JPH01320228A - Production of hexa vanadium tridecyloxide - Google Patents

Production of hexa vanadium tridecyloxide

Info

Publication number
JPH01320228A
JPH01320228A JP63152156A JP15215688A JPH01320228A JP H01320228 A JPH01320228 A JP H01320228A JP 63152156 A JP63152156 A JP 63152156A JP 15215688 A JP15215688 A JP 15215688A JP H01320228 A JPH01320228 A JP H01320228A
Authority
JP
Japan
Prior art keywords
positive electrode
nh4vo3
discharge capacity
heating
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63152156A
Other languages
Japanese (ja)
Inventor
Kiyonobu Nakamura
中村 精伸
Toyohide Uemura
植村 豊秀
Hiroshi Shinkawa
新川 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP63152156A priority Critical patent/JPH01320228A/en
Publication of JPH01320228A publication Critical patent/JPH01320228A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To easily obtain V6O13 as positive electrode material used in a cell having high discharge capacity and excellent potential flatness by heating ammonium vanadate in an inert atmosphere under a specified condition. CONSTITUTION:The targeted hexa vanadium tridecyloxide (V6O13) is obtd. by heating ammonium vanadate (NH4VO3) at 400-450 deg.C in the inert gas atmosphere for 10-20hr. The NH4VO3 used as raw material, is usually crushed to about 150 mesh under. The crushed NH4VO3 is heated in the inert atmosphere. As the inert atmosphere, argon, hydrogen gas, nitrogen gas atmosphere, etc., are exemplified. When the heating temp. or time exceeds 450 deg.C or 20hr, or when the temp. or time is <=400 deg.C or <=10hr, the discharge capacity becomes lower.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リチウム等の軽金属を負極とする非水電解液
電池において高放電容量、かつ電位平坦性の優れた正極
材料である十三酸化穴バナジウム(V6O13)の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to 13 oxide, which is a positive electrode material with high discharge capacity and excellent potential flatness in non-aqueous electrolyte batteries using light metals such as lithium as negative electrodes. The present invention relates to a method for producing hollow vanadium (V6O13).

〔従来技術およびその課題〕[Prior art and its issues]

電解質に非水電解液を用いた電池用正極材料としてMn
O2や(CF)n等を用いたリチウム電池が市場化され
ているが、更に高放電容量かつ電位平坦性の向上を目指
して正極材料としてV60□3を用いたリチウム電池の
研究が行われている。ところが、例えば’Jornal
 of theelectrocheilcal 5o
ciety 、 12月号(1981年)、r Rec
hargeable Lith1um/ Vanadl
ui 0xide CellsUtilizing 2
 Me−THF / L I A s F a J、K
、M、Abrahaa+ et al ’に見られる製
造方法によって得られるV6O13を用いたリチウム電
池の放電容量および電位平坦性については、未だ十分満
足の行くものではなかった。
Mn as a positive electrode material for batteries using non-aqueous electrolyte as electrolyte
Lithium batteries using O2, (CF)n, etc. are on the market, but research is being conducted on lithium batteries using V60□3 as the positive electrode material with the aim of achieving even higher discharge capacity and improved potential flatness. There is. However, for example, 'Journal
of the electrocheilcal 5o
ciety, December issue (1981), r Rec
Hargeable Lith1um/Vanadl
ui Oxide Cells Utilizing 2
Me-THF/LIAsFa J,K
The discharge capacity and potential flatness of a lithium battery using V6O13 obtained by the manufacturing method described in , M., Abrahaa+ et al.' have not yet been fully satisfactory.

また、米国特許第4.488,400号公報には、バナ
ジウム酸アンモニウムを窒素雰囲気中で一定時間昇温し
た後、保持し、次いで特定の雰囲気でさらに加熱するV
6O13の製造方法が開示されているが、製造工程が繁
雑であり、また特定の雰囲気を用いるため、雰囲気の条
件設定に労力や設備を必要とするという課題を有する。
Further, US Pat. No. 4,488,400 discloses that ammonium vanadate is heated in a nitrogen atmosphere for a certain period of time, held, and then further heated in a specific atmosphere.
Although a method for manufacturing 6O13 has been disclosed, the manufacturing process is complicated, and since a specific atmosphere is used, there are problems in that labor and equipment are required to set the atmosphere conditions.

本発明はかかる従来技術の課題を解決すべくなされたも
ので、高放電容量、かつ電位平坦性の優れた電池の正極
材料であるV6O13の簡便な製造方法を提供すること
を目的とするものである。
The present invention has been made to solve the problems of the prior art, and aims to provide a simple method for producing V6O13, which is a positive electrode material for batteries with high discharge capacity and excellent potential flatness. be.

[課題を解決するための手段] 本発明のこの目的は次に示すV8O13の製造方法によ
って達成される。
[Means for Solving the Problems] This object of the present invention is achieved by the following method for producing V8O13.

すなわち、本発明の電池用V6O13の製造方法は、バ
ナジウム酸アンモニウム(NH4VO3)を不活性ガス
中で400〜450℃、10〜20時間加熱処理するこ
とを特徴とするものである。
That is, the method for producing V6O13 for batteries of the present invention is characterized by heat-treating ammonium vanadate (NH4VO3) in an inert gas at 400 to 450°C for 10 to 20 hours.

以下、本発明の製造方法をさらに具体的に説明する。The manufacturing method of the present invention will be explained in more detail below.

本発明においては、v80□3を製造するための原料と
して、バナジウム酸アンモニウム(NH4vo3)を用
いる。このバナジウム酸アンモニウムは、通常、−15
0メツシュ程度に粉砕して用いられる。
In the present invention, ammonium vanadate (NH4vo3) is used as a raw material for producing v80□3. This ammonium vanadate is usually -15
It is used after being crushed to about 0 mesh.

次いで、粉砕されたバナジウム酸アンモニウムは、不活
性雰囲気中で加熱される。不活性雰囲気としては、アル
ゴン、水素ガス、窒素ガス雰囲気等が例示される。
The ground ammonium vanadate is then heated in an inert atmosphere. Examples of the inert atmosphere include argon, hydrogen gas, and nitrogen gas atmospheres.

加熱条件は、400〜450℃、10〜20時間が採用
される。加熱温度または加熱時間が、450℃を超える
時または20時間を超える時には、放電容量が小さい。
The heating conditions are 400 to 450°C and 10 to 20 hours. When the heating temperature or heating time exceeds 450° C. or exceeds 20 hours, the discharge capacity is small.

これは生成したV8O13の部分的な分解反応が起って
いるためと考えられる。また、加熱温度または加熱時間
が、400℃未満の時または10時間未満の時にも、放
電容量が小さい。これはVaO+tの生成が充分進まず
V2O5が一部生成しているためと考えられる。
This is considered to be due to a partial decomposition reaction of the generated V8O13. Further, the discharge capacity is also small when the heating temperature or heating time is less than 400° C. or less than 10 hours. This is considered to be because the generation of VaO+t did not progress sufficiently and some V2O5 was generated.

このように、本発明の製造方法においては、前記した文
献に示される従来技術と比較し、特に加熱処理において
低温で長時間加熱することを特徴とする。例えば前記し
た文献では、高温(550’C)で短時間(1時間)加
熱処理することが示されているが、このような高温では
生成したV80+iの部分的な分解反応がおこり、これ
が電池性能に悪影響を及ぼすと考えられる。
As described above, the manufacturing method of the present invention is characterized in that heating is performed at a low temperature for a long time in the heat treatment, in particular, compared to the conventional technology shown in the above-mentioned literature. For example, the above-mentioned literature indicates that heat treatment is performed at a high temperature (550'C) for a short time (1 hour), but at such a high temperature, a partial decomposition reaction of the generated V80+i occurs, which deteriorates the battery performance. is thought to have a negative impact on

これに対して本発明では、上記したように加熱処理にお
いて、加熱温度と加熱時間とを特定することにより、非
水電解液電池の正極材料として、放電容量、電位平坦性
の著しく優れたV6O13が得られたものである。
In contrast, in the present invention, by specifying the heating temperature and heating time in the heat treatment as described above, V6O13, which has extremely excellent discharge capacity and potential flatness, can be used as a positive electrode material for non-aqueous electrolyte batteries. This is what was obtained.

[実施例] 以下、本発明を実施例等に基づき具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples and the like.

実施例1 試薬特級のNH4vo3を50g粉砕し、粒度を=15
0メツシュとし、これをアルゴンガス気流中にて、第1
表に示すように450℃、15時間加熱処理を行いv、
、013を得た。得られたV[1O13のX線回折図を
第2図に示す。
Example 1 50g of reagent special grade NH4vo3 was crushed to a particle size of 15
0 mesh, and in an argon gas flow,
Heat treatment was performed at 450°C for 15 hours as shown in the table.
, 013 was obtained. The X-ray diffraction pattern of the obtained V[1O13 is shown in FIG.

このV8O13を正極活物質として以下に示すリチウム
電池を構成した(第1図)。
A lithium battery shown below was constructed using this V8O13 as a positive electrode active material (FIG. 1).

第1図のリチウム電池は、負極端子1、絶縁物2、負極
集電板3、負極材(リチウム)4、セパレータ5、正極
合剤6、正極端子7で構成されている。
The lithium battery shown in FIG. 1 is composed of a negative electrode terminal 1, an insulator 2, a negative electrode current collector plate 3, a negative electrode material (lithium) 4, a separator 5, a positive electrode mixture 6, and a positive electrode terminal 7.

正極合剤6としては、V 60.190mgに対し、黒
鉛6mg、四フッ化エチレン樹脂4mgを混合し、加重
2トンで加圧成型して、直径1.O,Gmのペレットと
したものを用いた。
The positive electrode mixture 6 was prepared by mixing 60.190 mg of V, 6 mg of graphite, and 4 mg of tetrafluoroethylene resin, and press-molding the mixture under a load of 2 tons to obtain a diameter of 1. Pellets of O and Gm were used.

また、電解液としては、プロピレンカーボネートと 1
.2−ジメトキシエタンが1=1の混合溶媒に過塩素酸
リチウム(LICJOs)を溶解したものを使用した。
In addition, as an electrolyte, propylene carbonate and 1
.. A solution of lithium perchlorate (LICJOs) in a 1=1 mixed solvent of 2-dimethoxyethane was used.

得られたリチウム電池の電池性能試験は2.5にΩの定
抵抗にて放電を行い、終止電圧1,7Vまでの放電時間
を測定し、結果を第1表に示した。
A battery performance test of the obtained lithium battery was performed by discharging at a constant resistance of 2.5Ω and measuring the discharge time until the final voltage was 1.7V.The results are shown in Table 1.

実施例2 加熱温度と加熱時間を第1表に示すように、425℃、
15時間として不活性ガスにH2を用いた他は、実施例
1と同様にしてV[1013を得た。
Example 2 As shown in Table 1, the heating temperature and heating time were 425°C,
V[1013 was obtained in the same manner as in Example 1 except that H2 was used as the inert gas for 15 hours.

得られたV80+iを正極材料として実施例1と同様に
リチウム電池を構成し、その電池性能試験を行い結果を
第1表に示した。
A lithium battery was constructed in the same manner as in Example 1 using the obtained V80+i as a positive electrode material, and the battery performance test was conducted and the results are shown in Table 1.

実施例3〜5および比較例1〜4 加熱温度と加熱時間を変化させた他は実施例1と同様に
してV8O13を得た。
Examples 3 to 5 and Comparative Examples 1 to 4 V8O13 was obtained in the same manner as in Example 1 except that the heating temperature and heating time were changed.

得られたVa o□、を正極材料として実施例1と同様
にリチウム電池を構成し、その電池性能試験を行い結果
を第1表に示した。
A lithium battery was constructed in the same manner as in Example 1 using the obtained Vao□ as a positive electrode material, and the battery performance test was conducted and the results are shown in Table 1.

また、比較例1.比較例4で得られたV6013のX線
回折図を第3図および第4図にそれぞれ示す。
Also, Comparative Example 1. The X-ray diffraction diagram of V6013 obtained in Comparative Example 4 is shown in FIGS. 3 and 4, respectively.

上記した実施例1に加えて実施例3および比較例1,4
の経時における放電性能試験結果を第5図に示した。
In addition to the above-mentioned Example 1, Example 3 and Comparative Examples 1 and 4
Figure 5 shows the results of the discharge performance test over time.

第  1  表 第1表に示されるように、実施例1〜5により得られた
Van、3を正極材料としたリチウム電池は、比較例1
〜4で得られたV8O13を正極材料としたリチウム電
池に比較して、放電容量(放電時間)が非常に優れてい
ることがわかる。
Table 1 As shown in Table 1, the lithium batteries using Van, 3 obtained in Examples 1 to 5 as positive electrode materials were as follows: Comparative Example 1
It can be seen that the discharge capacity (discharge time) is very superior compared to the lithium battery using the V8O13 obtained in 4 as the positive electrode material.

また、第5図に示した放電曲線より、実施例1゜3によ
り得られたV6O13を正極材料としたリチウム電池は
、比較例1.4で得られたV8O13を正極材料とした
リチウム電池に比較して2V付近での電位平坦性も非常
に優れていることがわかる。
Furthermore, from the discharge curve shown in Figure 5, the lithium battery using V6O13 obtained in Example 1.3 as the positive electrode material was compared to the lithium battery using V8O13 obtained in Comparative Example 1.4 as the positive electrode material. It can be seen that the potential flatness near 2V is also very excellent.

さらに、第2〜4図のX線回折図より、実施例1(第2
図)で得られたVex、3は、比較例]。
Furthermore, from the X-ray diffraction diagrams in Figures 2 to 4, Example 1 (2nd
Vex, 3 obtained in Figure) is a comparative example].

(第3図)に比較してV2O5等の生成物が少なく、ま
た比較例4(第4図)に比較してV6O13のピークが
シャープで高く、結晶が十分に発達しており、またV2
 o、、等の生成物も少ないことがわかる。
Compared to Comparative Example 4 (Fig. 3), there are fewer products such as V2O5, and compared to Comparative Example 4 (Fig. 4), the peak of V6O13 is sharp and high, and the crystals are sufficiently developed.
It can be seen that there are also fewer products such as o, , etc.

[発明の効果] 以上説明したように、本発明の製造方法によって、簡便
に得られた十三酸化穴バナジウム(Veoo、)を正極
材料として用いることにより、リチウム電池等の非水電
解液電池の電池性能を著しく向上することができる。
[Effects of the Invention] As explained above, by using 13-oxide porous vanadium (Veoo), which is easily obtained by the manufacturing method of the present invention, as a positive electrode material, it can be used for non-aqueous electrolyte batteries such as lithium batteries. Battery performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わるリチウム電池の側断面図、 第2〜4図は、実施例1、比較例1、比較例4でそれぞ
れ得られた反応生成物のX線回折図、および 第5図は実施例1,3および比較例1,4の経時におけ
る放電曲線を示すグラフ。 1:負極端子、  2:絶縁物、 3:負極集電板、 4:負極材、 5;セパレータ、 6:正極合剤、 7:正極端子。 特許出願人  三井金属鉱業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第1図
FIG. 1 is a side cross-sectional view of a lithium battery according to the present invention, and FIGS. 2 to 4 are X-ray diffraction diagrams and FIG. 5 is a graph showing the discharge curves of Examples 1 and 3 and Comparative Examples 1 and 4 over time. 1: negative electrode terminal, 2: insulator, 3: negative electrode current collector plate, 4: negative electrode material, 5: separator, 6: positive electrode mixture, 7: positive electrode terminal. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Tetsuya Ito Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、バナジウム酸アンモニウム(NH_4VO_3)を
不活性ガス雰囲気中で400〜450℃、10〜20時
間加熱することを特徴とする電池用十三酸化六バナジウ
ムの製造方法。
1. A method for producing hexavanadium hexaoxide for batteries, which comprises heating ammonium vanadate (NH_4VO_3) at 400 to 450°C for 10 to 20 hours in an inert gas atmosphere.
JP63152156A 1988-06-22 1988-06-22 Production of hexa vanadium tridecyloxide Pending JPH01320228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152156A JPH01320228A (en) 1988-06-22 1988-06-22 Production of hexa vanadium tridecyloxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152156A JPH01320228A (en) 1988-06-22 1988-06-22 Production of hexa vanadium tridecyloxide

Publications (1)

Publication Number Publication Date
JPH01320228A true JPH01320228A (en) 1989-12-26

Family

ID=15534247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152156A Pending JPH01320228A (en) 1988-06-22 1988-06-22 Production of hexa vanadium tridecyloxide

Country Status (1)

Country Link
JP (1) JPH01320228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453261A (en) * 1994-06-21 1995-09-26 Saidi; M. Yazid Method of synthesizing high surface area vanadium oxides
US6042805A (en) * 1994-11-29 2000-03-28 Danionics A/S Method for synthesizing an essentially V2 O5 -free vanadium oxide
KR100433626B1 (en) * 2001-11-28 2004-06-02 한국전자통신연구원 Method of synthesizing amorphous vanadium oxides, lithium secondary batteries comprising the same, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453261A (en) * 1994-06-21 1995-09-26 Saidi; M. Yazid Method of synthesizing high surface area vanadium oxides
US6042805A (en) * 1994-11-29 2000-03-28 Danionics A/S Method for synthesizing an essentially V2 O5 -free vanadium oxide
KR100433626B1 (en) * 2001-11-28 2004-06-02 한국전자통신연구원 Method of synthesizing amorphous vanadium oxides, lithium secondary batteries comprising the same, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN110642247B (en) Artificial graphite negative electrode material, preparation method thereof and lithium ion battery
EP1193784B1 (en) Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
EP1193787B1 (en) Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
EP1193785B1 (en) Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
US6797431B2 (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte
EP2256845A1 (en) Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell
WO2020062046A1 (en) Positive electrode additive and preparation method therefor, positive electrode and preparation method therefor, and lithium ion battery
JP3372204B2 (en) Method for producing Li-Mn composite oxide
JP3054379B2 (en) Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
TWI520419B (en) A negative electrode active material for a lithium battery, a negative electrode electrode for a lithium secondary battery, a lithium battery for a vehicle for use, and a method for producing a negative electrode active material for a lithium battery
US4751158A (en) Amorphous cathode material for use in lithium electrochemical cell and lithium electrochemical cell including the amorphous cathode material
CN103972508A (en) Inorganic doped/coated modification natural graphite, as well as preparation method and application thereof
CN107565099B (en) Positive active material, preparation method thereof and lithium ion battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
US20180175385A1 (en) Graphene-Vanadium Oxide Nanowire, Method for Preparation Thereof, Positive Active Material Comprising the Same and Lithium Battery Comprising the Positive Active Material
JPH01320228A (en) Production of hexa vanadium tridecyloxide
JP2000156224A (en) Nonaqueous electrolyte battery
JPH0831420A (en) Carbon material for electrode of lithium battery and manufacture thereof
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
CN112670472A (en) Graphite negative electrode material, lithium ion battery, preparation method and application
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH06215770A (en) Non-aquaous electrolytic secondary battery and preparation of negative pole active material therefor
KR102452103B1 (en) Method of preparing manganese difluoride using ionic liquid and method of preparing anode for lithium ion battery comprising same
JP2002373657A (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery