JPH01319708A - Method of aligning optical waveguide and optical parts used therein - Google Patents

Method of aligning optical waveguide and optical parts used therein

Info

Publication number
JPH01319708A
JPH01319708A JP15298388A JP15298388A JPH01319708A JP H01319708 A JPH01319708 A JP H01319708A JP 15298388 A JP15298388 A JP 15298388A JP 15298388 A JP15298388 A JP 15298388A JP H01319708 A JPH01319708 A JP H01319708A
Authority
JP
Japan
Prior art keywords
optical
waveguide
optical waveguide
alignment
aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15298388A
Other languages
Japanese (ja)
Inventor
Shiro Sato
史郎 佐藤
Hiroshi Wada
弘 和田
Eiji Okuda
奥田 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15298388A priority Critical patent/JPH01319708A/en
Publication of JPH01319708A publication Critical patent/JPH01319708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To decrease the number of measurements and to provide the method of aligning an optical waveguide which can efficiently execute aligning operations with a decreased number of measurements and the optical parts used in said method by executing the aligning operation in the transverse direction after executing registration in the thickness direction by the slab waveguide provided near the intrinsic optical waveguide. CONSTITUTION:The slab waveguide 46 having the refractive index higher than the refractive index of a glass substrate 40 and the refractive index lower than the refractive index in the core part of the intrinsic three-dimensional optical waveguide 42 is formed on the glass substrate 40 at the same level as the level of the optical waveguide 42. The registration with optical fibers 14a, 14b,... in the thickness direction of the substrate is first executed by using the slab waveguide 46 at the time of optically coupling the optical parts 10 having such structure and the optical fibers 14a, 14b,.... The optical fibers 14a, 14c,... are then moved toward arrows M, N direction in the horizontal direction of the substrate from this position and the rough alignment is executed by using the intrinsic optical waveguide 42. The optical parts and the fibers are then coupled by executing the precise aligning in the final.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば光分岐・結合器のような光部品と光フ
ァイバ等の光導波路同士の光軸を位置合わせする調心技
術に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an alignment technique for aligning the optical axes of optical parts such as optical branching/coupling devices and optical waveguides such as optical fibers. be.

更に詳しく述べると本発明は、一方の光部品として光結
合すべき本来の光導波路の近傍にスラブ導波路を有する
ものを使用し、該スラブ導波路を用いてその厚み方向で
の位置合わせを行う光導波路の調心方法及びそれに用い
る光部品に関するものである。
More specifically, the present invention uses a slab waveguide as one optical component near the original optical waveguide to be optically coupled, and performs alignment in the thickness direction using the slab waveguide. The present invention relates to an optical waveguide alignment method and optical components used therein.

〔従来の技術] 例えば第3図に示すように、光部品10の光導波路12
の各端部12a、12b、12cに対してそれぞれ光フ
ァイバ14a、14b。
[Prior Art] For example, as shown in FIG. 3, an optical waveguide 12 of an optical component 10
optical fibers 14a, 14b for each end 12a, 12b, 12c, respectively.

14Cを光結合させる場合には、両方の光部品の光導波
路同士の光軸を位置合わせする必要がある。
When optically coupling 14C, it is necessary to align the optical axes of the optical waveguides of both optical components.

このような調心作業は第4図に示すような装置を用いて
行っている。光部品10は固定ステージ16上に取り付
けられる。一方の光ファイバ14aはブロック1B内に
固定され、微動ステージ20に取り付けられる。他の2
本の光ファイバ14b、14cも同様にブロック22に
固定され、微動ステージ24に取り付けられる。
Such alignment work is performed using a device as shown in FIG. The optical component 10 is mounted on a fixed stage 16. One optical fiber 14a is fixed within block 1B and attached to fine movement stage 20. the other 2
The optical fibers 14b and 14c are similarly fixed to the block 22 and attached to the fine movement stage 24.

両方の微動ステージ20.24は上下方向(Y方向)、
左右方向(X方向)及び光部品1oに対する遠近方向(
X方向)にそれぞれ微動可能であり、その移動はステー
ジ制御装置26で制御される。入射側の光ファイバ14
aの端部には光源28が接続され、出射側の光ファイバ
14bには光パワーメータ30が接続される。
Both fine movement stages 20.24 move in the vertical direction (Y direction),
The left-right direction (X direction) and the perspective direction with respect to the optical component 1o (
X direction), and the movement thereof is controlled by a stage control device 26. Optical fiber 14 on the input side
A light source 28 is connected to the end of a, and an optical power meter 30 is connected to the output side optical fiber 14b.

先ず顕微鏡等による目視によって、光部品IOに形成さ
れている光導波路12の各端部12a、・・・、12c
と光ファイバ14a、・・・。
First, each end 12a, . . . , 12c of the optical waveguide 12 formed in the optical component IO is visually observed using a microscope or the like.
and the optical fiber 14a,...

14cの光導波路(コア)とを光ファイバの外径の範囲
内で位置合わせする。その位置を中心に微動ステージ2
0.24を所定の範囲(探索領域)内でX方向、Y方向
に格子状に移動させて、光ファイバ14aから出射した
光が光導波路端12aに入射し、それが光導波路端12
bから出射して光ファイバ14bに入射する位置を捜す
ための粗い調心(粗調心)を行う。
The optical waveguide (core) of 14c is aligned within the range of the outer diameter of the optical fiber. Fine movement stage 2 centering on that position
0.24 in the X direction and Y direction within a predetermined range (search area), the light emitted from the optical fiber 14a enters the optical waveguide end 12a, and the light emitted from the optical fiber 14a enters the optical waveguide end 12a.
Rough alignment is performed to find the position where the light is emitted from the optical fiber 14b and enters the optical fiber 14b.

例えば、粗調心の探索領域を100μm×100μm程
度に定め、その領域内をX方向及びY方向でそれぞれ1
0μm程度のピッチでステージ制御装置26により微動
ステージ20゜24を自動微動させて光出力が最大とな
るような粗調心を行い、更にその位置近傍で最適光結合
が得られるように精密調心を行う。
For example, if the coarse centering search area is set to about 100 μm x 100 μm, then 1
The fine movement stage 20° 24 is automatically finely moved by the stage control device 26 at a pitch of about 0 μm to perform coarse alignment to maximize the optical output, and then fine alignment to obtain optimal optical coupling near that position. I do.

[発明が解決しようとする課題] 粗調心の際に光出力が最大となる位置を見出すには、 ■入射側光ファイバの移動、 ■出射側光ファイバの移動、 ■出射側光ファイバ出力の測定、 ■出力測定値の評価 の4段階の作業を格子状の探索領域内の各測定点で繰り
返し行う必要がある。出力の評価方法により異なるが、
探索領域内で出射側光ファイバでの光出力が最大値を示
すような人出射光ファイバの最適位置を求めるには、測
定回数は(入射側探索領域内光フアイバ移動点数)×(
出射側探索領域内光ファイバ移動点数)となり、その数
は膨大である。
[Problem to be solved by the invention] In order to find the position where the optical output is maximum during coarse alignment, it is necessary to: ■ move the optical fiber on the input side, ■ move the optical fiber on the output side, ■ change the output of the output side optical fiber. It is necessary to repeat the four steps of measurement and evaluation of output measurement values at each measurement point within the grid-like search area. It depends on the output evaluation method, but
In order to find the optimal position of the human output optical fiber where the optical output of the output side optical fiber shows the maximum value within the search area, the number of measurements is (number of optical fiber movement points in the input side search area) x (
The number of optical fiber moving points within the output side search area) is enormous.

例えば前記従来技術で述べたような探索方法の場合、入
射側及び出射側でそれぞれ移動点の数が100であるか
ら、測定回数は総計1万に達する。このため調心作業に
要する時間が非常に長くかかる欠点がある。このことは
探索領域を拡大し難くするから、顕微鏡等を用いた目視
による最初の位置合わせにかなりの精度が゛要求され、
作業に熟練が必要となる等の問題もあった。
For example, in the case of the search method described in the prior art, the number of moving points is 100 on each of the incident side and the exit side, so the total number of measurements reaches 10,000. For this reason, there is a drawback that the alignment work takes a very long time. This makes it difficult to expand the search area, so a high level of accuracy is required for initial positioning by visual inspection using a microscope, etc.
There were also problems such as the need for skill to perform the work.

本発明の目的は、上記のような従来技術の欠点を解消し
、測定回数を少なくして調心作業を効率よく迅速に実施
できるように工夫した光導波路の調心方法及びそれに用
いる光部品を提供することにある。
The purpose of the present invention is to provide an optical waveguide alignment method devised to eliminate the above-mentioned drawbacks of the prior art, to reduce the number of measurements, and to perform alignment work efficiently and quickly, and to provide an optical component used therein. It is about providing.

[課題を解決するための手段] 上記のような技術的課題を解決できる本発明は、一方の
光部品として光結合すべき本来の光導波路の近傍にスラ
ブ導波路を有するものを使用し、該スラブ導波路を用い
てその厚み方向に限った調心作業を行うことで間接的に
目的とする本来の光導波路の光軸と他方の光部品との光
軸の垂直方向の位置合わせを行い、その後、幅方向に本
来の光導波路まで移動して幅方向に限定した調心作業を
行い、最終的に目的とする光導波路に対して位置合わせ
を行う調心技術である。
[Means for Solving the Problems] The present invention, which can solve the above-mentioned technical problems, uses a slab waveguide as one optical component in the vicinity of the original optical waveguide to be optically coupled. By performing alignment work limited to the thickness direction using a slab waveguide, we can indirectly align the optical axis of the original optical waveguide and the optical axis of the other optical component in the vertical direction. This is an alignment technique that then moves in the width direction to the original optical waveguide, performs alignment work limited to the width direction, and finally aligns with the target optical waveguide.

ここでスラブ導波路とは最終的に光結合する本来の光導
波路の幅より十分広い幅を有する2次元導波路を言う、
この調心用のスラブ導波路は光結合すべき本来の光導波
路と基板の同じレベルに形成されている。つまりスラブ
導波路が形成されている面内に本来の光導波路が位置し
ていることになる。従ってガラス基板上に2段階のイオ
ン交換を行うことによって埋込み型光導波路を作成する
際にその周辺にスラブ導波路が形成されるような構造で
もよいし、本来の光導波路と区別して調心用のスラブ導
波路を並設した構造等であってもよい。
Here, the slab waveguide refers to a two-dimensional waveguide that has a width sufficiently wider than the width of the original optical waveguide that will ultimately be optically coupled.
This slab waveguide for alignment is formed at the same level of the substrate as the original optical waveguide to be optically coupled. In other words, the original optical waveguide is located within the plane in which the slab waveguide is formed. Therefore, when creating a buried optical waveguide by performing two-step ion exchange on a glass substrate, a slab waveguide may be formed around it, or a slab waveguide may be formed around it to differentiate it from the original optical waveguide. It may also be a structure in which slab waveguides are arranged in parallel.

本発明において他方の光部品は、光ファイバや光フアイ
バアレイ等を含む任意の光部品であってよい。
In the present invention, the other optical component may be any optical component including an optical fiber, an optical fiber array, or the like.

[作用] 本発明によれば光導波路同士の光軸を位置合わせするに
当たって、一方の光部品の調心用の2次元的なスラブ導
波路を用いて行うため、スラブ導波路に入射した光は幅
方向にも広がった分布をもって出射する。このため顕微
鏡等による目視で粗調心開始の初期位置に設定する際に
スラブ導波路幅方向の位置合わせ精度が3次元的な光導
波路に対して行っていたものほど厳密である必要がなく
、多少幅方向にずれた状態でも十分厚み方向の位置合わ
せを行うことができる。
[Function] According to the present invention, the optical axes of the optical waveguides are aligned using a two-dimensional slab waveguide for alignment of one optical component, so that the light incident on the slab waveguide is It emits light with a spread distribution in the width direction as well. Therefore, when setting the initial position to start coarse alignment by visual inspection using a microscope, etc., the alignment accuracy in the width direction of the slab waveguide does not need to be as precise as it is for three-dimensional optical waveguides. Even if there is some deviation in the width direction, sufficient alignment in the thickness direction can be achieved.

本発明では光軸に対して直交する2方向についていずれ
も直線上の探索により光出力が最大となる位置の検出を
行えるため、従来の格子状の移動による探索に比べて測
定点数が大幅に減少することになる。
In the present invention, the position where the optical output is maximum can be detected by searching on a straight line in both directions orthogonal to the optical axis, so the number of measurement points is significantly reduced compared to the conventional search using grid-like movement. I will do it.

[実施例] 第1図は本発明で用いる光部品10の一実施例を示して
いる。この光部品10はガラス基板40上に、光結合す
べき本来の光導波路42と調心用のスラブ導波路46と
を同じレベルで形成した構造である。光導波路42は2
段階のイオン交換によって製作した埋込み型車−モード
2分枝光導波路である。この実施例では調心する相手方
の光部品として光ファイバを用いている。光導波路42
の入射端42aに面して光ファイバ14aが位置し、光
導波路42の出射端42b、42cにそれぞれ光ファイ
バ14b。
[Example] FIG. 1 shows an example of an optical component 10 used in the present invention. This optical component 10 has a structure in which an original optical waveguide 42 to be optically coupled and a slab waveguide 46 for alignment are formed on the same level on a glass substrate 40. The optical waveguide 42 has two
This is an embedded type vehicle-mode two-branch optical waveguide fabricated by step ion exchange. In this embodiment, an optical fiber is used as the other optical component to be aligned. Optical waveguide 42
An optical fiber 14a is located facing the input end 42a of the optical waveguide 42, and an optical fiber 14b is located at the output ends 42b and 42c of the optical waveguide 42, respectively.

14Cが面している。光ファイバ14aの端部はブロッ
ク18に固定され、光ファイバ14b。
14C is facing. The end of optical fiber 14a is fixed to block 18, and optical fiber 14b.

14Cは導波路42の出射端ピンチに合わせてブロック
22に配列固定される。これらについては第4図に示さ
れているものと同様である。
14C are arranged and fixed on the block 22 in accordance with the output end pinch of the waveguide 42. These are similar to those shown in FIG.

上記の光部品10は、ガラス基板40に所定の導波路パ
ターンでTlo、C3” 、Ag”等による1段目のイ
オン交換を行い、次いで2段目のイオン交換を行うこと
によって、それをガラス中に埋め込んで光導波路42を
低損失化したものである。この2段目のイオン交換によ
り、目的とする本来の3次元光導波路42の周辺に、ガ
ラス基板40の屈折率より高く且つ3次元光導波路42
のコア部屈折率より低い屈折率を存するスラブ導波路(
2次元光導波路)46が形成される。
The optical component 10 described above is manufactured by performing first-stage ion exchange using Tlo, C3", Ag", etc. on a glass substrate 40 in a predetermined waveguide pattern, and then performing second-stage ion exchange. The loss of the optical waveguide 42 is reduced by embedding the optical waveguide 42 inside. By this second stage ion exchange, a three-dimensional optical waveguide 42 with a refractive index higher than that of the glass substrate 40 is formed around the intended original three-dimensional optical waveguide 42.
A slab waveguide (with a refractive index lower than the core refractive index of
A two-dimensional optical waveguide) 46 is formed.

その他、本発明で用いる光部品10としては、第2図に
示すように、光結合すべき本来の光導波路42と、それ
とは別にそれに隣接して調心用のスラブ導波路48をガ
ラス基板40に形成した構造でもよい。
In addition, as shown in FIG. 2, the optical component 10 used in the present invention includes an original optical waveguide 42 to be optically coupled, and an alignment slab waveguide 48 adjacent to the original optical waveguide 42 on a glass substrate 40. It may also be a structure formed in the following manner.

何れにしても本発明で使用する光部品は、光結合すべき
本来の光導波路の位置がスラブ導波路中に、またはスラ
ブ導波路の延長上に、換言すればそれらが基板の同じレ
ベルに形成されており、且つスラブ導波路の幅が光結合
すべき本来の光導波路よりも十分広ければいかなる構造
であってもよい。
In any case, in the optical components used in the present invention, the original optical waveguide to be optically coupled is located in the slab waveguide or on the extension of the slab waveguide, in other words, they are formed at the same level of the substrate. Any structure may be used as long as the width of the slab waveguide is sufficiently wider than the original optical waveguide to which optical coupling is to be performed.

本発明方法は、第4図に示すような従来から用いられて
いる調心装置をそのまま利用して実施できる。そこで第
1図に示すような構造の光部品10と光ファイバ14a
、・・・、14cとの調心を例にとって説明する。先ず
光ファイバ14a及び光ファイバ14b、14cと2分
岐光導波路42とを光結合する際に、第1図仮想線で示
すようにスラブ導波路46を用いて光ファイバ14 a
 + ・・・、14cとの基板厚み方向(Y方向)の位
置合わせを行う0次いでその位置から光ファイバ14a
、・・・、14Cを基板水平方向(X方向)に矢印M、
Nで示すように移動し、本来の光導波路42を用いてX
方向の粗調心を行う、そして最終的に精密調心を行って
結合する。
The method of the present invention can be carried out using a conventionally used alignment device as shown in FIG. Therefore, an optical component 10 and an optical fiber 14a having a structure as shown in FIG.
, . . . , 14c will be explained as an example. First, when optically coupling the optical fiber 14a and the optical fibers 14b and 14c to the two-branch optical waveguide 42, the slab waveguide 46 is used to connect the optical fiber 14a to the two-branch optical waveguide 42, as shown by the imaginary line in FIG.
+..., 0 to align with 14c in the substrate thickness direction (Y direction) Then, from that position, optical fiber 14a
,..., 14C in the board horizontal direction (X direction) with arrow M,
Move as shown by N and use the original optical waveguide 42 to
Coarse alignment is performed in the direction, and finally fine alignment is performed to join.

具体的な手順は以下の通りである。光ファイバ14aを
ブロック18に固定し、それを微動ステージ20に取り
付ける。光ファイバ14aの一端を光源28に接続する
。光ファイバ14b、14cはブロック22に光導波路
42の出射端ピッチで配列固定し、それを微動ステージ
24に取り付ける。選ばれた1本の光ファイバ(例えば
14b)の端部に光パワーメータ30を接続する。光導
波路42及びスラブ導波路46を設けた光部品10は固
定ステージ16上に取り付けられる。このとき光部品1
0の表面と微動ステージ20.24のX方向移動軸が平
行になるように調整する。
The specific steps are as follows. The optical fiber 14a is fixed to the block 18 and attached to the fine movement stage 20. One end of the optical fiber 14a is connected to a light source 28. The optical fibers 14b and 14c are arranged and fixed on the block 22 at the output end pitch of the optical waveguide 42, and then attached to the fine movement stage 24. An optical power meter 30 is connected to the end of one selected optical fiber (for example, 14b). The optical component 10 provided with the optical waveguide 42 and the slab waveguide 46 is mounted on the fixed stage 16. At this time, optical component 1
0 so that the surface of the fine movement stage 20.24 and the X-direction movement axis of the fine movement stage 20.24 are parallel to each other.

次に顕微鏡等による目視観察によって微動ステージ20
.24を動かしてブロック18゜22と光部品10とを
密着状態とし、且つ各光ファイバ+4a、・・・、14
Cとスラブ導波路46の端面とを合わせる。この場合、
第1図Bに示すように光導波路42とスラブ導波路46
が接した状態で形成されているから、スラブ導波路46
に入射した光は光導波路42を挾んだ側のスラブ導波路
へも伝播するが、ここでは入射側、出射側の光ファイバ
14a、14bのコア位置が光導波路端42a、42b
からX軸方向の(+)側に若干ずれた位置に来るように
位置合わせする。
Next, by visual observation using a microscope etc., the fine movement stage 20 is
.. 24 to bring the block 18 22 into close contact with the optical component 10, and each optical fiber +4a, . . . , 14
C and the end face of the slab waveguide 46 are aligned. in this case,
As shown in FIG. 1B, an optical waveguide 42 and a slab waveguide 46
Since the slab waveguide 46 is formed in contact with
The incident light also propagates to the slab waveguide on the side sandwiching the optical waveguide 42, but here, the core positions of the optical fibers 14a, 14b on the input side and output side are at the optical waveguide ends 42a, 42b.
Align it so that it is slightly shifted from the (+) side in the X-axis direction.

スラブ導波路46に入射した光は幅方向(X方向)に広
がった分布を持って出射するために、光ファイバ14a
、14bの端面がガラス基板40を挾んで正確に対向す
る必要はない。
In order to emit the light incident on the slab waveguide 46 with a distribution spread in the width direction (X direction), the optical fiber 14a
, 14b do not need to sandwich the glass substrate 40 and face each other accurately.

この状態からステージ制御装置26により微動ステージ
20.24を自動微動させてY方向の位置合わせを行う
。先ずブロック18.22と光部品10との間に若干の
間隙を設けるために微動ステージ20.24をX方向へ
移動させる。その位置を中心に微動ステージ20.24
をY方向に第6図Aに示すような直線上の探索領域内で
ステップ状に移動させて、入射側及び出射側光ファイバ
のそれぞれの位置での出射側光ファイバ14bからの光
出力が最大となる位置を捜す。この場合の探索領域は、
例えば従来技術による粗調心作業でのY方向の領域と同
じ100μmの範囲とし、その間を10μmのピッチで
ステップ移動させる。入射側光ファイバ14a及び出射
側光ファイバ14bを交互に移動して光出力を測定し、
それが最大値を呈する位置を探索する。
From this state, the fine movement stage 20.24 is automatically finely moved by the stage control device 26 to perform positioning in the Y direction. First, in order to create a slight gap between the block 18.22 and the optical component 10, the fine movement stage 20.24 is moved in the X direction. Fine movement stage 20.24 centered on that position
is moved stepwise in the Y direction within the search area on a straight line as shown in FIG. Search for the location. The search area in this case is
For example, the range is set to 100 μm, which is the same as the region in the Y direction in the coarse alignment work according to the prior art, and step movement is performed within that range at a pitch of 10 μm. Measuring the optical output by alternately moving the input side optical fiber 14a and the output side optical fiber 14b,
Find the position where it has the maximum value.

次いで光出力が最大となる位置へ微動ステージ20.2
4を移動する。そのままX方向に微動ステージ20.2
4を移動して各光ファイバ14a、・・・、14Cを光
導波路42のそれぞれの端面42a、・・・、42C近
傍に対向させる。
Next, move the fine movement stage 20.2 to the position where the light output is maximum.
Move 4. Fine movement stage 20.2 in the X direction as it is
4 to oppose each optical fiber 14a, . . . , 14C near the respective end face 42a, .

その位置を中心に第6図Bに示すようなX方向の直線上
の探索領域を設定し、微動ステージ20.24をステッ
プ移動させてX方向の粗鋼心を行う。この場合もY方向
と同様に探索範囲を100μmとし、探索ピッチを10
μmとして光出力が最大値を示す位置を求める。このよ
うにして光導波路の粗調心を行う。
A search area on a straight line in the X direction as shown in FIG. 6B is set around this position, and the fine movement stages 20 and 24 are moved step by step to roughen the steel core in the X direction. In this case, as in the Y direction, the search range is 100 μm, and the search pitch is 10
Find the position where the optical output shows the maximum value in μm. In this way, the optical waveguide is roughly aligned.

粗調心が終了したならば出射側光ファイバ14cにも光
パワーメークを接続して微動ステージを更に細かいピッ
チで移動し精密な調心を行い結合させる。
When coarse alignment is completed, an optical power make is also connected to the output side optical fiber 14c, and the fine movement stage is moved at a finer pitch to achieve precise alignment and coupling.

以上、実施例に基づき本発明について説明したが、本発
明は上記のような実施例の構成のみに限定されるもので
はない。光導波路基板や導波路パターン、スラブ導波路
の形成状態、粗調心の際の探索領域、探索移動方法、移
動ピンチ等については種々の変更が可能である。
Although the present invention has been described above based on the embodiments, the present invention is not limited to the configuration of the embodiments as described above. Various changes can be made to the optical waveguide substrate, waveguide pattern, formation state of the slab waveguide, search area during coarse alignment, search movement method, movement pinch, etc.

[発明の効果] 本発明は上記のように光結合すべき本来の光導波路の近
傍に形成されているスラブ導波路を使用して、先ず間接
的に厚み方向での位置合わせを行い、次いで本来の光導
波路を使用して幅方向での位置合わせを行う2段階の調
心方法であるから、二方向についてそれぞれ直線的な探
索方法を用いることが可能となり、調心作業に要する測
定回数が大幅に削減でき作業時間を短縮できる効果があ
る。因にX側及びY側でそれぞれ10ステツプの探索領
域を設定した場合には、入射側と出射側で交互に光ファ
イバ等の光部品を移動させるため、従来技術では測定回
数は1万になるが本発明ではそれが200で済み、単純
に計算して11500に低減する。
[Effects of the Invention] As described above, the present invention uses a slab waveguide formed in the vicinity of the original optical waveguide to be optically coupled to first perform indirect alignment in the thickness direction, and then perform the original alignment. Since this is a two-step alignment method that uses an optical waveguide to perform alignment in the width direction, it is possible to use a linear search method in each of the two directions, which greatly reduces the number of measurements required for alignment work. This has the effect of reducing work time. Incidentally, if a search area of 10 steps is set on each of the X side and Y side, the number of measurements would be 10,000 with the conventional technology because optical components such as optical fibers are moved alternately on the input side and the output side. However, in the present invention, it is only 200, which is simply calculated and reduced to 11,500.

このことは従来技術よりも探索領域を拡大させることが
できることを意味しており、調心作業に際して目視によ
る位置合わせに要求される初期位置設定の精度を低くで
き、熟練者でなくても容易に調心作業を行うことが可能
となる。
This means that the search area can be expanded compared to the conventional technology, and the accuracy of initial position setting required for visual alignment during alignment work can be lowered, making it easier even for non-experts. It becomes possible to perform alignment work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1UjJA、  Bは本発明に係る光部品の一実施例
を示す斜視図と端面図、第2図A、Bは光部品の他の実
施例を示す斜視図と端面図、第3図A、Bは従来の光部
品の一例を示す斜視図と端面図である。 また第4図は調心装置の構成図、第5図は従来技術にお
ける探索領域の説明図、第6図A。 Bは本発明における探索領域を示す説明図である。 10−・・光部品、14a、14b、14cm・−光フ
ァイバ、40・・・ガラス基板、42・・・光導波路、
46.48・・・スラブ導波路。 特許出願人  日本板硝子株式会社 代  理  人     茂  見     1第1図 i2゜
1 UjJA, B are a perspective view and an end view showing one embodiment of the optical component according to the present invention, FIGS. 2 A, B are a perspective view and an end view showing another embodiment of the optical component, and FIG. 3 A, B is a perspective view and an end view showing an example of a conventional optical component. Further, FIG. 4 is a configuration diagram of the alignment device, FIG. 5 is an explanatory diagram of a search area in the prior art, and FIG. 6A. B is an explanatory diagram showing a search area in the present invention. 10-... Optical component, 14a, 14b, 14cm--optical fiber, 40... Glass substrate, 42... Optical waveguide,
46.48...Slab waveguide. Patent applicant: Nippon Sheet Glass Co., Ltd. Agent: Shigeru Mi 1 Figure 1 i2゜

Claims (1)

【特許請求の範囲】 1、光部品の光導波路同士の光軸を、光軸に直交する二
方向について位置合わせする方法において、一方の光部
品として光結合すべき本来の光導波路の近傍にスラブ導
波路を有するものを使用し、該スラブ導波路を用いてそ
の厚み方向での位置合わせを行い、次いで幅方向に本来
の光導波路まで移動して幅方向での位置合わせを行うこ
とを特徴とする光導波路の調心方法。 2、光結合すべき本来の光導波路と調心用のスラブ導波
路とがガラス基板の同じレベルに形成されていることを
特徴とする光部品。
[Claims] 1. In a method of aligning the optical axes of optical waveguides of optical components in two directions orthogonal to the optical axes, a slab is placed near the original optical waveguide to be optically coupled as one optical component. A device having a waveguide is used, the slab waveguide is used to perform alignment in the thickness direction, and then the optical waveguide is moved in the width direction to the original optical waveguide to perform alignment in the width direction. A method for aligning optical waveguides. 2. An optical component characterized in that an original optical waveguide to be optically coupled and a slab waveguide for alignment are formed on the same level of a glass substrate.
JP15298388A 1988-06-21 1988-06-21 Method of aligning optical waveguide and optical parts used therein Pending JPH01319708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15298388A JPH01319708A (en) 1988-06-21 1988-06-21 Method of aligning optical waveguide and optical parts used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15298388A JPH01319708A (en) 1988-06-21 1988-06-21 Method of aligning optical waveguide and optical parts used therein

Publications (1)

Publication Number Publication Date
JPH01319708A true JPH01319708A (en) 1989-12-26

Family

ID=15552401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15298388A Pending JPH01319708A (en) 1988-06-21 1988-06-21 Method of aligning optical waveguide and optical parts used therein

Country Status (1)

Country Link
JP (1) JPH01319708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233726A (en) * 2007-03-23 2008-10-02 Konica Minolta Opto Inc Optical waveguide element, and optical module, and optical axis adjustment method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233726A (en) * 2007-03-23 2008-10-02 Konica Minolta Opto Inc Optical waveguide element, and optical module, and optical axis adjustment method thereof

Similar Documents

Publication Publication Date Title
US4431260A (en) Method of fabrication of fiber optic coupler
EP1225460A3 (en) Optical waveguide device and method of manufacturing the same
CN106547053A (en) A kind of joints of optical fibre lock pin of MEMS technology and MPO optical fiber connector
US7221843B2 (en) Optical waveguide
KR20170033344A (en) Cross waveguide
CA2104550A1 (en) Method of Determining Azimuthal Position of Transverse Axes of Optical Fibers with Elliptical Cores
US20030048994A1 (en) Planar optical waveguide apparatus
WO2022015548A1 (en) Laser printed lensed optical fibers and associated methods
JPH01319708A (en) Method of aligning optical waveguide and optical parts used therein
JP4146788B2 (en) Optical waveguide connection module and method for fabricating the same
JPH01261604A (en) Optical coupler
JPH01283507A (en) Aligning method for optical component
CN102565935A (en) Resonant-coupling two-way transmission photon crystal waveguide and manufacturing method thereof
JP3359150B2 (en) Optical component optical loss measurement method
JPH09230167A (en) Connection structure for optical guide
JPH0346604A (en) Optical integrated circuit
Hanaoka et al. Low-loss intersecting grooved waveguides with low/spl Delta/for a self-holding optical matrix switch
US20040120651A1 (en) Planar light-wave-guide element and method for aligning the same with an optical fiber array
Barry et al. Highly efficient coupling between single-mode fiber and polymer optical waveguides
Van Erps et al. Fabrication of multimode polymer waveguides with integrated micro-mirrors using Deep Lithography with Protons
JPH10213718A (en) Structure and connection method of optical waveguide circuit and optical fiber block
JPH04204510A (en) Waveguide passage type optical part
JPH06324224A (en) Waveguide type device
JPS63282704A (en) Manufacture of optical circuit
JPS59229515A (en) Method for aligning optical axis of distributed index lens and optical fiber