JPH01319490A - Method for recovering unreacted sucrose in reaction mixture of sugar-fatty acid ester synthesizing reaction as powdery form - Google Patents

Method for recovering unreacted sucrose in reaction mixture of sugar-fatty acid ester synthesizing reaction as powdery form

Info

Publication number
JPH01319490A
JPH01319490A JP15148388A JP15148388A JPH01319490A JP H01319490 A JPH01319490 A JP H01319490A JP 15148388 A JP15148388 A JP 15148388A JP 15148388 A JP15148388 A JP 15148388A JP H01319490 A JPH01319490 A JP H01319490A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction mixture
amount
sucrose
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15148388A
Other languages
Japanese (ja)
Other versions
JP2686966B2 (en
Inventor
Shusaku Matsumoto
修策 松本
Yoshio Hatakawa
畑川 由夫
Akihiko Nakajima
明彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP15148388A priority Critical patent/JP2686966B2/en
Publication of JPH01319490A publication Critical patent/JPH01319490A/en
Application granted granted Critical
Publication of JP2686966B2 publication Critical patent/JP2686966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To remove a reaction solvent and efficiently recover an unreacted saccharide without using any solvent for purification by subjecting a reaction mixture to specific treatment to form precipitates, removing the precipitates, bringing a residual liquid into contact with a reverse osmosis membrane and spray-drying an unpermeated portion. CONSTITUTION:First, a reaction mixture from reaction for synthesizing sucrose ester of a fatty acid (hereinafter referred to as SE), containing the objective SE, an unreacted sucrose, an unreacted fatty acid methyl ester, a catalyst, soap, a fatty acid and a volatile matter is adjusted at a pH within the neutral region and are added with water, a neutral salt and sugar to precipitate the SE. The after removing the precipitates a residual liquid is brought into contact with a reverse osmosis membrane (preferably a crosslinked polyamide type, etc., with a fractioning molecular weight of 130-200). Finally an unpermeated portion is spray-dried to recover the unreacted sucrose as a powder. A temperature of the liquid to be treated with the reverse osmosis membrane is preferably 40-60 deg.C and a pH thereof is preferably 6.2-8.2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、溶媒法によるショ糖脂肪酸エステル合成反応
混合物中の未反応糖を、精製用有機溶媒を使用せずに、
残留反応溶媒と分離して工業的に粉末状態で回収する方
法に関する。
The present invention purifies unreacted sugars in a sucrose fatty acid ester synthesis reaction mixture by a solvent method without using an organic solvent for purification.
It relates to a method of separating the residual reaction solvent and recovering it industrially in a powder state.

【従来の技術】[Conventional technology]

(背景) 現在、界面活性剤として有用なショ糖脂肪酸エステル(
以後<(S E ))とも略す)は、工業的にシ、tl
!iとC8〜C22の高級脂肪酸メチルエステルとを溶
媒(ジメチルホルムアミドやジメチルスルホキシドなど
)中で適当な触媒下で反応させるか(溶媒法:特公昭3
5−13102)又は溶媒を用いずに、水の存在下でシ
ョ糖を脂肪酸石鹸と共に溶融混合物とした後、触媒の存
在下に高級脂肪酸メチルエステルと反応させること(水
奴法:特公昭51−14485号)により得られている
。 しかし、これら二種の合成法のいづれによっても、その
反応混合物中には、目的とするSEの他に、未反応の砧
、未反応の脂肪酸メチルエステル、残留触媒、石鹸、M
g&脂肪酸、揮発分等の夾雑物を含んでおり、これらの
夾雑物のうち含量が規定量を越す不純分は、製品と成る
以前に除去されなければならないが、これには多量の有
機溶媒を特徴とする特に、上記夾雑物のうち、後者の溶
媒法に伴う残留溶媒(揮発分)の除去は、近来規制′1
)が厳しくなって来ているだけに極めて重要である。 注)米国FDAの規格によれば、SE中許容される残存
メシチルスルホキシドは2 pp+m以下である(Fe
d、 Regist、、51(214)、40160−
1)。 さらにSHの工業的生産上の別の重要問題点として、未
反応糖の回収という問題がある。即ち、周知のように、
SE合成時のショ糖の反応率は低く1例えばジメチルホ
ルムアミド法の場合でも50%を出ないから(出願人会
社発行(シュガーエステル物語(1984))) 35
頁参照)、未反応ショ糖の回収なしに木工業は成り立た
ない。 そこで従来から、粗製SEからの残留反応溶媒の除去及
び未反応糖の回収という二元的目的で多量の有機溶媒が
慣用されてきたが、かかる溶媒の多用は、SHの工業的
な生産に対し、以下のような著しい不利益をもたらす。 ■ 爆発、火災の危険性。 ■ 上の■に備えた電気装置の防爆化。 ■ 上の■に備えた製造装置の密閉化。 [株] 上の■に備えた建物全体の耐火構造化。 ■ 上の■、■、■による固定費の上昇。 ■ 溶媒の損耗による原価の上昇。 ■ 製品SE中に残留する残留溶媒による負効果。 ■ 従業員の健康上への悪影響、ひいてはその予防のた
めのシフト数の増加に伴う固定費の上昇。 このような事情から、SE精製及び糖回収時における有
機溶媒の使用を不必要化する技術の開発は、当業界にお
ける切実な要望であった。 (従来技術の問題点) そこで従来から有機溶媒を利用しないSE精製及び糖回
収法が検討され、例えば代表的なものとして、 (1)酸性水溶液によるSEの沈殿方法(英国特許80
9,815 (1959)) (2)一般の中性塩水溶液によるSEの沈澱法(特公昭
42−8850) などが知られている。 しかし方法(1)のように5例えば塩酸水溶液を反応混
合物中に加えると、成る程SEは直ちに沈澱するが、未
反応のショ糖は容易にグルコースと果糖とに分解、転化
し、たとえ低温(0〜5℃)で行っても分解を避けるこ
とができない、このため未反応糖の回収、再利用が困難
となる6周知のように、SE合戊時のショ糖の反応率は
低く、例えば、ジメチルホルムアミド法の場合でも50
%を出ないから(出願人会社発行(シュガーエステル物
35(1984))> 35頁参照)、未反応ショ糖の
回収なしに木工業は成り立たない。 また、方法(2)のように、食塩や芒硝などの中性塩の
水溶液を反応混合物中に加えてもSEは直ちに沈澱する
。この場合、未反応糖の分解こそ起こらないが、SE中
の有用な成分であるモノエステルが水相側に溶解してし
まうため、大きなロスを生じるのみでなく、特に近来需
要の多い高1(LBのSEを得たいとき妨げとなる。 さらにより最近の特開昭51−29417によれば、水
と°゛精製溶媒” (反応溶媒と区別するために、特に
そう呼ぶ)の混合溶液が軽液層(上層)と正液層(下層
)に分相する性質が利用される。即ち、一般に正液層(
下層)には水が多く含まれているので、親水性の未反応
糖、触媒由来の塩などがこの正液層(下層)に溶解して
いる。一方軽液層(上層)は、精製溶媒が多く含まれて
いるので、SE、脂肪酸、未反応脂肪酸メチルエステル
等の極性の小さいものは、この軽液層に溶解してくる。 ところが、ジメチルスルホキシドなど反応溶媒は、下層
の正液層にも溶解するが、都合の悪いことに上層の軽液
層にも溶解するので、この方法だけで反応溶媒を完全分
離するのは不可能である。 その上、微量の反応溶媒のみならず、未反応糖を除去、
回収する目的で、非常に多量の精製溶媒が必要となる。 (発明の理念) このように、水による粗製SEの精製及び未反応糖の回
収を工業的に可能ならしめるためには、反応溶媒及び精
製溶媒の除去が完全で、しかも糖及び製品SHのロスを
生じない精製方法を開発することが大前提となる。けだ
しこの理念に基づく反応混合物の精製では、水に対する
SEと未反応ショ糖の溶解度差を利用することが基本と
なるから、水側に多量の未反応糖が移行するのは避けら
れず、この溶解糖の精製及び回収なしには、木工業は経
済的にも社会的にも存立できない、従って、精製時水側
へ移行した糖を如何に効果的に回収することが発明の重
要な命題である。
(Background) Currently, sucrose fatty acid esters (
(hereinafter also abbreviated as <(S E ))) is industrially
! i and a C8-C22 higher fatty acid methyl ester are reacted in a solvent (dimethylformamide, dimethyl sulfoxide, etc.) under an appropriate catalyst (solvent method: Tokko Sho 3)
5-13102) or by making sucrose into a molten mixture with fatty acid soap in the presence of water without using a solvent, and then reacting it with higher fatty acid methyl ester in the presence of a catalyst (Mizunu method: Japanese Patent Publication No. 1973- No. 14485). However, in both of these two synthetic methods, in addition to the target SE, the reaction mixture contains unreacted minuta, unreacted fatty acid methyl ester, residual catalyst, soap, M
Contains impurities such as fatty acids, volatile matter, etc. Among these impurities, impurities whose content exceeds the specified amount must be removed before becoming a product, but this involves using a large amount of organic solvent. In particular, among the impurities mentioned above, the removal of residual solvent (volatile matter) associated with the latter solvent method has recently been regulated '1.
) is becoming increasingly strict, so this is extremely important. Note: According to the US FDA standards, the amount of residual mesityl sulfoxide allowed during SE is 2 pp+m or less (Fe
d, Register, 51(214), 40160-
1). Furthermore, another important problem in the industrial production of SH is the problem of recovering unreacted sugar. That is, as is well known,
The reaction rate of sucrose during SE synthesis is low1, for example, it does not reach 50% even in the dimethylformamide method (Sugar Ester Story (1984), published by the applicant company) 35
(see page), wood industry cannot exist without recovery of unreacted sucrose. Therefore, large amounts of organic solvents have conventionally been used for the dual purpose of removing residual reaction solvent from crude SE and recovering unreacted sugars, but the heavy use of such solvents has hindered the industrial production of SH. , resulting in significant disadvantages such as: ■ Risk of explosion or fire. ■ Explosion-proofing of electrical equipment in preparation for ■ above. ■ Seal the manufacturing equipment in preparation for the above ■. [Co., Ltd.] The entire building has a fire-resistant structure in preparation for ■ above. ■ Increase in fixed costs due to ■, ■, and ■ above. ■ Increased cost due to solvent wastage. ■ Negative effects due to residual solvent remaining in product SE. ■ An increase in fixed costs due to an increase in the number of shifts required to prevent negative health effects on employees. Under these circumstances, there has been a pressing need in the industry to develop a technology that eliminates the need for the use of organic solvents during SE purification and sugar recovery. (Problems with the prior art) Therefore, SE purification and sugar recovery methods that do not use organic solvents have been studied, and representative methods include: (1) SE precipitation method using an acidic aqueous solution (British Patent No. 80
9,815 (1959)) (2) A method of precipitation of SE using a general neutral salt aqueous solution (Japanese Patent Publication No. 42-8850) is known. However, when an aqueous solution of hydrochloric acid is added to the reaction mixture as in method (1), SE is immediately precipitated, but unreacted sucrose is easily decomposed and converted into glucose and fructose, and even at low temperatures ( Decomposition cannot be avoided even if the reaction is carried out at a temperature of 0 to 5°C, making it difficult to recover and reuse unreacted sugar.6 As is well known, the reaction rate of sucrose during SE synthesis is low, e.g. , even in the case of the dimethylformamide method, 50
% (see page 35 of Sugar Ester Materials 35 (1984) published by the applicant's company), wood industry cannot exist without recovery of unreacted sucrose. Furthermore, even if an aqueous solution of a neutral salt such as common salt or Glauber's salt is added to the reaction mixture as in method (2), SE will immediately precipitate. In this case, unreacted sugar does not decompose, but the monoester, which is a useful component in SE, is dissolved in the aqueous phase, which not only causes a large loss, but also high According to the more recent Japanese Patent Application Laid-Open No. 51-29417, a mixed solution of water and a "purified solvent" (especially referred to as such to distinguish it from a reaction solvent) is a light-weight solution. The property of phase separation into a liquid layer (upper layer) and a positive liquid layer (lower layer) is utilized.In other words, in general, the positive liquid layer (
Since the lower layer contains a lot of water, unreacted hydrophilic sugars, catalyst-derived salts, etc. are dissolved in this positive liquid layer (lower layer). On the other hand, since the light liquid layer (upper layer) contains a large amount of purified solvent, substances with low polarity such as SE, fatty acids, and unreacted fatty acid methyl esters are dissolved in this light liquid layer. However, reaction solvents such as dimethyl sulfoxide dissolve in the lower positive liquid layer, but unfortunately they also dissolve in the upper light liquid layer, so it is impossible to completely separate the reaction solvent using this method alone. It is. Moreover, not only trace amounts of reaction solvent but also unreacted sugars are removed.
For recovery purposes, very large amounts of purified solvent are required. (Principle of the Invention) As described above, in order to make purification of crude SE using water and recovery of unreacted sugar industrially possible, it is necessary to completely remove the reaction solvent and the purification solvent, and to reduce the loss of sugar and product SH. The major premise is to develop a purification method that does not produce. Purification of the reaction mixture based on this principle basically utilizes the solubility difference between SE and unreacted sucrose in water, so it is inevitable that a large amount of unreacted sugar will migrate to the water side. Without the purification and recovery of dissolved sugar, the wood industry cannot exist both economically and socially.Therefore, an important objective of the invention is how to effectively recover the sugar that has migrated to the water side during purification. be.

【発明が解決しようとする課題】[Problem to be solved by the invention]

よって本発明が解決しようとする課題は、精製用溶媒を
使用しないで、工業的に、反応溶媒を除去すると共に、
反応混合物中の未反応糖を回収する手段を開発すること
である。 (発明の概念) そこで本発明者は、(イ)水相側に溶解するSE量を最
少限に押えるのみならず、可能ならば該量を零として全
量のSEを沈澱させること、(α)未反応糖の分解を避
けること、(ハ)残留する反応溶媒を水相外に溶解させ
ることにより、SEから分離すること及び(ニ)上の沈
殿を分離した注液(又は上清)中の未反応糖を効率的に
回収することの三点の解決を目標として多くの塩析実験
を行なった結果、ショ糖と中性塩を反応混合物の水溶液
中に溶解させたとき、適当なpH1温度、中性塩及びシ
ョ糖の濃度及び水量の組合せの下で、SEの略々全量が
沈澱するのみならず、意外なことに、水相には未反応の
糖以外に反応溶媒が溶解するに至るという、都合の良い
現象を見出した。従って。 この現象を利用して、沈澱したSEを再度水に溶解後、
中性塩及びショ糖水溶液による沈澱操作を反復すること
により、SEの損失を事実上防止しながら、残留する揮
発分(残留する反応溶媒)を完全に水相中に移行させる
ことができること、及び、上の沈殿を除去した残液を適
当な逆浸透膜と接触させることによって、SE反応混合
物中の未反応糖を精製された状態で効率的に回収できる
ことが明らかとなった。 (概要) 本発明は以上の知見に基〈もので、その要旨は、目的物
のショ糖脂肪酸エステル以外に、未反応の糖、未反応の
脂肪酸メチルエステル、触媒。 石鹸、脂肪酸及び揮発分を含むショ糖脂肪酸エステル合
成反応混合物を、中性憤城のpHに調整し、木、中性塩
及びショ糖を加え、沈殿物を分a後、残液を逆浸透膜と
接触させ、不透過部を噴霧乾燥することを特徴とするシ
ョ糖脂肪酸エステル合成反応混合物中の未反応四を粉末
状として回収する方法に存する。以下1発明を組成する
諸要素につき説明する。 (以下余白) (溶媒法SE合成反応混合物) 溶媒法によるSHの合成においては1通常、シーl糖と
脂肪酸メチルエステルとの混合物に、これらの合計量に
対し数倍量の反応溶媒、例えばジメチルスルホキシドを
添加、溶解させ、炭酸カリウム(K2 C03)等のア
ルカリ性触媒の存在下、20〜30Tarr近辺の減圧
下に、数時間80〜80℃に保持することにより、容易
に90%以上の反応率(脂肪酸メチルエステル基準)に
てSE反応混合物が生成する。 次に、SE反応混合物中のアルカリ性触媒の活性を消失
させるため、乳酸、酢酸等の有機酸又は塩酸、硫酸等の
鉱酸を当量だけSE反応組成物に添加する。この中和に
より、触媒は、中和に使用された酸の種類に応じて1例
えば乳酸カリウム等のカリウム塩に変化する。 最後に、反応溶媒(例えばジメチルスルホキシド)を真
空下に留去すると、大略、下記組成範囲のAI′1成物
(中和及び蒸留後の反応混合物)となる。 S E                  −15,
0〜92%未反応糖         −1,0〜80
%未反応脂肪酸メチルエステル=0.5〜lO%炭酸カ
リウム由来の中性塩 = 0.05〜7%石鹸    
       =1,0〜10%脂肪酸       
   =0,5〜10%揮発分(残留する反応溶媒)=
5.0〜30%このとき、SHのエステル分布は、モノ
エステル10〜75%(ジエステル以上が90〜25z
)である。 そして、脂肪酸メチルエステル、石鹸及び脂肪酸の夫々
に主として含まれる脂肪酸根は、飽和であって、CI6
〜022の共通炭素数を持つ。 (加水) 次に、上の反応混合物に対して水を、 水:反応混合物=5=1〜40:I(重量比)・・(1
)式の割合になるように、更に望ましくは。 水:反応混合物=20:l(重量比)・・・・・・・(
2)式の割合に加えると共に、pHを6.2〜8.2.
望ましくはp)17.5とする。 この場合、水の添加割合が上の範囲から外れ。 例えば、水と反応混合物との量比が5未満となった場合
は、得られた水溶液の粘度が大となり、実質的に以後の
操作が困難となる。また、逆に、水と反応混合物との量
比が4ONi過となる程に過剰の水を加えた場合は、粘
度が小となって以後の操作が容易となり、かつ、目的と
する反応溶媒の除去も好適に行われるが、反面、未反応
糖等の回収に際して水分の除去に多大のエネルギーコス
トを必要とすることになって、経済性が失われることに
なる。 更に、水溶液のpHは、目的とするSEの分解を避ける
ため、 pH6,2〜8.2の間に調整されるのが好ま
しい、 pH8,2以上の水素イオン濃度下では。 アルカリによる定量的なSEの分解が起こる心配があり
、またpH6,2以下の弱酸性域でも1例えば80℃以
上の高温にさらされると、酸分解の恐れがある。 (塩析) 以上の如< pHm整されたSE反応混合物の水溶液を
、なるべく50〜80℃に保って、更に中性塩及びショ
糖を加える。この場合、加えるべき中性塩は、先ず下式
(3)を満たしているのが好ましい。 = 0.015〜0.12 (重量比)・・・・・・・
・(3)ここで、 合計基量=加えるべき中性塩量+触媒から形成される基
量・・・・・・・・・・・・・・(4)合計w4量=加
えるべきシヨam十当初からの未反応槍量 ・・・・・
・・・・・・・・・(5)次に、加えるべきショ糖の量
は、下式(8)により定められるのがよい。 = 0.025〜0.20(!rr量比)・・・・・・
・・・・(6)更に、上記の両式に加え1合計環員と合
計II量の重量比率もまた、下式(7)を満足している
のが好ましい。 本発明者らは、上記式(3) (8)及び(7)を三者
共に満たすように中性塩及びショ糖を加えて得たSEの
沈澱を含む水溶液を、50〜80℃まで加熱昇温させる
と、たとえ5Eff応混合物中に含まれる揮発分(残留
するり応溶媒)の組成が5.0〜30.0%と大幅に振
れようとも、略々近似的に全量のSEが沈澱することを
見出した。この現象は特異な現象であると共に1発明目
的に関連して重要な価値を有するものである。 添付の第1図は、この現象をより詳しく示す三元グラフ
である。この図において。 水相側に溶解しているSEの重量=Y [g]沈澱して
いるSHの重量=X [g] 全S E (X+Y)[g] に対して、水相側に溶解
しているSEの重量割合=φ[%] とすれば、φは下式(8)で定義される。 φ= −X 100 ($)       (8)X+
Y ここで、以下の条件: (以下余白) 温度二80℃、pH−7,5、 水:反応混合物=7.4  : 1 (瓜艮比)脂肪酸
残基=ステアリン酸 反応混合物の組成 SE            =29%未反応杷   
      =35% 未反応脂肪酸メチルエステル= 2% 触媒由来の塩       = 1% 石峙           =3% 脂肪酸          = 1% 揮発分(残留する反応溶媒)=29% SE中のエステル分布:モノエステル273%ジエステ
ル以上=27% において、φの値がどのように変化するかが三角座標で
示される。 ここに、合計塩は式(4)により、合計糖は式(5)に
より夫々で定義された量であって、水量十合計基量+合
計量量=100% として表示しである。 本第1図の斜線の部分は、本発明者らが発見した式(3
)、式(6)、及び式(7)を同時に満たす領域である
。 この斜線の部分に入るような中性塩及びショ糖の溶解量
を決めることによって、実質的にφ=0即ち、近似的に
全量のSEを沈ド化させると同時に、水相側に揮発分(
残留している反応溶奴)。 未反応ショ糖、触媒からの副生塩及び添加した中性塩を
溶解させ、沈殿したSE分と完全に分離することができ
る。 (逆浸透) 次に、以上の工程によりSE合成反応混合物中から水相
として分離されたショ糖、触媒(K2 CO3)からの
副生塩、塩析のため添加された中性塩及び揮発分の囲者
を含む混合水溶液中より1選択的にショ糖のみを分離1
回収することが、発明目的達成上重要な条件となる。 しかるに発明者らは、この目的に逆浸透法の利用が特に
有効であることを見出した。 ここに逆浸透膜の分画分子量として130〜200の範
囲のものを選ぶと、未反応糖(分子1342)や、偶々
前段の塩析処理等で濾液側へ流亡したSE(分子m60
0以上)は、共に問題なく鑓別されるへきことが予想さ
れる。 一方、膜の分画分子量が130〜200より小さいと、
触媒からの副生塩1例えば、乳酸カリウム(分子141
28)や、添加された中性塩や揮発分、例えばジメチル
スルホキシド(分子量“78)は、問題なく、逆浸透膜
の微細孔を通過するであろう。 この推定に基づき多くの実験を重ねた結果、前段の塩析
処理を経たシヨ糖、触媒からの副生塩、塩析時添加され
た中性塩及び揮発分、並びに、時として少量〜微量のS
Eを含む水溶液は、温度40〜60℃で、分画分子量1
50〜200近辺の逆浸透膜に対し、駆動源として限外
濾過時より大きな圧力を付与されつつ接触せしめられた
とき、触媒からの副生塩、加えられた中性塩及び揮発分
の王者は、水と共に逆浸透膜の微細孔を容易に通過する
ことが分った。この逆浸透操作によって、不純なシー、
ffl水溶液(場合により少量のSEを含む)は、水、
触媒からの副生塩及び塩析に際し加えられた中性塩及び
揮発分等の低分子量の物質から分離され、濃厚な粗糖水
溶液の形となる。そしてここに得られた粗糖水溶液を再
び新鮮な水に溶解させ、再度(又は再三)同様の逆浸透
処理に付すことにより、より純度の高いショ糖水溶液が
得られる。 以上において、逆浸透膜へ供給する被処理水溶液の温度
は良好な結果を期待するため重要であって、若し本温度
が40℃以下に低下すると、処理能力が著しく低下する
ので、実用的には40℃以上の温度を選ぶのがよい、但
し60℃を超えると、逆浸透膜の耐熱性に懸念を生じ、
かつSEのミセル構造も変化する可能性があるので、該
上限温度以下の温度で処理するのが賢明である。なお、
上記水溶液のpHも実際上重要であって、pH8,2〜
8.2の領域内がショ糖の品質に影響する恐れが小さい
点で好ましい。 (逆浸透膜) 工業的な逆浸透膜は、近年進歩したものが各社から多数
上古されている。これら市販の逆浸透膜の中、耐久性、
耐熱性、耐酸、耐アルカリ性、耐菌性及び削正性に優れ
たものの例として、架橋ポリナミド系の逆浸透膜がある
。この膜は2例えば東しエンジニアリング■阪売に係る
逆浸透膜、商品名((S11−200)>等は、前述の
分画分子量200近辺の値を持ち1本発明目的によく合
致する。 分画分子量が200近辺の逆浸透膜の場合、供給される
水溶液中の溶質濃度は、大凡、上限値として8〜20%
、望ましくは、溶質濃度の上限値として8〜15%程度
に押えることによって、工業的な処理能力を発揮させる
ことができる。 濃度が15%を越える溶質濃度の場合、逆浸透膜の微細
孔内を水、触媒からの副生塩及び揮発分が、通過し難く
なり、その分、駆動圧を高めることを余儀なくされるか
ら、結果的に膜面蹟を広くとらざるを得す、かつまた、
大動力を必要とすることになるので甚だ不経済である。 これに対し、8〜15%程度の溶質濃度であれば、工業
的なショ糖の分離は充分に可能である0例えば、下表−
1の組成の水溶液の場合、ショ糖の分離速度は、pH7
,5,温度50℃、駆動圧58.0kg/cm’Gのと
き、■ユニット当たり有効面u8rn’の前記逆浸透膜
<<5IJ−200>)で 7.3Kg・糖 時 に達し、他社の類似8便においても概ね同様が得られた
。そしてどの場合においても、溶存した少量のSEもシ
ョ糖と共に収率よく回収できた。 以上の逆浸透処理において1反復逆浸透膜処理により、
触媒からの副生塩、添加中性塩及び揮発分の王者を充分
に除去されたショ糖含有水溶液には、大兄15〜20%
程度の糖濃度を保たせることができる。濃度20%以上
の糖水溶液を得るのは、技術的に困難となる以外に、経
済性も低下してくる。 (噴霧乾燥) 以上の逆浸透処理により、未反応のショ糖及び塩析時添
加したショ糖は、実質的に純粋な水溶液の形で回収でき
、このショ糖溶液は、それ自体種々の目的に利用できる
が、SE合成反応には利用できない、その理由は、溶媒
法SE合成プロセスでは微量の水分存在も木工ステル交
換反応に悪影響を与えることが知られ(LLOID 0
3IPOW at at、。 ジャーナル・オブ・ジ・アメリカン・オイル・ケミスツ
・ソサイエティ(JAOCS] 34巻185頁)、実
際の作業条件として0.05%以下の無水条件が採用さ
れているからである(上掲諸44頁参照))、それ故、
折角高純度のシ:ftfA溶液を回収できても、工業的
な脱水、乾燥に成功しなければ、ショ糖の回収は究極的
に意味を持たないことになる。 ところで、化学的に純粋シH糖は188℃で熔融するが
、この融点は少量の不純物の存在で大帳に低下する。加
えて、濃厚なショ糖水溶液は、粘稠なシロップとなり、
加熱によりカラメル化する性質があるから、濃厚なショ
糖水溶液を通常の攪拌型真空乾燥機を用いて真空乾燥す
ると、v4濃度が高くなるにつれ脱水、乾燥が困難とな
って、やむなく高温、長時間の処理を余儀なくされる結
果、ショ糖は、強度の着色及びカラメル化を引き起こす
、また別の乾燥法として、スラリーを連続的に加熱して
、真空室へ供給、放出させる所謂フラッシュ式の乾燥機
を用いた場合においても、水の持つ大きな潜熱(500
Kca l/Kg・水以上)のため、充分な脱水、乾燥
には困難がりき1う、そして、仮にこれらの困難を克服
できたとしても、真空下で脱水、乾燥された後のショ糖
を乾燥機から取出してから、融点以下まで冷風などを吹
きつけて冷却後、粉砕する工程を必要とする。 以上、粉末状ショ糖とするための一連の工程を要約する
と、■ 真空下での脱水、乾燥、■ 真空乾燥機よりの
ショ糖の取出し、■ 取出されたショ糖の冷却と固化、
■ 固化したショ糖の粉砕、等の多工程を必要とするの
で、経済的にも望ましくない他、特に■の粉砕工程では
、粉塵爆発の懸念が附随する。 しかるに本発明者は研究の結果、逆浸透により得られた
ショ糖溶液から、ショ糖の品質を劣化させない工業的な
脱水、乾燥法として、特に噴霧乾燥法が適していること
を見出した。即ち、ショ糖水溶液をポンプを介して噴霧
乾燥塔へ連続的に供給し、ノズル又は回転円盤、望まし
くは後者を介して供給されたショ糖水溶液を分散、霧化
させることにより、水の蒸発面蹟を極めて大きくするこ
とができるので、噴霧後、数秒以内に脱水、乾燥を完了
せしめ得る。 噴霧乾燥塔へ供給されるショ糖水溶液の温度は、普通4
0℃〜80℃の範囲内の温度がよい0回転円盤により分
散させる場合、該円板の直径が5〜10cmφのとき、
15.00Orpm 〜24.OOOrpmの回転数が
適当である。送風される空気は、スラリー中の水分を蒸
発させるに必要な熱量以上を保有すべきであるから、空
気温度が低い場合は、当然、多量の空気が必要となる。 空気温度は10℃から100℃の間で選択できるが、シ
ョ糖の変質を避けるため、60℃〜80°Cの間で選ぶ
のが望ましい。 送風空気中の湿度も前記の空気温度と併せて重要である
が、大略、絶対湿度として、 の値を選ぶのが経済的である。 噴霧乾燥塔の容績、塔径、高さ等のファクターは、以上
の噴霧条件を基礎に設計される0条件が適当であれば、
水分量5%以下の粉末状ショ糖が、噴霧乾燥塔の下部よ
り連続的に取り出される。 以上説明したように、塩析、逆浸透及び噴霧乾燥の3工
程を有機的に結合させることによって。 SE反応混合物中の未反応シ!1糖を工業的に回収する
ことが可能となる。
Therefore, the problem to be solved by the present invention is to industrially remove the reaction solvent without using a purification solvent, and to
The objective is to develop a means to recover unreacted sugars in the reaction mixture. (Concept of the Invention) Therefore, the inventor of the present invention aimed to (a) not only minimize the amount of SE dissolved in the aqueous phase side, but also set the amount to zero if possible to precipitate the entire amount of SE; (c) separating the remaining reaction solvent from the SE by dissolving it outside the aqueous phase; and (d) separating the above precipitate from the separated injection solution (or supernatant). As a result of many salting-out experiments aimed at solving the three points of efficiently recovering unreacted sugar, we found that when sucrose and neutral salts are dissolved in an aqueous solution of the reaction mixture, an appropriate pH 1 temperature is reached. , under the combination of neutral salt and sucrose concentrations and water amounts, not only almost the entire amount of SE precipitates, but surprisingly, not only is the reaction solvent dissolved in the aqueous phase in addition to the unreacted sugar. I discovered a convenient phenomenon. Therefore. Taking advantage of this phenomenon, after dissolving the precipitated SE in water again,
By repeating the precipitation operation with a neutral salt and sucrose aqueous solution, the remaining volatiles (residual reaction solvent) can be completely transferred into the aqueous phase while virtually preventing loss of SE; It has become clear that unreacted sugars in the SE reaction mixture can be efficiently recovered in a purified state by contacting the residual liquid after removing the above precipitate with an appropriate reverse osmosis membrane. (Summary) The present invention is based on the above findings, and its gist is that, in addition to the target sucrose fatty acid ester, unreacted sugar, unreacted fatty acid methyl ester, and a catalyst. The sucrose fatty acid ester synthesis reaction mixture containing soap, fatty acids, and volatile components was adjusted to a neutral pH, wood, neutral salt, and sucrose were added, and after separating the precipitate, the remaining liquid was subjected to reverse osmosis. The present invention relates to a method for recovering unreacted 4 in a sucrose fatty acid ester synthesis reaction mixture in the form of powder, which comprises contacting with a membrane and spray-drying an impermeable part. The various elements constituting one invention will be explained below. (Left below) (Solvent method SE synthesis reaction mixture) In the synthesis of SH by the solvent method, 1. Usually, a reaction solvent such as dimethyl is added to a mixture of sealing sugar and fatty acid methyl ester in an amount several times the total amount of these. A reaction rate of 90% or more can be easily achieved by adding and dissolving sulfoxide and maintaining it at 80 to 80°C for several hours under reduced pressure around 20 to 30 Tarr in the presence of an alkaline catalyst such as potassium carbonate (K2C03). An SE reaction mixture is produced (based on fatty acid methyl ester). Next, in order to eliminate the activity of the alkaline catalyst in the SE reaction mixture, an equivalent amount of an organic acid such as lactic acid or acetic acid or a mineral acid such as hydrochloric acid or sulfuric acid is added to the SE reaction composition. This neutralization converts the catalyst into a potassium salt, such as potassium lactate, depending on the type of acid used for neutralization. Finally, the reaction solvent (for example, dimethyl sulfoxide) is distilled off under vacuum, resulting in an AI'1 product (reaction mixture after neutralization and distillation) approximately having the following composition range. SE-15,
0-92% unreacted sugar -1,0-80
% unreacted fatty acid methyl ester = 0.5-1O% neutral salt derived from potassium carbonate = 0.05-7% soap
=1.0-10% fatty acids
=0.5-10% volatile content (residual reaction solvent)=
5.0 to 30% At this time, the ester distribution of SH is monoester 10 to 75% (diester or more is 90 to 25%
). The fatty acid roots mainly contained in each of fatty acid methyl ester, soap, and fatty acid are saturated and CI6
They have a common carbon number of ~022. (Addition of water) Next, water was added to the above reaction mixture, water: reaction mixture = 5 = 1 to 40: I (weight ratio)... (1
) More preferably, the ratio is as follows. Water: Reaction mixture = 20: l (weight ratio) (
2) Add to the ratio of the formula and adjust the pH to 6.2 to 8.2.
Preferably p) is 17.5. In this case, the water addition ratio is outside the above range. For example, if the ratio of water to reaction mixture is less than 5, the resulting aqueous solution will have a high viscosity, making subsequent operations substantially difficult. Conversely, if an excess of water is added to the extent that the ratio of water to reaction mixture becomes 4ONi, the viscosity decreases and subsequent operations become easier, and the desired reaction solvent is Although removal is carried out suitably, on the other hand, a large amount of energy cost is required to remove water when recovering unreacted sugars, etc., resulting in a loss of economic efficiency. Furthermore, the pH of the aqueous solution is preferably adjusted between pH 6.2 and 8.2 in order to avoid decomposition of the target SE, under hydrogen ion concentrations of pH 8.2 or higher. There is a risk that SE may be quantitatively decomposed by alkali, and even in a weakly acidic range of pH 6.2 or lower, there is a risk of acid decomposition if exposed to high temperatures of, for example, 80° C. or higher. (Salting out) The aqueous solution of the SE reaction mixture whose pH has been adjusted as described above is maintained at a temperature of 50 to 80° C., and a neutral salt and sucrose are further added thereto. In this case, it is preferable that the neutral salt to be added first satisfies the following formula (3). = 0.015 to 0.12 (weight ratio)...
・(3) Here, total amount of bases = amount of neutral salts to be added + amount of bases formed from the catalyst (4) Total amount of w4 = amount of bases to be added Amount of unreacted spears since the beginning of 10...
(5) Next, the amount of sucrose to be added is preferably determined by the following formula (8). = 0.025 to 0.20 (!rr amount ratio)...
(6) Furthermore, in addition to the above two formulas, it is preferable that the weight ratio of one total ring member to the total II amount also satisfies the following formula (7). The present inventors heated an aqueous solution containing SE precipitate obtained by adding a neutral salt and sucrose to 50 to 80°C so as to satisfy all three of the above formulas (3), (8) and (7). When the temperature is raised, approximately the entire amount of SE will precipitate, even if the composition of the volatile components (residual reaction solvent) contained in the 5Eff reaction mixture varies greatly from 5.0 to 30.0%. I found out what to do. This phenomenon is both unique and of important value in relation to one purpose of the invention. The attached FIG. 1 is a ternary graph showing this phenomenon in more detail. In this figure. Weight of SE dissolved in the aqueous phase = Y [g] Weight of precipitated SH = X [g] SE dissolved in the aqueous phase relative to the total SE (X + Y) [g] If weight ratio = φ [%], φ is defined by the following formula (8). φ= −X 100 ($) (8)X+
Y Here, the following conditions: (blank space below) Temperature: 280°C, pH: -7.5, Water: Reaction mixture = 7.4: 1 (Urani ratio) Fatty acid residue = Stearic acid Composition of the reaction mixture SE = 29% unreacted loquat
= 35% Unreacted fatty acid methyl ester = 2% Salt derived from catalyst = 1% Ishichichi = 3% Fatty acid = 1% Volatile matter (residual reaction solvent) = 29% Ester distribution in SE: monoester 273% or more diester =27%, how the value of φ changes is shown by triangular coordinates. Here, the total salt is the amount defined by formula (4), and the total sugar is the amount defined by formula (5), respectively, and they are expressed as water amount + total base amount + total amount = 100%. The shaded part in Figure 1 is the formula (3) discovered by the present inventors.
), equation (6), and equation (7) at the same time. By determining the dissolved amounts of neutral salt and sucrose that fall within this shaded area, it is possible to substantially precipitate φ=0, that is, approximately the entire amount of SE, and at the same time remove volatiles from the aqueous phase. (
(residual reaction melt). Unreacted sucrose, by-product salts from the catalyst, and added neutral salts can be dissolved and completely separated from the precipitated SE component. (Reverse osmosis) Next, sucrose separated as an aqueous phase from the SE synthesis reaction mixture through the above steps, by-product salts from the catalyst (K2 CO3), neutral salts added for salting out, and volatile components. Selectively separate only sucrose from a mixed aqueous solution containing 1
Recovery is an important condition for achieving the purpose of the invention. However, the inventors have found that the use of reverse osmosis is particularly effective for this purpose. If a reverse osmosis membrane with a molecular weight cutoff in the range of 130 to 200 is selected, unreacted sugars (molecules 1342) and SE (molecules m60
0 or more) are expected to be separated without any problem. On the other hand, if the molecular weight cutoff of the membrane is smaller than 130-200,
By-product salts from the catalyst 1 For example, potassium lactate (molecule 141
28), added neutral salts and volatile substances, such as dimethyl sulfoxide (molecular weight: 78), will pass through the micropores of the reverse osmosis membrane without any problem. Based on this assumption, many experiments were conducted. As a result, sucrose that has undergone the salting-out process in the previous stage, by-product salts from the catalyst, neutral salts and volatile matter added during salting-out, and sometimes a small to trace amount of S
The aqueous solution containing E has a molecular weight cutoff of 1 at a temperature of 40 to 60°C.
When brought into contact with a reverse osmosis membrane of around 50 to 200 membranes under a higher pressure than during ultrafiltration as a driving source, the by-product salts from the catalyst, the added neutral salts, and the volatile components are , it was found that it easily passes through the micropores of reverse osmosis membranes along with water. This reverse osmosis operation removes impure seawater.
ffl aqueous solution (optionally containing a small amount of SE) is water,
It is separated from low-molecular-weight substances such as by-product salts from the catalyst, neutral salts added during salting out, and volatile components, and becomes a concentrated aqueous solution of raw sugar. By dissolving the obtained crude sugar aqueous solution in fresh water again and subjecting it to the same reverse osmosis treatment again (or several times), a sucrose aqueous solution with higher purity can be obtained. In the above, the temperature of the aqueous solution to be treated that is supplied to the reverse osmosis membrane is important in order to expect good results.If the temperature drops below 40℃, the treatment capacity will drop significantly, so it is not practical. It is better to choose a temperature of 40℃ or higher; however, if it exceeds 60℃, there will be concerns about the heat resistance of the reverse osmosis membrane.
In addition, since the micelle structure of SE may also change, it is wise to perform the treatment at a temperature below the upper limit temperature. In addition,
The pH of the above aqueous solution is also important in practice, and pH 8.2 to
A range of 8.2 is preferable because there is little risk of affecting the quality of sucrose. (Reverse Osmosis Membrane) Many industrial reverse osmosis membranes, which have been advanced in recent years, are being sold by various companies. Among these commercially available reverse osmosis membranes, durability,
A cross-linked polynamide-based reverse osmosis membrane is an example of a membrane having excellent heat resistance, acid resistance, alkali resistance, bacterium resistance, and abrasion resistance. This membrane, for example, the reverse osmosis membrane manufactured by Toshi Engineering Co., Ltd. and Hanuri Co., Ltd. (trade name (S11-200)), etc., has a molecular weight cutoff of around 200, as described above, and is well suited to the purpose of the present invention. In the case of a reverse osmosis membrane with a fraction molecular weight of around 200, the solute concentration in the supplied aqueous solution is approximately 8 to 20% as an upper limit.
, Desirably, by suppressing the upper limit of the solute concentration to about 8 to 15%, industrial processing ability can be achieved. If the solute concentration exceeds 15%, it becomes difficult for water, by-product salts from the catalyst, and volatile matter to pass through the micropores of the reverse osmosis membrane, making it necessary to increase the driving pressure accordingly. , as a result, the membrane surface has to be widened, and also,
It is extremely uneconomical as it requires a large amount of power. On the other hand, if the solute concentration is about 8 to 15%, industrial separation of sucrose is fully possible.
In the case of an aqueous solution with a composition of 1, the separation rate of sucrose is at pH 7.
, 5. At a temperature of 50°C and a driving pressure of 58.0 kg/cm'G, the reverse osmosis membrane <<5IJ-200>) with an effective area of u8rn' per unit reaches 7.3 kg/sugar hour, which is similar to that of other companies. Almost the same results were obtained for Flight 8. In all cases, a small amount of dissolved SE was also recovered in good yield along with sucrose. In the above reverse osmosis treatment, by one repetition of reverse osmosis membrane treatment,
A sucrose-containing aqueous solution from which by-product salts from the catalyst, added neutral salts, and volatile components have been sufficiently removed contains 15 to 20%
It is possible to maintain a certain sugar concentration. Obtaining an aqueous sugar solution with a concentration of 20% or more is not only technically difficult, but also less economical. (Spray drying) Through the above reverse osmosis treatment, unreacted sucrose and sucrose added during salting out can be recovered in the form of a substantially pure aqueous solution, and this sucrose solution itself can be used for various purposes. However, it cannot be used in the SE synthesis reaction because it is known that the presence of a trace amount of water has a negative effect on the woodworking transesterification reaction in the solvent method SE synthesis process (LLOID 0
3IPOW at at,. Journal of the American Oil Chemists Society (JAOCS) Vol. 34, p. 185), anhydrous conditions of 0.05% or less are adopted as actual working conditions (see p. 44 of the above publications). )),Therefore,
Even if it is possible to recover a highly purified sucrose solution, unless industrial dehydration and drying are successful, the recovery of sucrose will ultimately be meaningless. By the way, chemically pure SiH sugar melts at 188°C, but this melting point is significantly lowered by the presence of small amounts of impurities. In addition, a concentrated sucrose aqueous solution becomes a viscous syrup,
Because it has the property of caramelizing when heated, if a concentrated sucrose aqueous solution is vacuum dried using a regular stirring type vacuum dryer, dehydration and drying become difficult as the V4 concentration increases, so it is unavoidable to dry it at high temperatures for a long time. Another drying method is the so-called flash dryer, in which the slurry is continuously heated, fed into a vacuum chamber, and discharged. Even when using water, the large latent heat (500
Kcal/Kg・water), it is difficult to dehydrate and dry the sugar sufficiently. Even if these difficulties could be overcome, the sucrose after being dehydrated and dried under vacuum After taking it out of the dryer, it needs to be cooled by blowing cold air to below its melting point, and then pulverized. To summarize the series of steps to produce powdered sucrose, the steps are: ■ Dehydration and drying under vacuum, ■ Removal of sucrose from a vacuum dryer, ■ Cooling and solidification of the removed sucrose,
■ Since it requires multiple steps such as crushing the solidified sucrose, it is economically undesirable, and especially in the crushing step (■), there is a risk of dust explosion. However, as a result of research, the present inventor found that a spray drying method is particularly suitable as an industrial dehydration and drying method that does not deteriorate the quality of sucrose from a sucrose solution obtained by reverse osmosis. That is, by continuously supplying an aqueous sucrose solution to a spray drying tower via a pump and dispersing and atomizing the aqueous sucrose solution supplied via a nozzle or a rotating disk, preferably the latter, the evaporation surface of water is Since the scale can be made extremely large, dehydration and drying can be completed within a few seconds after spraying. The temperature of the sucrose aqueous solution supplied to the spray drying tower is usually 4
When dispersing using a 0-rotation disc with a good temperature within the range of 0°C to 80°C, when the diameter of the disc is 5 to 10 cmφ,
15.00Orpm ~24. A rotational speed of OOOrpm is appropriate. The blown air should have more than the amount of heat required to evaporate the moisture in the slurry, so naturally a large amount of air is required when the air temperature is low. The air temperature can be selected between 10°C and 100°C, but preferably between 60°C and 80°C to avoid deterioration of the sucrose. The humidity in the blown air is also important along with the air temperature, but it is generally economical to select the value of absolute humidity. Factors such as the capacity, tower diameter, and height of the spray drying tower should be determined based on the above spray conditions, if the zero conditions are appropriate.
Powdered sucrose with a moisture content of 5% or less is continuously taken out from the bottom of the spray drying tower. As explained above, by organically combining the three steps of salting out, reverse osmosis and spray drying. Unreacted Si in the SE reaction mixture! It becomes possible to industrially recover monosaccharide.

【作用】[Effect]

未反応の糖、未反応の脂肪酸メチルエステル。 触媒1石齢、脂肪酸及び揮発分(残留する反応溶媒)を
含むショ糖脂肪酸エステル生成反応混合物に酸を加えて
中性領域のpHに調整後、水、中性塩及びショ糖を加え
て適当な温度下で塩析すると、ショ糖脂肪酸エステル、
未反応の脂肪酸メチルエステル、石鍮及び脂肪酸が沈殿
すると共に、揮発分(残留する反応溶媒)が水相側に移
行するので、全く有機溶媒を使用せずに残留揮発分を除
去することができる。特に、式(3)、式(6)及び式
(7)の条件を満足させるように操作することによって
、SEの損失が実質的に絶無の状態で残留溶媒を除去す
ることができる。 次いで、水相に逆浸透処理を施した後、残液を噴霧乾燥
することにより、未反応ショ糖のみを選択的に触媒から
の副生塩、塩析用中性塩及び揮発分から分離して未反応
のショ糖を再使用可能な粉末状態にて回収することがで
きる。 (以下余白)
Unreacted sugar, unreacted fatty acid methyl ester. Add acid to the sucrose fatty acid ester producing reaction mixture containing the catalyst, fatty acid and volatile matter (residual reaction solvent) to adjust the pH to a neutral range, then add water, neutral salt and sucrose to the appropriate temperature. When salted out at a certain temperature, sucrose fatty acid ester,
Unreacted fatty acid methyl ester, copper, and fatty acids are precipitated, and volatile components (residual reaction solvent) are transferred to the aqueous phase, making it possible to remove residual volatile components without using any organic solvent. . In particular, by operating so as to satisfy the conditions of formulas (3), (6), and (7), the residual solvent can be removed with virtually no loss of SE. Next, after subjecting the aqueous phase to reverse osmosis treatment, the residual liquid is spray-dried to selectively separate unreacted sucrose from the by-product salt from the catalyst, neutral salt for salting out, and volatiles. Unreacted sucrose can be recovered in a reusable powder form. (Margin below)

【実施例】【Example】

以下、実施例により発明実施の態様及び効果を説明する
が1例示は勿論説明のためのものであって、発明思想の
限定又は制限を意図したものではない。 実施例−1 下表−2の組成で表される溶媒法SE反応混合物から反
応溶媒を留去した残液を乳酸で中和後。 乾燥させた乾物100kgに水1.000kgを加えて
溶解させた。 (以下余白) 表−2 零エステル分布:モノエステル70L3狙ジエステル以
上30%。 この水溶液に、ショiB2.5kg及び50%乳酸カリ
ウム97.6kgを加えて、75℃まで加熱、昇温させ
、沈殿したケーキを濾別後、真空下80℃で乾燥し、固
形物の組成を調べたところ、下表−3の通りであった。 なおケーキ中の水分は45%であった。 (以下余白) 表−3 また、ケーキより濾別された濾過液中のSEiを、ゲル
濾過クロマトグラフィー(G P C)法(上掲書63
頁記iりで測定したところ、SEの存在は全く認られな
かった他、反応溶媒のジメチルスルホキシドの85%が
除去されていた。 かくして得られた濾過液1,180kg  (SEが除
去されているショ糖、塩及び揮発分を含む水溶液)に水
を加え、下表−4の組成の液を調製した。 (以下余白) 表−4 この水溶液(p)17.4)を50〜52.5℃に加熱
し、ポンプ圧力58.2Kg/cゴGで逆浸透膜((商
品名(1:5U−200))前出)(直径4インチX長
さ1メートル、+!!過面摂8ゴ)に下記条件で供給し
た。 膜を透過する水溶液の排出速度=3.9〜2.2文/分 逆浸透膜廻りの″@環速度= 19.2〜20.9交/
分供給時間=約550分 膜を透過しなかった濃縮液は、ショ糖として、当初量ま
れていた量の略々全量、触媒からの副生塩を当初量の4
6.0%、揮発分をは当初量の52.0Xを夫々含んで
いた。 一方、膜を透過した触媒からの副生塩及び揮発分を含む
水溶液は、下表−5記載の通り、殆ど糖を含まず、触媒
からの副生塩及び加えられた中性mを当初量の54.0
%、揮発分を当初量の48.0%を夫々含んでいた。 表−5゛ 1)触媒由来 2)ジメチルスルホキシド(反応溶媒)害考[1匿 前実施例−1、表−5記載の濃縮液1,048kg(溶
質濃度12.5%)に新たに水1,900kgを追加し
、該例と同一の条件で、逆浸透膜に供給してショ糖を分
離し、下表−6の結果を得た。 表−6 (以下余白) 裏溝J1ニュ 前記実施例−1、表−5記載の濃縮液1,015.2k
g(溶質濃度1O06%)に新たに木2,200kgを
追加し、回倒と同一の条件で逆浸透膜に給液し、ショ糖
を分離した。結果は下表−7の通りであった。 表−7 1)触媒由来 2)ジメチルスルホキシド(反応溶媒)(以下余白) 実施例−4 上の実施例−3で得られた濃縮未反応糖水溶液(溶質濃
度的10%) l010.4kgを噴霧乾燥塔へ供給し
、以下の条件にて噴霧乾燥に付した。 噴霧乾燥塔の直径 2.Omφ 立筒部長: 1.5m Nm″ 送風量: 350− 時間 回転円盤直径: 10cmφ 回転a: 22.OQOrpm 入口空気温度=80℃。 ?3縮液の供給速度: 1.7 kg7’時間乾燥は安
定に継続でき、噴霧乾燥塔の下部より得られたショ糖は
、白色の粉末で、ブドウ糖などの還元性物質を含まず、
水分2.70%、嵩比g10 、41の流動性の良いも
のであった。参考までに、得られたシヨ俄の分析結果を
下表−8として示す。 表−8
Hereinafter, the embodiments and effects of the invention will be explained with reference to Examples, but the examples are of course for illustrative purposes only and are not intended to limit or limit the idea of the invention. Example 1 After the reaction solvent was distilled off from the solvent method SE reaction mixture represented by the composition shown in Table 2 below, the residual liquid was neutralized with lactic acid. 1.000 kg of water was added to 100 kg of the dried material to dissolve it. (Space below) Table 2 Zero ester distribution: Monoester 70L3 target diester or more 30%. To this aqueous solution, 2.5 kg of ShoiB and 97.6 kg of 50% potassium lactate were added, heated to 75°C, and the precipitated cake was filtered off and dried at 80°C under vacuum to determine the composition of the solid. Upon investigation, the results were as shown in Table 3 below. Note that the moisture content in the cake was 45%. (Margins below) Table 3 In addition, SEi in the filtrate filtered from the cake was analyzed using gel filtration chromatography (GPC) method (cited above, 63).
When measured on page 1, the presence of SE was not observed at all, and 85% of the reaction solvent dimethyl sulfoxide was removed. Water was added to 1,180 kg of the filtrate thus obtained (an aqueous solution containing sucrose, salt, and volatile components from which SE had been removed) to prepare a liquid having the composition shown in Table 4 below. (Margins below) Table 4 This aqueous solution (p) 17.4) was heated to 50 to 52.5°C, and a reverse osmosis membrane ((trade name (1:5U-200) )) (mentioned above) (diameter: 4 inches x length: 1 meter, +!! overload: 8 g) under the following conditions. Discharge rate of aqueous solution permeating through the membrane = 3.9 to 2.2 min/min @ring speed around the reverse osmosis membrane = 19.2 to 20.9 min/min
Supply time = approximately 550 minutes The concentrated liquid that did not pass through the membrane contained approximately the entire amount of sucrose that was originally weighed, and 4 of the initial amount of by-product salt from the catalyst.
6.0% and volatiles contained 52.0X of the original amount, respectively. On the other hand, as shown in Table 5 below, the aqueous solution containing by-product salts from the catalyst and volatile matter that has passed through the membrane contains almost no sugar, and the by-product salts from the catalyst and the added neutral m are the initial amount. 54.0
% and volatile content of 48.0% of the initial amount. Table 5゛1) Derived from catalyst 2) Dimethyl sulfoxide (reaction solvent) Hazards , 900 kg was added, and sucrose was separated by supplying it to a reverse osmosis membrane under the same conditions as in the example, and the results shown in Table 6 below were obtained. Table 6 (blank below) Back groove J1 Nyu 1,015.2k of the concentrated liquid described in Example 1 and Table 5 above
2,200 kg of wood was newly added to g (solute concentration 1006%), and the liquid was supplied to the reverse osmosis membrane under the same conditions as for turning, to separate sucrose. The results were as shown in Table 7 below. Table 7 1) Derived from catalyst 2) Dimethyl sulfoxide (reaction solvent) (blank below) Example 4 Spray 10.4 kg of concentrated unreacted sugar aqueous solution (10% solute concentration) obtained in Example 3 above. It was supplied to a drying tower and subjected to spray drying under the following conditions. Diameter of spray drying tower 2. Omφ Vertical tube length: 1.5m Nm'' Air flow rate: 350- Hour rotation disk diameter: 10cmφ Rotation a: 22.OQOrpm Inlet air temperature = 80℃. ?3 Condensate supply rate: 1.7 kg7' hour drying is The sucrose obtained from the bottom of the spray drying tower is a white powder that does not contain reducing substances such as glucose.
It had good fluidity with a moisture content of 2.70% and a bulk ratio of g10.41. For reference, the obtained analytical results are shown in Table 8 below. Table-8

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、精製用溶媒を使用しない
で、工業的に、反応溶媒を除去すると共に、反応混合物
中の未反応糖を工業的に回収する手段を提供し得たこと
によって、木工業に技術的革新をもたらす。
As explained above, the present invention provides a means for industrially removing a reaction solvent and industrially recovering unreacted sugars in a reaction mixture without using a purification solvent. Bringing technological innovation to woodworking.

【図面の簡単な説明】[Brief explanation of the drawing]

t51図は、水、合計糖及び合計塩各最の変化と、水相
中に溶存するSEiとの関係を示す三元グラフである。 特許出願人 第−工業製薬株式会社 第1図 一合計塩(’1.) 7に◆今Hi轟◆令計機=+00
The t51 diagram is a ternary graph showing the relationship between each change in water, total sugar, and total salt and SEi dissolved in the aqueous phase. Patent applicant Dai-Kogyo Seiyaku Co., Ltd. Figure 1 Total salt ('1.) To 7

Claims (1)

【特許請求の範囲】 1 目的物のショ糖脂肪酸エステル以外に、未反応の糖
、未反応の脂肪酸メチルエステル、触媒、石鹸、脂肪酸
及び揮発分を含むショ糖脂肪酸エステル合成反応混合物
を、中性領域のpHに調整し、水、中性塩及びショ糖を
加え、沈殿物を分離後、残液を逆浸透膜と接触させ、不
透過部を噴霧乾燥することを特徴とするショ糖脂肪酸エ
ステル合成反応混合物中の未反応糖を粉末状として回収
する方法。 2 反応混合物が、pH6.2〜8.2の領域内に調整
される請求項1記載の方法。 3 pH調整後の反応混合物が、50〜80℃に加熱さ
れる請求項1記載の方法。 4 pH調整後の反応混合物に、水:反応混合物=5:
1〜40:1の重量比で水が添加される請求項1記載の
方法。 5 pH調整後の反応混合物に、下記の関係式に従って
、中性塩及びショ糖が反応混合物に添加される請求項1
記載の方法。 合計塩量/水量+合計塩量+合計糖量=0.015〜0
.12かつ、 合計糖量/水量+合計塩量+合計糖量=0.025〜0
.20かつ、 合計塩量/合計糖量=0.4〜0.6 ここで、 合計塩量:加えられるべき中性塩量+触媒の中和によっ
て生成する塩量 合計糖量:加えられるべきショ糖量+当初からの未反応
糖量 6 反応混合物のpH調整に使用される酸が、乳酸、酢
酸、塩酸及び硫酸からなる群から選ばれた酸のいずれか
である請求項1又は2記載の方法。 7 反応混合物の組成が、 ショ糖脂肪酸エステル=15.0〜92.0%未反応の
ショ糖=1.0〜80.0% 未反応の脂肪酸メチルエ ステル=0.5〜10.0% 触媒=0.05〜7.0% 石鹸=1.0〜10.0% 脂肪酸=0.5〜10.0% 揮発分(残留する反応溶媒)=5.0〜30.0% である請求項1記載の方法。 8 反応混合物中の脂肪酸メチルエステル、石鹸及び脂
肪酸の夫々に主として含まれる脂肪酸根が、炭素数16
〜22の共通飽和脂肪酸根を持つ請求項1又は2記載の
方法。 9 反応混合物中の揮発分(残留する反応溶媒)が、ジ
メチルスルホキシド又はジメチルホルムアミドである請
求項1又は2記載の方法。 10 反応混合物に加えられる中性塩が、食塩、芒硝、
乳酸カリウム及び酢酸カリウムからなる群から選ばれた
塩のいずれかである請求項1又は5記載の方法。 11 逆浸透膜の分画分子量が、150〜200である
請求項1記載の方法。 12 逆浸透が、40〜60℃の温度範囲内で行われる
請求項1記載の方法。 13 逆浸透膜への供給液のpHが、6.2〜8.2で
ある請求項1記載の方法。 14 逆浸透膜が、架橋ポリアミド系プラスチックスよ
りなる請求項1又は11から13のいづれかに記載の方
法。 15 逆浸透膜への供給液のショ糖濃度が20%以下で
ある請求項1又は13記載の方法。 16 逆浸透膜不透過部のショ糖濃度が20%以下であ
る請求項1記載の方法。 17 噴霧乾燥時の湿度と温度が、夫々、 絶対湿度=0.008〜0.05(kg・水/kg・乾
燥空気)温度=10〜100℃ である請求項1記載の方法。
[Scope of Claims] 1. A sucrose fatty acid ester synthesis reaction mixture containing, in addition to the target sucrose fatty acid ester, unreacted sugar, unreacted fatty acid methyl ester, catalyst, soap, fatty acid, and volatile matter, is A sucrose fatty acid ester characterized by adjusting the pH of the region, adding water, a neutral salt, and sucrose, separating the precipitate, and then contacting the residual liquid with a reverse osmosis membrane and spray-drying the impermeable part. A method for recovering unreacted sugar in a synthesis reaction mixture as a powder. 2. The method according to claim 1, wherein the reaction mixture is adjusted to a pH in the range of 6.2 to 8.2. 3. The method according to claim 1, wherein the reaction mixture after pH adjustment is heated to 50 to 80C. 4 To the reaction mixture after pH adjustment, water: reaction mixture = 5:
2. A method according to claim 1, wherein water is added in a weight ratio of 1 to 40:1. 5. Claim 1, wherein a neutral salt and sucrose are added to the reaction mixture after pH adjustment according to the following relational expression:
Method described. Total salt amount/water amount + total salt amount + total sugar amount = 0.015 to 0
.. 12 and total sugar amount/water amount + total salt amount + total sugar amount = 0.025 to 0
.. 20 and total amount of salt/total amount of sugar = 0.4 to 0.6, where, total amount of salt: amount of neutral salt to be added + amount of salt produced by neutralization of catalyst Total amount of sugar: amount of shoto to be added Amount of sugar + amount of unreacted sugar from the beginning 6 The acid used to adjust the pH of the reaction mixture is any acid selected from the group consisting of lactic acid, acetic acid, hydrochloric acid and sulfuric acid, according to claim 1 or 2. Method. 7 The composition of the reaction mixture is: Sucrose fatty acid ester = 15.0-92.0% Unreacted sucrose = 1.0-80.0% Unreacted fatty acid methyl ester = 0.5-10.0% Catalyst = 0.05 to 7.0% Soap = 1.0 to 10.0% Fatty acid = 0.5 to 10.0% Volatile content (residual reaction solvent) = 5.0 to 30.0% The method described in 1. 8 The fatty acid radical mainly contained in each of the fatty acid methyl ester, soap, and fatty acid in the reaction mixture has a carbon number of 16.
3. The method of claim 1 or 2, having ~22 common saturated fatty acid roots. 9. The method according to claim 1 or 2, wherein the volatile component (residual reaction solvent) in the reaction mixture is dimethyl sulfoxide or dimethyl formamide. 10 The neutral salt added to the reaction mixture is common salt, mirabilite,
6. The method according to claim 1, wherein the salt is selected from the group consisting of potassium lactate and potassium acetate. 11. The method according to claim 1, wherein the reverse osmosis membrane has a molecular weight cutoff of 150 to 200. 12. The method of claim 1, wherein the reverse osmosis is carried out within a temperature range of 40-60<0>C. 13. The method according to claim 1, wherein the pH of the feed liquid to the reverse osmosis membrane is 6.2 to 8.2. 14. The method according to any one of claims 1 or 11 to 13, wherein the reverse osmosis membrane is made of crosslinked polyamide plastic. 15. The method according to claim 1 or 13, wherein the sucrose concentration of the feed solution to the reverse osmosis membrane is 20% or less. 16. The method according to claim 1, wherein the sucrose concentration in the reverse osmosis membrane impermeable part is 20% or less. 17. The method according to claim 1, wherein the humidity and temperature during spray drying are: absolute humidity = 0.008 to 0.05 (kg.water/kg.dry air) temperature = 10 to 100°C.
JP15148388A 1988-06-20 1988-06-20 Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture Expired - Fee Related JP2686966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15148388A JP2686966B2 (en) 1988-06-20 1988-06-20 Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15148388A JP2686966B2 (en) 1988-06-20 1988-06-20 Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture

Publications (2)

Publication Number Publication Date
JPH01319490A true JPH01319490A (en) 1989-12-25
JP2686966B2 JP2686966B2 (en) 1997-12-08

Family

ID=15519488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15148388A Expired - Fee Related JP2686966B2 (en) 1988-06-20 1988-06-20 Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture

Country Status (1)

Country Link
JP (1) JP2686966B2 (en)

Also Published As

Publication number Publication date
JP2686966B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP5814946B2 (en) Method for producing succinic acid
US4994605A (en) Method of separating alpha-L-aspartyl-L-phenylalanine methyl ester through crystallization
US4700000A (en) Preparation of calcium propionate
US5011922A (en) Process for purifying sucrose fatty acid esters
JPH01313494A (en) Recovery of unreacted sucrose from reaction mixture for synthesizing sucrose fatty acid ester
US5017697A (en) Process for purifying sucrose fatty acid esters having high HLB
JPS62221687A (en) Isolation and purification of hemin
HU202282B (en) Process for separating 2-keto-l-gulonic acid from fermentation juice
JP3836162B2 (en) Method for producing sucrose fatty acid ester
EP0220855B1 (en) Process for recovering 4,4&#39; dihydroxydiphenyl sulfone from an isomer mixture
JPH01319490A (en) Method for recovering unreacted sucrose in reaction mixture of sugar-fatty acid ester synthesizing reaction as powdery form
KR970006885B1 (en) Purification of 2 -hydroxynaphthalene - 6 - carboxylic acid
US4011263A (en) Process for the production of n-acetyl-l-methionine
JP2688937B2 (en) Method for producing powdery sucrose fatty acid ester
JPH0240391A (en) Production of powdery sucrose fatty acid ester
US5001270A (en) Process for recovering 4,4&#39; dihydroxydiphenyl sulfone from an isomer mixture
JPH01117845A (en) Method for purifying monoglyceride
JPH0240392A (en) Production of powdery sucrose fatty acid ester
JP2712035B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH0256493A (en) Production of powdery ester of fatty acid with sucrose
JPH0592102A (en) Crystallization method for organic acid or organic acid ester
CN114763344A (en) Method for purifying mycophenolic acid from mycophenolic acid crystallization mother liquor
JPH0481600B2 (en)
JPH01305096A (en) Production of powdery fatty acid ester of sucrose
JPH02295995A (en) Production of powdery high-hlb sucrose fatty acid ester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees