methods 0.000 description 14
- 210000003000 inclusion body Anatomy 0.000 description 12
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000004604 Blowing Agent Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000002313 adhesive film Substances 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、主に建築用の外壁、間仕切り、天井、床等
のパネル等に使用するのに適した発泡コンクリート構造
体およびその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a foamed concrete structure suitable for use mainly in panels for architectural exterior walls, partitions, ceilings, floors, etc., and a method for producing the same. .
従来、建築用の外壁や間仕切り、天井、床等の内壁材と
して発泡コンクリニドから成型されるパネルが用いられ
ている。Conventionally, panels molded from foamed concrete have been used as interior wall materials for architectural exterior walls, partitions, ceilings, floors, and the like.
これは発泡コンクリート自体、PC鉄筋入りのPCコン
クリートパネルに比べて軽量であること、軽量であるた
め施工性に優れていること、また断熱性および保温性が
あり、特に寒冷地の使用に適していること、遮音性にも
優れていること等があげられる。This is because the foamed concrete itself is lighter than PC concrete panels containing PC reinforcing bars, and because of its light weight, it has excellent workability. It also has insulation and heat retention properties, making it especially suitable for use in cold regions. It has excellent sound insulation properties.
またPC鉄筋の代わりに、ガラスファイバー、カーボン
ファイバー等の無機的な繊維、または有機的な繊維を骨
材として用いて軽量化を意図した強化繊維入りのコンク
リート板が普及している。Moreover, instead of PC reinforcing bars, concrete plates containing reinforcing fibers are becoming popular, using inorganic fibers such as glass fibers and carbon fibers, or organic fibers as aggregates to reduce weight.
従来の発泡コンクリート構造体は、セメント、砂、水等
を混練し、その後バイブレーション等を用いて型枠に振
動を付加しながら型枠内に流し込み、それから型枠内に
発泡剤を混入し、型枠内において発泡剤から発生するガ
スによりコンクリートを発泡させるとともに圧絞により
残溜エアーを強制除去させることにより、連続気泡を有
する発泡コンクリート構造体を製造していた。Conventional foamed concrete structures are made by mixing cement, sand, water, etc., then pouring it into the formwork while applying vibration to the formwork, and then mixing a foaming agent into the formwork. Foamed concrete structures with open cells were manufactured by foaming concrete with gas generated from a foaming agent within a frame and forcibly removing residual air by squeezing.
このため、発泡コンクリート構造体の重量が増加する傾
向を生し、バイブレーションの振動による加圧力で、コ
ンクリートの養生後に泡が潰れたり、または不完全な形
状となって完全な独立気泡を形成することができないと
ともに、コンクリート内部における発泡状態が不均一で
、片寄りを生し、保温性、断熱性に劣り、音の伝達率が
高く、遮音性に欠ける不都合があった。For this reason, the weight of the foamed concrete structure tends to increase, and the pressure caused by the vibrations may cause the foam to collapse or become incompletely shaped to form completely closed cells after the concrete has cured. In addition, the state of foaming inside the concrete is uneven, causing unevenness, poor heat retention and insulation properties, high sound transmission rate, and lack of sound insulation.
これを補うために従来では気泡の形成状態を完全になす
ために安定剤を加えていた。In order to compensate for this, conventionally a stabilizer was added to ensure that the bubbles were completely formed.
また従来の発泡コンクリートは、連続気泡が多いことか
らコンクリート内への透水性が活発になり、透水により
ひび割れやカケが促進化されるとともに強度が低下する
等の不都合があった。In addition, conventional foamed concrete has many open cells, which increases water permeability into the concrete, which leads to problems such as accelerated cracking and chipping and a decrease in strength.
しかも上記従来の発泡コンクリート構造体の製法は、大
形状のものを製造するのを対象としたものであった。Moreover, the above-mentioned conventional methods for manufacturing foamed concrete structures were aimed at manufacturing large-sized structures.
例えば外壁パネルよりも厚みが薄い発泡コンクリ−1反
を製造するのには、型枠内で大形状の発泡コンクリート
構造物を形成し、さらにダイヤモンドカッタや鋸切等を
用いてこの大形状の発泡コンクリート構造物を所要寸法
の縦横の長さおよび厚さに切断しなければならないので
工程数が多くなって製造時間が多くかかり、コスト高に
なるとともにパイブレーク等を必要とするから設備も大
損りで設備費も高価になっていた。しがち製品を製造す
る場合の歩留まりが悪かった。For example, in order to manufacture a piece of foamed concrete that is thinner than an exterior wall panel, a large foamed concrete structure is formed in a formwork, and then a diamond cutter, saw cutter, etc. are used to cut this large foamed concrete structure. Concrete structures must be cut to the required length, width, and thickness, which increases the number of steps and production time, increases costs, and requires pie-breaking, etc., which causes major damage to equipment. Equipment costs were also high. Yields were poor when manufacturing products that tended to suffer.
また引張強度と曲げ強度をもたせたpc鉄筋入りのPC
コンクリート仮においては、PC筋がコンクリートによ
って充分に埋まるように所定厚みに成型されなければな
らないから、一定態下の厚さに成型できないという構造
的な制約があった。Also, PC with PC reinforcing bars has tensile strength and bending strength.
In the case of temporary concrete, the concrete must be molded to a predetermined thickness so that it is sufficiently buried in the concrete, so there is a structural constraint that it cannot be molded to a constant thickness.
このため必然的に重量が大きくなっていた。This inevitably resulted in an increase in weight.
そこで、この発明は、コンクリート内部に完全に独立気
泡を均一に成型でき、保温性、断熱性、遮音性に優れ、
透水率が低く、ひび割れやカケが生ずることなく強度が
高く長命性であるとともに厚さが薄いパネルを成型する
ことが容易で、工程が簡素化されてコストが安価で歩留
まりが高い発泡コンクリート構造体およびその製造方法
を提供することを目的とする。Therefore, this invention makes it possible to uniformly form closed cells inside concrete, which has excellent heat retention, heat insulation, and sound insulation properties.
Foam concrete structures with low water permeability, high strength and long life without cracking or chipping, and easy to form into thin panels, simplifying the process, lowering costs, and increasing yields. The purpose is to provide a method for producing the same.
上記目的を達成するために請求項第1項記載の発明は、
セメントにガラス質の空気封入体を骨材および独立気泡
成型物質として混入し、該空気封入体および気泡剤によ
る個別の独立気泡を有するように成型するという手段を
採用した。In order to achieve the above object, the invention set forth in claim 1 includes:
A method was adopted in which a vitreous air inclusion was mixed into cement as an aggregate and a closed cell molding substance, and the cement was molded to have individual closed cells formed by the air inclusion and a foaming agent.
また請求項第2項記載の発明は、セメント、水の混練物
に発泡剤およびガラス質の空気封入体を骨材として混入
し、混練しながら遠心力により独立気泡を発泡させる工
程と、該混練物を型枠内に流し入れて養生、固化する工
程とから成るという手段を採用した。The invention according to claim 2 also provides a step of mixing a foaming agent and a vitreous air-enclosed body as an aggregate into a kneaded mixture of cement and water, and foaming closed cells by centrifugal force while kneading the mixture; We adopted a method that consists of a process of pouring the material into a mold, curing it, and solidifying it.
請求項第1項記載の発明は、セメントにガラス質の空気
封入体を骨材として水とともに混練し、型枠内に流入す
るだけでパイブレークによる振動を加えたり、圧絞され
ることなく成型されるので、ガラス質の空気封入体およ
び発泡剤によってコンクリート内部に完全な形状の独立
気泡を均一に形成できる。之により保温性、断熱性、遮
音性が優れ、軽量なものになり、之等を容易且つ自在に
調整できる。The invention as set forth in claim 1 is characterized in that cement is kneaded with vitreous air-enclosed bodies as aggregates together with water, and the cement is molded without being subjected to pie-break vibration or squeezing by simply flowing into the formwork. As a result, perfectly shaped closed cells can be uniformly formed inside the concrete by the vitreous air encapsulant and the foaming agent. As a result, it has excellent heat retention, heat insulation, and sound insulation properties, is lightweight, and can be easily and freely adjusted.
また独立気泡の一部は、空気封入体がガラス質で成型さ
れているから、独立気泡を有する従来の発泡コンクリー
トに比べてコンクリート内部への透水率は低くなる。し
かも透水によるひび割れやカケがなくなり、高い強度を
維持できる。In addition, since the air enclosing body of some of the closed cells is formed of glass, the water permeability into the concrete is lower than that of conventional foamed concrete having closed cells. Moreover, there are no cracks or chips caused by water permeation, and high strength can be maintained.
また請求項第2項記載の発明によると、セメントおよび
発泡剤に、ガラス質の空気封入体を骨材として水ととも
に混練し、型枠内に流し入れるという簡素化された工程
により、厚みが薄く、泡が潰れたりすることなく完全で
均一な独立気泡を有する発泡コンクリート構造体を簡単
な設備を用いて製造できる。According to the second aspect of the invention, the thickness is reduced by a simplified process of mixing cement and a foaming agent with water as aggregates and vitreous air inclusions, and pouring the mixture into a mold. A foamed concrete structure having complete and uniform closed cells can be manufactured using simple equipment without the foams collapsing.
以下、図面に従い、請求項第1項記載の発明および請求
項第2項記載の発明の一実施例を説明する。Hereinafter, one embodiment of the invention as claimed in claim 1 and the invention as claimed in claim 2 will be described with reference to the drawings.
1は打設室、2Aはミキサーで、セメント3、水をペー
スト状に混練するためのものである。2Bはミキサー2
Aの後段に位置するミキサーで、発泡剤とともに骨材お
よび独立気泡成型物質としてのガラス質の空気封入体4
を投入してセメント3と比重の異なる前記空気封入体3
を均一に混入するように高速に対向して回転する撹拌羽
根5゜5によりペースト状のセメントと混練し、発泡を
促進し、独立気泡を形成するためのものである。1 is a casting chamber, and 2A is a mixer for kneading cement 3 and water into a paste. 2B is mixer 2
In the mixer located after A, the vitreous air inclusions 4 as aggregates and closed cell molding material together with the blowing agent are added.
and the air inclusion body 3 having a different specific gravity from the cement 3.
The purpose is to knead the paste with the cement using stirring blades 5°5 that rotate opposite each other at high speed so as to uniformly mix the powder, promote foaming, and form closed cells.
6はセメント3の貯蔵タンク、7は前記発泡剤を収容す
るためのタンク、8は空気封入体4を収容するためのタ
ンク、9は貯水タンクである。6 is a storage tank for the cement 3, 7 is a tank for accommodating the foaming agent, 8 is a tank for accommodating the air inclusion body 4, and 9 is a water storage tank.
前記発泡剤としては、例えばアルミニウム粉末が使用さ
れる。As the foaming agent, for example, aluminum powder is used.
また前記空気封入体4としては、原料を容易に調達する
ことと費用の観点から、ガラス成分を多く含んだ鉱石、
例えば黒耀石、松脂岩、玄武岩、流紋岩、真珠岩等を微
細に砕石し、その砕石粉を外熱キルンで加熱することに
より得られ、ガラス質の球状体内に空気が封入されたも
のが使用される。この場合、空気封入体4のガラス成分
内にジルコニウム(Zr)やその混合物を混入すれば、
セメントからの耐アルカリや耐酸性が向上される。In addition, from the viewpoint of easy procurement of raw materials and cost, the air enclosing body 4 may be made of ore containing a large amount of glass component.
For example, it is obtained by finely crushing stone, rosinite, basalt, rhyolite, nacre, etc., and heating the crushed stone powder in an external heating kiln, with air sealed inside a glassy spherical body. is used. In this case, if zirconium (Zr) or a mixture thereof is mixed into the glass component of the air enclosure 4,
The alkali and acid resistance from cement is improved.
そしてその大きさは必要に応じて直径がl mm〜6龍
程度のもののうちから、製造すべき発泡コンクリート構
造体の用途に合わせて選択使用される。The size of the foamed concrete structure is selected from those with a diameter of 1 mm to 6 mm depending on the purpose of the foamed concrete structure to be manufactured.
10は圧送用の圧室ポンプP等を備えた打設機であり、
バイブ10aの先端には打設すべき、セメント3を平均
して噴出させるのと、発泡剤により生ずる気泡を押し潰
さないようにするために、内部を螺旋構造(図示せず)
に形成したノズル10a1が取付けられている。11は
型枠で、この型枠11は成型すべき発泡コンクリート構
造体によって用意する大きさおよび寸法が大小異なるが
、例えば外壁材よりも厚みが薄い内壁材としての間仕切
パネルを成型する場合に、内容積の縮寸が約180CI
!1、横寸が約180cmで、約l cm幅でセパレー
タ12により内部を仕切ったものが使用される。10 is a pouring machine equipped with a pressure chamber pump P for pressure feeding, etc.;
The tip of the vibrator 10a has a spiral structure (not shown) inside to spray out the cement 3 evenly and to prevent the bubbles generated by the foaming agent from being crushed.
A nozzle 10a1 formed in is attached. Reference numeral 11 denotes a formwork, and the size and dimensions of the formwork 11 vary depending on the foamed concrete structure to be formed, but for example, when forming a partition panel as an inner wall material that is thinner than the outer wall material, The reduced internal volume is approximately 180CI
! 1. A device with a horizontal dimension of about 180 cm and an interior partitioned by a separator 12 with a width of about 1 cm is used.
この型枠11は、コンクリートの養生、およびその後の
剥型のために、必要に応じてコンベア等の搬送手段や搬
送車等を用いて打設場所から移送させて、製造ラインを
組合わせることにより、効率的に製品を製造するように
しても良い。This formwork 11 is transported from the pouring site using a conveyor or other transport means or a transport vehicle as necessary for concrete curing and subsequent demolding, and is assembled on a production line. , the product may be manufactured efficiently.
以下、請求項第1項記載の発明の作用を請求項第2項記
載の発明の一実施例とともに製造工程毎に説明する。Hereinafter, the operation of the invention set forth in claim 1 will be explained for each manufacturing process together with an embodiment of the invention set forth in claim 2.
先ず第1工程としてセメント3に水を加えてミキサー2
Aにて混練し、ペースト状にする。この場合、必要に応
じてエポキシ樹脂を混入しても良い。First, as the first step, add water to cement 3 and mixer 2.
Knead in A to make a paste. In this case, an epoxy resin may be mixed if necessary.
その後第2工程としてミキサー2B内に発泡剤とともに
ガラス質の空気封入体4を骨材として混入し、撹拌羽根
5.5の対向する高速回転によりペースト状のセメント
3と空気封入体4とをムラなく均一に混練すると、発泡
剤から発生するガスは遠心力によりセメント3内に形く
ずれが生じたり、押し潰れること゛がなく完全な独立気
泡13を均一に形成させるとともに空気封入体4によっ
て独立気泡4aを形成させる。After that, in the second step, the vitreous air inclusions 4 are mixed together with a foaming agent as aggregate into the mixer 2B, and the paste-like cement 3 and the air inclusions 4 are evenly mixed by opposing high-speed rotation of the stirring blades 5.5. When kneaded uniformly, the gas generated from the blowing agent will not cause the cement 3 to lose its shape or be crushed due to centrifugal force, and will uniformly form complete closed cells 13, while the air inclusions 4 will form closed cells. 4a is formed.
セメント3と、発泡剤と、骨材としての空気封入体4の
組成比率は、発泡コンクリート構造体14の用途によっ
ても異なるが、この実施例においては、1:3〜4:1
〜6重量パーセント程度の割合で混合したものが使用さ
れる。The composition ratio of the cement 3, the foaming agent, and the air encapsulant 4 as an aggregate varies depending on the use of the foamed concrete structure 14, but in this example, it is 1:3 to 4:1.
A mixture of about 6% by weight is used.
また骨材としての空気封入体4は直通約1 mm程度の
ものが使用される。そして混練時間はおよそ3〜lO分
程度であり、ペースト状のセメント混練物内に独立気泡
13を充分、発泡させ、セメント混練物を固まることな
く、充分に膨張させる。The air enclosing body 4 used as aggregate has a diameter of approximately 1 mm. The kneading time is about 3 to 10 minutes, and the closed cells 13 are sufficiently foamed in the paste-like cement mixture, and the cement mixture is sufficiently expanded without hardening.
第3工程として上記混練物を打設機10により型枠11
内に流し入れ、その後、養生、固化させる。As a third step, the above-mentioned kneaded material is applied to the formwork 11 by the pouring machine 10.
Pour it inside, then let it cure and solidify.
この実施例においては、コンクリートの養生に要する時
間はおよそ4〜24時間程度であるが、この際前記工程
においてペースト状のセメント3と、発泡剤と、空気封
入体4とを第1図に示すミキサー2Aの、対向して高速
回転する撹拌羽根5゜5により遠心力をかけながら充分
に混練することによって蟹泡剤から充分に発泡されてセ
メント自体が充分に膨張されるので、コンクリート構造
体14内には発泡剤から発生されるガスにより完全な形
状の独立気泡13が片寄りなく均一に形成されるととも
に空気封入体4自体が均一にコンクリート内部に混合さ
れることによっても完全な球形状の独立気泡4aが形成
される。In this embodiment, the time required for curing the concrete is about 4 to 24 hours, and at this time, in the above step, paste cement 3, a foaming agent, and an air enclosing body 4 are added as shown in FIG. The concrete structure 14 is thoroughly kneaded while applying centrifugal force by the opposing stirring blades 5°5 of the mixer 2A that rotate at high speed, so that the crab foam agent is sufficiently foamed and the cement itself is sufficiently expanded. Inside the concrete, perfectly shaped closed cells 13 are uniformly formed by the gas generated from the foaming agent, and the air enclosing body 4 itself is evenly mixed into the concrete, resulting in a perfectly spherical shape. Closed cells 4a are formed.
しかも型枠11への打設時に、パイブレーク等の振動を
加えないから、発泡剤から発生される気泡は押潰される
ことなく、また不完全な形状の独立気泡が形成されるこ
とがない。また骨材としての空気封入体4は均一に型枠
11内のコンクリート構造体14内に混入され、セメン
トスラリーと強固に凝結する。この際、上記第1工程に
おいて必要に応じてエポキシ樹脂をセメント3に混入し
て混練すれば、空気封入体4の外周にエポキシ樹脂によ
る接着被膜層が形成されるので、骨材としての空気封入
体4とセメント3とが強固に結合するとともに、空気封
入体4相互が点接触により接着されることによって比重
が大きくなって抵抗が増大するから、養生、固化中に空
気封入体4がセメント3内を下方へ沈むことがなくなり
、平均的にセメント3内に空気封入体4と発泡剤とによ
る独立気泡4a、13を形成することができる。しかも
成形後においてエポキシ樹脂による接着被膜層は硬化し
て強固に空気封入体4を保護するとともに発泡コンクリ
ート構造体14自体の強度を堅牢にできる。Moreover, since vibrations such as pie-breaking are not applied during pouring into the formwork 11, the bubbles generated from the foaming agent are not crushed and incompletely shaped closed cells are not formed. Further, the air inclusion body 4 as an aggregate is uniformly mixed into the concrete structure 14 in the formwork 11 and solidified with the cement slurry. At this time, if epoxy resin is mixed into the cement 3 and kneaded as necessary in the first step, an adhesive film layer of the epoxy resin is formed on the outer periphery of the air enclosing body 4, so that the air enclosing material can be used as an aggregate. The body 4 and the cement 3 are strongly bonded together, and the air inclusion bodies 4 are bonded to each other through point contact, which increases the specific gravity and increases the resistance. The inside of the cement 3 does not sink downward, and closed cells 4a and 13 can be formed on average in the cement 3 by the air inclusion body 4 and the foaming agent. Furthermore, after molding, the adhesive film layer made of epoxy resin hardens to firmly protect the air enclosing body 4 and to increase the strength of the foamed concrete structure 14 itself.
その後、コンクリートが養生、固化した後に型枠11か
ら剥型作業を行う。Thereafter, after the concrete has cured and solidified, stripping work is performed from the formwork 11.
剥型作業は、型枠11への打設事前に既にセメント3が
充分に膨張されているから、型枠11内での養生におけ
る膨張、収縮が少なく、容易に剥型された。In the stripping operation, since the cement 3 had already been sufficiently expanded before being poured into the mold 11, there was little expansion or contraction during curing within the mold 11, and the mold was easily stripped.
このようにして縦寸法約tsocm、横寸法180ca
+、厚さ1cffIはどの完全な独立気泡4a、13を
有する発泡コンクリート製の間仕切パネルが製造される
。In this way, the vertical dimension is about tsocm, the horizontal dimension is 180ca
A partition panel made of foamed concrete with completely closed cells 4a, 13 having a thickness of 1 cffI is produced.
そして、間仕切パネル等、板材の厚さは31m〜lQm
m厚の極、薄いパネルを形成することも可能である。The thickness of board materials such as partition panels is 31m to 1Qm.
It is also possible to form extremely thin panels with a thickness of m.
このようにして製造されるコンクリート構造体14は、
第2図に示すように発泡剤にて発生されるガスにより発
泡された独立気泡13と、骨材としてのガラス質の空気
封入体4とから形成される独立気泡4aとがセメント3
内部に押潰されることなく完全な形状でしかも片寄りを
生ずることなく均一に形成されている。従って熱伝導率
が小さく、保温性および断熱性に優れ、軽量に成型され
る。The concrete structure 14 manufactured in this way is
As shown in FIG. 2, closed cells 13 formed by the gas generated by the blowing agent and closed cells 4a formed from the glassy air-enclosed body 4 as an aggregate form the cement 3.
It has a perfect shape without being crushed inside and is uniformly formed without any deviation. Therefore, it has low thermal conductivity, excellent heat retention and insulation properties, and can be molded lightweight.
またこの実施例のコンクリート構造体14は、発泡剤か
ら独立気泡13が形成され、しかもガラス質の空気封入
体4内に封入された空気層からも完全な独立気泡4aが
形成されているから、極めて透水性が少なく、コンクリ
ート内部に透水しない。従って雨等の水分がコンクリー
ト内部に透水することにより起因する化学変化により、
ひび割れやカケを防止できる。また空気封入体4自体、
ガラス質で形成されているので、透水による化学変化に
より、変質されたり、破tMされることばない。Furthermore, in the concrete structure 14 of this embodiment, the closed cells 13 are formed from the foaming agent, and complete closed cells 4a are also formed from the air layer enclosed in the glassy air enclosure 4. It has extremely low water permeability and does not penetrate into the concrete. Therefore, due to chemical changes caused by moisture such as rain permeating into the concrete,
It can prevent cracks and chips. In addition, the air inclusion body 4 itself,
Since it is made of glass, it will not be altered or destroyed by chemical changes caused by water permeation.
そのうえ、骨材としての空気封入体4の周囲にはセメン
トスラリーが形成されるので、セメント3と空気封入体
4とは強固に結合し、発泡コンクリート14の強度が高
くなり、乾燥、収縮にも耐え、耐衝撃特性は強いものと
なる。Moreover, since cement slurry is formed around the air inclusions 4 as aggregates, the cement 3 and the air inclusions 4 are strongly bonded, and the strength of the foamed concrete 14 is increased, making it resistant to drying and shrinkage. Durability and impact resistance properties are strong.
この際、本願特定発明は、セメント3内に混入される多
数の空気封入体4を基準に考えれば、この空気封入体4
の間に発泡剤に起因して形成される独立気泡13が形成
されるので、気泡剤の種類、投入量、混練時間、攪拌羽
根5,5による撹拌速度および攪拌時間等を一定にした
場合に、一定性径の空気封入体4のセメント3内への混
合量を加減するだけで、例えば第2図の状態から第3図
に示すように、セメント3内に形成される空気封入体4
相互間に形成される単位体積当りの独立気泡13の形成
量を加減できる。従って熱伝導率、保温性、断熱性、重
量、強度、透水性等の物理的特性を空気封入体4の混入
操作により容易且つ任意に調整できる。しかもこの際、
必要に応じてエポキシ樹脂をセメント3に混入して混練
すれば、空気封入体4の外周にエポキシ樹脂による接着
被膜層が形成されるので、骨材としての空気封入体4と
セメント3とが強固に結合するとともに、空気封入体4
相互が点接触により接着されることによって外容積が大
きくなって抵抗が増大するから、養生、同化中に空気封
入体4がセメント3内を下方へ沈むことがなくなり、平
均的にセメント3内に空気封入体4と発泡剤とによる独
立気泡4a。At this time, the specified invention of the present application is based on the large number of air inclusion bodies 4 mixed in the cement 3.
During this time, closed cells 13 are formed due to the blowing agent, so when the type of blowing agent, the amount added, the kneading time, the stirring speed by the stirring blades 5, the stirring time, etc. are kept constant, By simply adjusting the amount of air inclusions 4 of a constant diameter mixed into the cement 3, the air inclusions 4 formed in the cement 3 can be changed from the state shown in FIG. 2 to the state shown in FIG. 3, for example.
The amount of closed cells 13 formed between them per unit volume can be adjusted. Therefore, physical properties such as thermal conductivity, heat retention, heat insulation, weight, strength, and water permeability can be easily and arbitrarily adjusted by mixing the air enclosing body 4. Moreover, at this time,
If epoxy resin is mixed into the cement 3 and kneaded as necessary, an adhesive film layer of epoxy resin is formed around the outer periphery of the air enclosing body 4, so that the air enclosing body 4 as an aggregate and the cement 3 are firmly bonded. and the air inclusion body 4
Since they are bonded together through point contact, the external volume becomes larger and the resistance increases, so the air inclusion body 4 does not sink downward in the cement 3 during curing and assimilation, and the Closed cells 4a formed by air inclusion body 4 and foaming agent.
13を形成することができる。しかも成形後においてエ
ポキシ樹脂による接着被膜層は硬化して強固に空気封入
体4を保護するとともに発泡コンクリート構造体14自
体の強度を堅牢にできる。13 can be formed. Furthermore, after molding, the adhesive film layer made of epoxy resin hardens to firmly protect the air enclosing body 4 and to increase the strength of the foamed concrete structure 14 itself.
また第4図に示すように、空気封入体4の投入粒径を第
2図および第3図に示す如く一様の粒径のものを使用す
るのではなく、大小異った粒径のものを使用すれば、骨
材および独立気泡成型物質としての空気封入体4相互の
配置状態が変わってセメント3の占有空間も変化するの
で、この占有空間に発泡剤によって形成される単位体積
当りの独立気泡13の形成量を調整することもできる。Furthermore, as shown in FIG. 4, instead of using particles of a uniform particle size as shown in FIGS. 2 and 3, particles of different sizes are used for the air inclusion body 4. If this is used, the mutual arrangement of the air inclusions 4 as aggregate and closed-cell molded material will change, and the space occupied by the cement 3 will also change. The amount of bubbles 13 formed can also be adjusted.
之により同様に熱伝導率、保温性、断熱性、重量、強度
、透水性等の物理的特性を調整できる。In this way, physical properties such as thermal conductivity, heat retention, insulation, weight, strength, water permeability, etc. can be adjusted as well.
この実施例の発泡コンクリート構造体と発泡剤としてア
ルミナを用いた従来の発泡コンクリート構造体(単にA
LCと云う)との物理的特性を実験結果から表■にまと
めた。The foamed concrete structure of this example and the conventional foamed concrete structure using alumina as a foaming agent (simply referred to as A
Table 3 summarizes the physical properties of the LC (referred to as LC) based on experimental results.
表 I
なお上記説明では、間仕切パネルを製造する場合を実施
例として説明したが、之に限るものではな(、天井材、
床材等の内壁材や外壁材等のその他の建築材の製造も可
能であり、また曲面加工も容易である。Table I In the above explanation, the case of manufacturing a partition panel was explained as an example, but it is not limited to this (such as ceiling materials, ceiling materials, etc.).
It is also possible to manufacture other building materials such as flooring and other internal and external wall materials, and it is also easy to process curved surfaces.
またガラス質の空気封入体4につき、上記実施例では黒
耀石を加熱して発泡させたものを好適な実施例として使
用したが、松脂岩、玄武岩、流紋岩、真珠岩等の鉱石の
ほか、珪石、バーミニキュライト等、その組成成分中に
ガラス成分を含み、空気を封入する発泡性のあるもので
あれば良い。In addition, as for the glassy air-enclosed body 4, in the above embodiment, a material obtained by heating and foaming the helium was used as a preferred embodiment, but it is possible to use a material made of ores such as rosinite, basalt, rhyolite, pearlite, etc. In addition, any material may be used as long as it contains a glass component in its composition and has foaming properties that enclose air, such as silica stone and verminiculite.
本願各発明は上記の如くであるから以下の効果を有する
。Since each invention of the present application is as described above, it has the following effects.
請求項第1項記載の発明によると、ガラス質の空気封入
体および発泡剤によってコンクリート内部に完全な形状
の独立気泡を均一に形成できるので、保温性、断熱性、
遮音性は優れたものになる。According to the invention set forth in claim 1, perfect-shaped closed cells can be uniformly formed inside the concrete by the vitreous air enclosing body and the foaming agent, so that heat retention, heat insulation,
Sound insulation will be excellent.
また独立気泡の一部は、空気封入体がガラス質で成型さ
れているから、従来のコンクリート構造体に比べてコン
クリート内部への透水率は極めて低り、透水の影響によ
るひび割れやカケ等が生ぜず、高い強度になる。In addition, since the air enclosing body of some closed cell cells is molded with glass, the water permeability into the concrete is extremely low compared to conventional concrete structures, and cracks and chips may occur due to the influence of water permeation. It has high strength.
また請求項第2項記載の発明によると、発泡剤から発生
されるガスは遠心力によって均一にペースト状のセメン
ト内に撹拌され、そしてセメントと、水と、ガラス質の
空気封入体の混練物を型枠内に流し入れるだけで、完全
な形状の独立気泡がセメント内で押潰されることなく均
一に形成された発泡コンクリート構造体が得られる。従
って切断工程や配筋作用が不要になって工程が簡素化さ
れるので、コストは安価で保温性、断熱性、透水性は良
好になり、また厚みが薄く、加工性が優れ、さらには特
別な装置および型枠を必要としないから設備費は安価に
なる。Further, according to the invention described in claim 2, the gas generated from the blowing agent is uniformly stirred into the cement paste by centrifugal force, and the mixture of cement, water, and vitreous air inclusions is mixed. By simply pouring the foam into a formwork, a foamed concrete structure with perfectly shaped closed cells that are uniformly formed without being crushed within the cement can be obtained. Therefore, the cutting process and reinforcing action are no longer necessary, simplifying the process, resulting in low cost, good heat retention, insulation properties, and water permeability, as well as thin thickness, excellent workability, and even special Equipment costs are low because no special equipment or formwork is required.
第1図は本願第2発明を実施するのに使用する装置の一
例を示す断面図、
第2図は同じく製造された本願特定発明としての発泡コ
ンクリート構造体の一例を示す断面図、
第3図は同じく空気封入体の投入量を増加させた場合の
他の発泡コンクリート構造体を示す断面図、
第4図は同じく大小異なる空気封入体を挿入した場合の
他の発泡コンクリート構造体を示す断面図である。
2A、2B・・・ミキサー、3・・・セメント、4・・
・空気封入体、5・・・撹拌羽根、13・・・独立気泡
、14・・・コンクリート構造体。
特許出願人 株式会社 小 林
第1図Fig. 1 is a cross-sectional view showing an example of the device used to carry out the second invention of the present application, Fig. 2 is a cross-sectional view showing an example of a foamed concrete structure as the specified invention of the present application, which was also manufactured; Fig. 3 Figure 4 is a sectional view showing another foamed concrete structure in which the amount of air inclusions added is increased, and Figure 4 is a sectional view showing another foamed concrete structure in which air inclusions of different sizes are inserted. It is. 2A, 2B...Mixer, 3...Cement, 4...
- Air inclusion body, 5... Stirring blade, 13... Closed cell, 14... Concrete structure. Patent applicant Kobayashi Co., Ltd. Figure 1
Claims (2)
立気泡成型物質として混入し、該空気封入体および気泡
剤による独立気泡を有するように成型された発泡コンク
リート構造体。(1) A foamed concrete structure in which vitreous air inclusions are mixed into cement as aggregate and a closed-cell molding substance, and the foamed concrete structure is molded to have closed cells due to the air inclusions and a foaming agent.
空気封入体を骨材として混入し、混練しながら遠心力に
より独立気泡を発泡させる工程と、該混練物を型枠内に
流し入れて養生、固化する工程とから成る発泡コンクリ
ート構造体の製造方法。(2) A step of mixing a foaming agent and a vitreous air inclusion as aggregate into a mixture of cement and water, foaming closed cells by centrifugal force while kneading, and pouring the mixture into a mold. A method for manufacturing a foamed concrete structure comprising curing and solidifying steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15363588A JPH01320280A (en) | 1988-06-23 | 1988-06-23 | Foamed concrete structural body and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15363588A JPH01320280A (en) | 1988-06-23 | 1988-06-23 | Foamed concrete structural body and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01320280A true JPH01320280A (en) | 1989-12-26 |
Family
ID=15566823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15363588A Pending JPH01320280A (en) | 1988-06-23 | 1988-06-23 | Foamed concrete structural body and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01320280A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5179120A (en) * | 1974-12-28 | 1976-07-09 | Maeda Seikan Kk | KEIRYOTSUBUJOBUTSUSHITSUTOSEMENTOPEESUTONO KONNERIHOHO |
JPS529020A (en) * | 1975-07-12 | 1977-01-24 | Koito Kogyo Kk | Sound absorbing foamy concrete for outdoors and its manufacture |
JPS5551752A (en) * | 1978-10-05 | 1980-04-15 | Japan Process Eng | Manufacture of lightweight concrete using high sulfate slug cements by using multiikind synthesized alkali irritant |
JPS5684363A (en) * | 1979-11-07 | 1981-07-09 | Grace W R & Co | High strength*low water demand and thin section heattinsulating concrete |
JPS57196758A (en) * | 1981-05-18 | 1982-12-02 | Diamond Shamrock Corp | Insulating composition comprising foaming adhesive mixed with granular insulating material |
JPS61106469A (en) * | 1984-10-25 | 1986-05-24 | 株式会社 伊藤喜工作所 | Refractory heat-insulative wall |
JPS6241784A (en) * | 1985-08-14 | 1987-02-23 | 清水建設株式会社 | Concrete containing pumice foamed grain |
-
1988
- 1988-06-23 JP JP15363588A patent/JPH01320280A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5179120A (en) * | 1974-12-28 | 1976-07-09 | Maeda Seikan Kk | KEIRYOTSUBUJOBUTSUSHITSUTOSEMENTOPEESUTONO KONNERIHOHO |
JPS529020A (en) * | 1975-07-12 | 1977-01-24 | Koito Kogyo Kk | Sound absorbing foamy concrete for outdoors and its manufacture |
JPS5551752A (en) * | 1978-10-05 | 1980-04-15 | Japan Process Eng | Manufacture of lightweight concrete using high sulfate slug cements by using multiikind synthesized alkali irritant |
JPS5684363A (en) * | 1979-11-07 | 1981-07-09 | Grace W R & Co | High strength*low water demand and thin section heattinsulating concrete |
JPS57196758A (en) * | 1981-05-18 | 1982-12-02 | Diamond Shamrock Corp | Insulating composition comprising foaming adhesive mixed with granular insulating material |
JPS61106469A (en) * | 1984-10-25 | 1986-05-24 | 株式会社 伊藤喜工作所 | Refractory heat-insulative wall |
JPS6241784A (en) * | 1985-08-14 | 1987-02-23 | 清水建設株式会社 | Concrete containing pumice foamed grain |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3568273B1 (en) | Plant and method for producing pumice blocks having cavities filled with insulation material | |
JPH07247183A (en) | Construction and structural material, its production, molding, constructing or structural member and its production | |
CN1662713A (en) | High performance door | |
US20130280518A1 (en) | Building material and building system element as well as method of production thereof | |
JPH0445471B2 (en) | ||
CN1328204C (en) | Heat insulating bearing concrete brick and its production process | |
JPH01320280A (en) | Foamed concrete structural body and production thereof | |
US6746532B2 (en) | Lightweight concrete with increased strength and method for producing the same | |
JPH01320281A (en) | Aerated concrete structure and its production | |
DE19644312A1 (en) | Heat and sound-insulating integral lightweight concrete structures and processes for their manufacture and transport | |
EP0652188B1 (en) | Process for the production of a conglomerate of gypsum and impermeable granulated cellular material, and the conglomerate obtained thereby | |
JP2001316159A (en) | Cement mortar board mixed with polystyrene foam and method for manufacturing same | |
CN1736938A (en) | Concrete bearing insulating brick and its production method | |
JPS6149271B2 (en) | ||
CN110372280A (en) | Porous ceramicite concrete and its preparation method and application | |
KR100585988B1 (en) | Sound-Arresting And Adiabatic Material Manufacturing Method For Civil And Architecture | |
CN112538928B (en) | Enhanced light inner wallboard | |
JPH0399802A (en) | Method for vibration molding of inorganic foam molded product | |
JPS61275176A (en) | Manufacture of lightweight concrete | |
JPH02283403A (en) | Manufacture of concrete molded product | |
JP2550445B2 (en) | Inorganic thermal insulation / refractory material for spraying and method for producing the same | |
JPH03219921A (en) | Molding method for joint part of inorganic plate | |
JPH0815764B2 (en) | Lightweight concrete panel manufacturing method | |
JPS61274027A (en) | Precast concrete panel | |
JP2607802B2 (en) | Manufacturing method of cellular concrete building materials |