JPH01305096A - Production of powdery fatty acid ester of sucrose - Google Patents

Production of powdery fatty acid ester of sucrose

Info

Publication number
JPH01305096A
JPH01305096A JP13632988A JP13632988A JPH01305096A JP H01305096 A JPH01305096 A JP H01305096A JP 13632988 A JP13632988 A JP 13632988A JP 13632988 A JP13632988 A JP 13632988A JP H01305096 A JPH01305096 A JP H01305096A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction mixture
amount
sucrose
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13632988A
Other languages
Japanese (ja)
Other versions
JPH0667951B2 (en
Inventor
Shusaku Matsumoto
修策 松本
Yoshio Hatakawa
畑川 由夫
Akihiko Nakajima
明彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP63136329A priority Critical patent/JPH0667951B2/en
Publication of JPH01305096A publication Critical patent/JPH01305096A/en
Publication of JPH0667951B2 publication Critical patent/JPH0667951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To industrially and conveniently obtain the high-quality powdery subject compound by adjusting pH of a specific reaction mixture containing a fatty acid ester of sucrose, etc., at the pH within the neutral region, adding a neutral salt, etc., washing resultant precipitates with an acidic water, neutralizing the precipitates and spray-drying the neutralized precipitates. CONSTITUTION:Water is added to a reaction mixture, containing a fatty acid ester of sucrose, unreacted sucrose, unreacted fatty acid methyl ester, catalyst, soap, fatty acid and volatile substance and obtained by a solvent method preferably in a ratio of water : reaction mixture=20:1 (by weight) to adjust a pH to 7.5. This is kept at a temperature of 50-80 deg.C and a neutral salt and sucrose are added to carry out salting out. Temperature-controlled acidic water such as hydrochloric acid is then added to adjust pH to 3.0-5.5 and the temperature to 10-40 deg.C. The resultant precipitates are washed while being finely divided in a dispersion mixer, etc., to afford a purified slurry product of 40-96% solid content. The obtained product is adjusted to the pH of neutral range and spray- dried utilizing a rotary disc to afford the aimed compound.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、粉末状ショ糖脂肪酸エステルの工業的な製法
に関する。 さらに詳しくは、本発明は、精製用有機溶媒を使用せず
に粉末状の高品質ショ糖脂肪酸エステルを工業的に生産
する方法に関するものである。
The present invention relates to an industrial method for producing powdered sucrose fatty acid ester. More specifically, the present invention relates to a method for industrially producing powdered high-quality sucrose fatty acid ester without using an organic solvent for purification.

【従来の技術】[Conventional technology]

(背景) 現在、界面活性剤として有用なショ糖脂肪酸エステル(
以後((SE)と略す)は、工業的に、ショ糖とC8〜
022の高級脂肪酸メチルエステルとを溶媒(ジメチル
ホルムアミドやジメチルスルホキシドなど)中で適当な
触媒下で反応させるか(溶媒法:特公昭35−1310
2)又は溶媒を用いずに水を使ってショ糖を脂肪酸石鹸
と共に溶融混合物とした後、触媒の存在下に高級脂肪酸
メチルエステルと反応させること(水媒法:特公昭51
−14485号)により得られている。 しかし、これら二種の合成法のいづれによっても、その
反応混合物中には、目的とするSEの他に、未反応の糖
、未反応の脂肪酸メチルエステル、残留触媒、石鹸、遊
離脂肪酸、揮発分等の夾雑物を含んでおり、これらの夾
雑物のうち含量が規定量を越す不純分は、製品と成る以
前に除去されなければならない、特に、上記夾雑物のう
ち。 後者の溶媒法に伴う残留溶媒(揮発分)の除去は、近来
既製が厳しくなって来ている51)だけに極めて重要で
ある。 往)米国FDAの規格によれば、SE中許容される残存
ジメチルスルホキシドは2 ppm以下である(Fed
、 Regist、、51(214)、40180−1
)。 ところで、上記両方法を通じ従来からSHの精製に慣用
されて来た精製手段は溶媒の利用であるが、この溶媒の
利用は、下記の如く工業的に多くの不利益をもたらす。 ■ 爆発、火災の危険性。 ■ 上の■に備えた電気装置の防爆化。 ■ 上の■に備えた製造装置の密閉化。 ■ 上の■に備えた建物全体の耐火構造化。 ■ 上の■、■、■による固定費の上昇。 ■ 溶媒の損耗による原価の上昇。 ■ 製品SE中に残留する残留溶媒による負効果。 ■ 従業員の1!床上への慈影響、ひいてはこれによる
口数の増大と原価の上昇。 このような事情から、SE精製時における精製溶媒の使
用を不必要化する精製技術の開発は、当業界における切
実な要望であった。 (従来技術の問題点) そこで従来から有機溶媒を利用しない精製法が検討され
、例えば代表的なものとして、(1)酸性水溶液による
SEの沈殿方法(英国特許809,815 (1959
)) (2)一般の中性塩水溶液によるSEの沈澱法(特公昭
42−8850) などが知られている。 しかし方法(1)のように1例えば塩酸水溶液を反応混
合物中に加えると、成る程SEは直ちに沈澱するが、未
反応のシ!l糖は容易にグルコースと果糖とに分解、転
化し、たとえ低温(0〜5℃)で行っても分解を避ける
ことができない。このため未反応粘の回収、再利用が困
難となる。 また、方法(2)のように1食塩や芒硝などの中性塩の
水溶液を反応混合物中に加えてもSEは直ちに沈澱する
。この場合、未反応糖の分解は起こらないが、SE中の
有用な成分であるモノエステルが水相側に溶解してしま
うため、大きなロスを生じるのみでなく、特に近来需要
の多い高HLBのSEを得たいとき妨げとなる。 さらにより最近の特開昭51−29417によれば、水
と“精製溶媒″ (反応溶媒と区別するために、特にそ
う呼ぶ)の混合溶液が軽液層(上層)と重液層(下層)
に分相する性質が利用される。即ち、一般に重液層(下
層)には水が多く含まれているので、親水性の未反応糖
、触媒由来の塩などがこの重液層(下層)に溶解してい
る。一方軽液層(上層)は、精製溶媒が多く含まれてい
るので、SE、脂肪酸、未反応脂肪酸メチルエステル等
の極性の小さいものは、この軽液層に溶解してくる。 ところが、ジメチルスルホキシドなど反応溶媒は、下層
の重液層にも溶解するが、都合の悪いことに上層の軽液
層にも溶解するので、この方法だけで反応溶媒を完全分
離するのは不可能である。 従って、微量の反応溶媒を除去するだけの目的で、非常
に多量の精製溶媒が必要となる。 このように、水による粗製SEの精製を工業的に可能な
らしめるためには、溶媒の除去が完全で、しかも糖及び
製品SHのロスを生じない精製方法を開発することが大
前提となる。 次に、水による精製を工業的に可能とするためなお考慮
すべきことは、水を精製溶媒とすることに附随する含水
SEの乾燥手段である。 即ち、ここに乾燥の対象となる含水SEは1通常、水分
80%以上のものは水溶液状態に、また水分80%未満
のものはスラリー(泥漿)状をなしているのが普通であ
る。これらSHの含水物は、−般に40℃近辺から急激
に粘度が上昇し、50℃近辺で最高値となるが、同温度
を50℃を越えると急激に粘度が下がるという極めて特
異な粘性挙動を呈する(出願人会社刊(シュガーエステ
ル物語)108頁)、このほか、単に真空下で加熱して
水分を蒸発させることは、著しい発泡性のため、実質的
に不可能である。そして、もし加熱時の温度が高く、か
つ加熱体との接触時間が長い場合には。 SEが分解を起こし、強度の着色及びカラメル化を引き
起すのみでなく1分解により遊離した脂肪酸により酸価
も上昇してくる(#公開37−9!38B参照)。 特に水分蒸発の終期には、SHの持つ軟化点又は融点の
低さという特性(例えば、シヨ糖モノステアレートの軟
化点は52℃近辺、シ、tI!!ジステアレートの融点
は110℃付近)のため、SE自体が残存している水を
抱水する傾向を持ち、このことが脱水を著しく困難とし
ている。加えて、溶媒と比較して、水の蒸発Hs熱が異
常に高い(500Kcal/Kg−H20以上)こと、
及び蒸発温度の高いこと等も乾燥を困難ならしめる一因
となっている。 それ故、例えば別形式の乾燥法として、泥漿を加熱して
連続的に真空室へ供給、放出させる、所謂フラッシュ式
の乾燥機を用いた場合においても、水の持つ大きな潜熱
のため、充分な脱水、乾燥には種々の困難がつき纏い、
たとえこれらの困難を克服できたとしても、真空下で脱
水、乾燥された後のSEは、溶融状態にあるため、それ
を乾燥機より取出してから融点以下まで冷風等を吹きつ
けて冷却し、固化させ、最後に粉砕機で粉砕するという
多くの工程を必要とし、しかも最終の粉砕工程では粉塵
爆発の懸念が附随する。 従って1以上のような乾燥に伴う諸問題点を解決するこ
とも、本本媒法精製を実現するための重要なステップと
なる。
(Background) Currently, sucrose fatty acid esters (
Hereinafter (abbreviated as (SE)), sucrose and C8~
022 with higher fatty acid methyl ester in a solvent (dimethylformamide, dimethyl sulfoxide, etc.) under an appropriate catalyst (solvent method: Japanese Patent Publication No. 35-1310
2) Alternatively, sucrose and fatty acid soap can be made into a molten mixture using water without using a solvent, and then reacted with higher fatty acid methyl ester in the presence of a catalyst (water medium method: Japanese Patent Publication No. 51
-14485). However, in both of these two synthetic methods, in addition to the target SE, the reaction mixture contains unreacted sugars, unreacted fatty acid methyl esters, residual catalysts, soaps, free fatty acids, and volatile components. Among these impurities, impurities whose content exceeds the specified amount must be removed before becoming a product, especially among the above-mentioned impurities. Removal of the residual solvent (volatile matter) associated with the latter solvent method is extremely important as it has become increasingly difficult to use ready-made products51). According to the US FDA standards, the allowable residual dimethyl sulfoxide during SE is 2 ppm or less (Fed
,Regist,, 51(214), 40180-1
). By the way, the purification means conventionally used for purifying SH through both of the above methods is the use of a solvent, but the use of this solvent brings about many industrial disadvantages as described below. ■ Risk of explosion or fire. ■ Explosion-proofing of electrical equipment in preparation for ■ above. ■ Seal the manufacturing equipment in preparation for the above ■. ■ The entire building will be made into a fire-resistant structure in preparation for ■ above. ■ Increase in fixed costs due to ■, ■, and ■ above. ■ Increased cost due to solvent wastage. ■ Negative effects due to residual solvent remaining in product SE. ■ Employee 1! This has a negative impact on the floor, which in turn increases the number of people talking and increases costs. Under these circumstances, there has been a pressing need in the industry to develop a purification technique that makes it unnecessary to use a purification solvent during SE purification. (Problems with the Prior Art) Therefore, purification methods that do not use organic solvents have been studied. For example, (1) SE precipitation method using an acidic aqueous solution (British Patent No. 809,815 (1959)
)) (2) A method of precipitating SE using a general neutral salt aqueous solution (Japanese Patent Publication No. 42-8850) is known. However, when, for example, an aqueous hydrochloric acid solution is added to the reaction mixture as in method (1), the SE will immediately precipitate, but the unreacted Si! L sugar is easily decomposed and converted into glucose and fructose, and decomposition cannot be avoided even if it is carried out at low temperatures (0 to 5°C). This makes it difficult to recover and reuse unreacted viscosity. Furthermore, even if an aqueous solution of a neutral salt such as monosalt or mirabilite is added to the reaction mixture as in method (2), SE will immediately precipitate. In this case, unreacted sugars do not decompose, but the monoester, which is a useful component in SE, is dissolved in the aqueous phase, which not only causes a large loss but also increases the It becomes a hindrance when you want to get SE. According to the more recent Japanese Patent Application Laid-open No. 51-29417, a mixed solution of water and a "purified solvent" (especially referred to as such to distinguish it from a reaction solvent) is formed into a light liquid layer (upper layer) and a heavy liquid layer (lower layer).
The property of phase separation is utilized. That is, since the heavy liquid layer (lower layer) generally contains a large amount of water, hydrophilic unreacted sugars, catalyst-derived salts, etc. are dissolved in this heavy liquid layer (lower layer). On the other hand, since the light liquid layer (upper layer) contains a large amount of purified solvent, substances with low polarity such as SE, fatty acids, and unreacted fatty acid methyl esters are dissolved in this light liquid layer. However, reaction solvents such as dimethyl sulfoxide dissolve in the lower heavy liquid layer, but unfortunately they also dissolve in the upper light liquid layer, so it is impossible to completely separate the reaction solvent using this method alone. It is. Therefore, a very large amount of purified solvent is required just for the purpose of removing trace amounts of reaction solvent. Thus, in order to make purification of crude SE using water industrially possible, it is essential to develop a purification method that completely removes the solvent and does not cause loss of sugar or product SH. Next, what should be considered in order to make purification using water industrially possible is the means for drying the water-containing SE that is associated with using water as the purification solvent. That is, the water-containing SE to be dried is usually in the form of an aqueous solution if it has a water content of 80% or more, and in the form of a slurry if it has a water content of less than 80%. The viscosity of these SH hydrates generally increases rapidly from around 40°C and reaches the highest value around 50°C, but the viscosity rapidly decreases when the temperature exceeds 50°C, which is a very unique viscosity behavior. (Published by Applicant Company (Sugar Ester Story), p. 108) In addition, it is virtually impossible to simply heat under vacuum to evaporate water due to the significant foaming property. If the heating temperature is high and the contact time with the heating element is long. SE causes decomposition and not only causes strong coloring and caramelization, but also increases the acid value due to fatty acids liberated by 1 decomposition (see #Publication No. 37-9! 38B). Especially in the final stage of water evaporation, the characteristic of SH having a low softening point or melting point (for example, the softening point of sucrose monostearate is around 52°C, and the melting point of tI!! distearate is around 110°C) Therefore, SE itself has a tendency to retain residual water, which makes dehydration extremely difficult. In addition, compared to the solvent, the Hs heat of evaporation of water is abnormally high (500 Kcal/Kg-H20 or more);
Also, the high evaporation temperature is one of the reasons why drying is difficult. Therefore, even if a so-called flash dryer is used as another type of drying method, in which slurry is heated and continuously supplied to and discharged from a vacuum chamber, the large latent heat of water does not allow sufficient drying. Dehydration and drying are fraught with various difficulties,
Even if these difficulties could be overcome, since the SE is in a molten state after being dehydrated and dried under vacuum, it must be taken out of the dryer and cooled by blowing cold air or the like to below its melting point. It requires many steps, including solidification and finally pulverization in a pulverizer, and the final pulverization step is accompanied by concerns about dust explosions. Therefore, solving one or more of the problems associated with drying is also an important step in realizing the present medium method purification.

【発明が解決しようとする課WJ】[Division WJ that the invention seeks to solve]

以上の実情に鑑み、本発明は、溶媒法で合成された粗製
SEの精製に際し、精製溶媒を使用しないに拘らず、実
質的にSEの損失がない精製手段及び乾燥過程で品質劣
化を生じる恐れのない乾燥手段を開発することによって
、溶媒の使用に起因する全ての問題を解決するのを目的
とする。 (発明の概念) そこで本発明者は、(イ)水相側に溶解するSE量を最
少限に押えるのみならず、可能ならば該量を零として全
量のSEを沈澱させること、(a)未反応糖の分解を避
けること、及び(ハ)残留する反応溶媒を水相外に溶解
させることにより、SEから分離することの三点の解決
を目標として多くの塩析実験を行なった結果、ショ砧と
中性塩を反応混合物の水溶液中に溶解させたとき、適当
なpH1温度、中性塩及びショ糖の濃度及び水量の組合
せの下で、SEの略々全量が沈澱するのみならず、意外
なことに、水相には未反応の軸以外に反応溶媒が溶解す
るに至るという、都合の良い現象を見出した。従って、
この現象を利用して、沈澱したSEを再度水に溶解後、
中性塩及びショ糖水溶液による沈澱操作を反復すること
により、SEの損失を事実上防止しながら、残留する揮
発分(残留する反応溶媒)を完全に水相中に移行させる
ことができること、及び、更に沈澱したSEに随伴して
いる中性塩及びショ儲は、該沈殿を適当なpHの酸性水
で洗浄することにより実質的に除去されて、精製された
SEが得られること;並びに、上で沈殿したSEのスラ
リーを噴霧乾燥することによって、全く品質の低下なし
に、粉末状のSEを連続的に生産できることが明らかと
なった。 (概要) 本発明は、上記発見に基づくもので、目的物のシW糖脂
肪酸エステルの他、未反応の糖、未反応の脂肪酸メチル
エステル、触媒、石鹸、脂肪酸及び揮発分を含む反応混
合物を、中性領域のpHにして、水、中性塩及びシ1.
i糖を加えることにより生じる沈澱物を酸性の水で洗浄
し、中和後、噴霧乾後、噴霧乾燥することを特徴とする
粉末状ショ糖脂肪酸エステルの製造方法を要旨とする。 以下。 発明に関連する種々の事項につき分脱する。 (溶媒法によるSEの合成) 溶媒法によるSHの合成においては、通常、ショ糖と脂
肪酸メチルエステルとの混合物を、これらの合計量に対
し数倍量の反応溶媒、例えばジメチルスルホキシドに添
加、溶解させ、炭酸カリウム(K2 COs )等のア
ルカリ性触媒の存在下、真空20〜30Torr近辺で
数時間80〜90℃に保持することにより、容易に90
%以上の反応率(脂肪酸メチルエステル基準)にてSE
反応混合物が生成する。 次に、SE反応混合物中のアルカリ性触媒の活性を消失
させるため、乳酸、酢酸等の有機酸又は塩酸、硫酸等の
鉱酸を当量だけSE反応組成物に添加する。この中和に
より、触媒は、乳酸カリウム等のカリウム塩に変化する
。 最後に、反応溶媒、例えばジメチルスルホキシドを真空
下に留去すると、大略、下記組成範囲の組成物(中和及
び7A留後の反応混合物)となる。 ショ糖脂肪酸エステル   =15〜92%未反応糖 
        =1.0〜80%未反応脂肪酸メチル
エステル=0.5〜lO%炭酸カリウム由来の中性塩 
= 0.05〜7%石醗           =1.
0〜10%脂肪酸          =0.5〜lO
%揮発分(残留する反応溶媒)=5.0〜30%このと
き、SEのエステル分布は、モノエステル10〜75%
(ジエステル以上が90〜25x)である。 そして、脂肪酸メチルエステル、石鍮及び脂肪酸の夫々
に主として含まれる脂肪酸根は、飽和であって、共通の
CI6〜C22の炭素数を持つ。 (加水) 次に、上の反応混合物に対して水を、 水:反応混合物=5:1〜40:1(重量比)・・(1
)式の割合になるように、更に望ましくは。 水:反応混合物= 20 : 1(重量比)・・・・・
・−(2)式の割合に加えると共に、 pHを8.2〜
8.2.望ましくはpH7,5とする。 この場合、水の添加割合が上の範囲から外れ。 例えば、水と反応混合物との量比が5未満となった場合
は、得られた水溶液の粘度が大となり、実質的に以後の
操作が困難となる。また、逆に、水と反応混合物との量
比が40超過となる程に過剰の水を加えた場合は、粘度
が小となって以後の操作が容易となり、かつ、目的とす
る反応溶媒の除去も好適に行われるが、反面、未反応糖
等の回収に際して水分の除去に多大のエネルギーコスト
を必要とすることになって、経済性が失われることにな
る。 さらに、水溶液のpHは、目的とするSEの分解を避け
るため、 pH6,2〜8,2の間に調整されるのが好
ましい、 pH8,2以上の水素イオン濃度下では、ア
ルカリによる定量的なSEの分解が起こる心配があり、
またpH8,2以下の弱酸性域でも、例えば30℃以上
の高温にさらされると、酸分解の恐れがある。 (塩析) 以上の如< pH;II!!整されたSE反応混合物の
水溶液を、なるべく50〜80℃に保って、更に中性塩
及びショ糖を加える。この場合、加えるべき中性塩は、
先ず下式(3)を満たしているのが好ましい。 =0.015〜0.12 (重量比)・・・・・・・・
(3)ここで、 合計基量=加えるべき中性塩量+触媒から形成される基
量・・・・・・・・・・・・・・(4)合計糖量=加え
るべきシヨ糖量+当初からの未反応糖量 ・・・・・・
・・・・・・・・(5)次に、加えるべきショ糖の量は
、下式(6)により定められるのがよい。 = 0.025〜0.20 (重量比)・・・・・・・
・・・(6)さらに、上記の両式に加え、合計基量と合
計軸量のff1fit比率もまた、下式(7)を満足し
ているのが好ましい。 本発明者らは、上記式(3) 、 (8)及び(7)を
王者共に満たすように中性塩及びショ糖を加えて得たS
Hの沈澱を含む水溶液を、50〜80℃まで加熱昇温さ
せると、たとえSE反応混合物中に含まれる揮発分(残
留する反応溶媒)の組成が5.0〜30.0%と大幅に
振れようとも、略々近似的に全量のSEが沈澱すること
を見出した。この現象は特異な現象であると共に、発明
目的上1重要な価値を有するものである。 添付のttS1図は、この現象をより詳しく示す三元グ
ラフである。この図において、 水相側に溶解しているSHの重量=Y [gl、沈澱し
ているSHの重量=X [gl 全S E (X+Y)[glに対して、水相側に溶解し
ているSEの重量割合=φ[%] とすれば、φは下式(8)で定義される。 ここで、以下の条件: 温度=80℃、pH−7,5゜ 水:反応混合物=7.4 : 1 (重量比)脂肪酸残
基=ステアリン酸 反応混合物の組成 ショ糖脂肪酸エステル   =23% 未反応糖         ;35% 未反応脂肪酸メチルエステル=2% 触媒由来の塩       = 1% 石鹸           23% 脂肪酸          = 1% 揮発分(残留する反応溶媒)=29% SE中のエステル分布:モノエステルエフ3%ジエステ
ル以上=27% において、φの値がどのように変化するかが三角座標で
示される。 ここに、合計塩は式(4)により、合計糖は式(5)に
より夫々で定義された量であって、水量十合計基量十合
計粕量=100% として表示しである。 本第1図の斜線の部分は1本発明者らが発見した式(3
)1式(8)、及び式(7)を同時に満たす領域である
。 この斜線の部分に入るような中性塩及びショ糖の溶解量
を決めることによって、実質的にφ=O即ち、近似的に
全量のSEを沈澱化することができ、沈殿したSEの濾
取又は遠心分離により、水相側に溶解している揮発分(
残留している反応混合物)と完全に分離(即ち、夾雑す
る揮発分を完全に除去)することができる。 (洗浄) 以上の塩析操作の後、pH−3,0〜5.5.温度10
〜40℃程度に調整、調温された酸性水を用いて、前述
の分離されたSEのケーキを洗浄する。これに使用され
る酸は、例えば11!酸、硫酸等の鉱酸及び酢酸、乳酸
等の有機酸が適当であるが、側段例示のもののみに限る
訳ではない。 このような条件の下で洗浄することにより、ケーキ側か
ら水相側へ再溶解するSEの量を極減させながら希望す
る不純物を、水相側に移行させることができる。 以上の洗浄操作に当たり、酸性水の温度が40°C以上
となると、操作が長時間、例えば数ケ月にも及んだとき
、SEの酸分解が懸念されるだけでなく、粘度が上昇し
て操作が困難となる。他方、10℃以下の低温の保持に
は、経済性を軽視した冷凍機の設備が必要となる。従っ
て、普通は10〜40℃、殊に常温付近での操業が好ま
しい。 なお、この酸性水によるSEケーキの洗浄に際しては1
本ケーキ中に含まれている揮発分(反応溶媒)や、未反
応糖、加えられた中性塩及び触媒の中和により副生じた
塩の囲者を、可能な限りSEケーキから除く必要がある
ので、SEケーキは、該酸性水中で、可能な限り小さい
粒子径になるまで細断されているのが望ましい、この目
的は、例えば、分散混合機(例えば特殊機器工業輛製(
ホモミキサー))、ホモジナイザー又はコロイドミル(
例えば商品名(マイコロイダー))等の細分化装置によ
り効率的に達成でき、揮発分(反応溶媒)、未反応糖、
触媒由来の塩及び中性塩の囲者は、全量沈澱SEのケー
キから酸性水相中に移行する。 但し、実質的に少量であるとは言いながら、この際一部
のSEが酸性水相に溶出するのは避けられない、この酸
性水への溶解傾向は、モノエステル含分の多いSE程強
いので、ジエステルやトリエステル分を相対的に増加さ
せることによって事実上抑制できる。 以上の酸性水によるSEケーキの洗浄は、洗浄の回数増
加と、洗浄水量の増加によって一層完全となり、かくし
て事実上純粋に近い精製SEを得ることができる。 (泥漿濃度) このようにして精製された含水状態のSEは泥漿状(ス
ラリー)であるが、このままでは、pHが酸性側に偏っ
ているので、pHを中性付近になるように調整したスラ
リーは、未反応の糖、触媒起源の塩、揮発分並びに塩析
に際して添加されたショ糖及び中性塩を含まないが、S
E、未反応の脂肪酸メチルエステル、石船及び脂肪酸の
囲者を含み、固形分1〜50%、水分99〜50%の範
囲にあることが多い。 本スラリー中の固形分の量は、後述の乾燥のため、大略
40%以下であるのが好ましいが、固形分の量比が過小
であることは、乾燥のエネルギーコストの面から望まし
くなく、通常、4%以上の値であるのが経済的である。 (噴霧乾燥) 本発明では、SE泥漿の乾燥に際し、特に噴霧乾燥法を
利用する。この乾燥手段の有用性は1本発明者は、多く
の実験事実から見出した固形分40〜86%のSE泥漿
の脱水乾燥に最適の方法である。因に、既述の如く、所
gl?溝型の攪拌型乾燥機で代表される通常の真空乾燥
機を用いた場合も。 また、泥漿を連続的に供給して加熱して真空室に放出さ
せる。所謂フラッシュ式の乾燥機を用いた場合も、SE
の持つ粘度特性や低融点という性質のため、被処理SH
の酸価の上昇、着色、カラメル化などの品質低下現象を
回避することができず、さらに後者の場合には、なお粉
m爆発の危険性も無視できない。 しかるに、発明者が見出した噴霧乾燥手段を採用するこ
とにより、既往乾燥手段の欠点を一挙に解決することが
できる。 本発明における乾燥工程では、泥漿状態の含水ショ糖脂
肪酸エステルを、ポンプを介して噴霧乾燥塔へ連続的に
供給し、ノズルによる噴霧又は回転円盤(ディスク)の
遠心力により微細な霧状微粒子に分割して乾燥気流と接
触させる。これにより水の蒸発面積が著しく大きくなり
、このため極めて短時間内(噴霧してから数秒以内)に
脱水。 乾燥を完了し得る。なお霧化手段としては、含水ショ糖
脂肪酸エステルの粘度が大であるため、回転円盤の利用
が望ましい。 (噴霧乾燥条件) ショ糖脂肪酸エステルの溶液又は泥漿の供給温度は40
〜80℃の間で任意に変更できるが、品質面の考慮から
望ましくは40〜60℃の範囲内の温度を選ぶ。 上記溶液又は泥漿を回転円盤により霧化させる場合1例
えば円盤の直径が5〜10c+mφのときは、15.0
00〜24,000rpg+の回転数が適当である。 塔内へ送風される空気は、溶液又は泥漿中の水分を蒸発
させるに必要な熱量以上を保有すべきであり、従って空
気温度が低い場合は、より多量の空気量が必要である。 この際の空気温度は10〜100℃の広範囲であってよ
いが、対象ショ糖脂肪酸エステルの乾燥効率と熱分解防
止とを考慮して、60〜80℃の間の温度を選ぶのが有
利である。 送風空気中の湿度も前記の空気温度と共に乾燥効率に関
係する0作業上好適な絶対湿度は、大略、 絶対湿度= o、ooa〜0.05  Kg°水kg・
乾燥空気 の範囲であるが、特に、 絶対湿度= 0.01〜0.04Kg°水kg・乾燥空
気 の範囲にあるのが経済的である。 噴霧乾燥塔へ送る泥漿中の固形分濃度が40%を超える
と、粘度が著しく増大する結果、噴霧されたスラリーの
粒子径は相対的に大きくなり、その分、水の乾燥が遅く
なり、結果として乾燥塔の内壁に付着し易くなる。故に
、スラリー中の固形分濃度を40%以下に調整するのが
よい、スラリーの固形分濃度が40%以下であれば、噴
霧された液滴の直径が40%超過の場合より小となり、
乾燥され易くなるから、乾燥塔の内壁に付着する懸念も
なくなる。尤も、スラリーの固形分濃度が、例えば3%
未満のように小さくなると、乾燥は容易となるが、所要
エネルギーの面から不経済である。 従って、噴霧乾燥塔へのスラリー供給濃度としては、4
%〜40%の範囲が適している。 噴霧乾燥塔の所要容積、所要塔経、所要高さなどの諸条
件は、以上の噴霧条件を前提に設計される。塔の設計及
び作業条件が適当であれば、水分5%以下の粉末化され
た乾燥ショ糖脂肪酸エステルが、噴霧乾燥塔の下部より
連続的に排出される。得られた製品は、熱履歴が短いた
め1品質的に極めて優れ、かつ乾燥作業用の人員を殆ど
必要としない。
In view of the above circumstances, the present invention provides a purification method that substantially eliminates loss of SE, even without using a purification solvent, when purifying crude SE synthesized by a solvent method, and a method that eliminates the risk of quality deterioration during the drying process. The aim is to solve all the problems caused by the use of solvents by developing drying means that are free of solvents. (Concept of the Invention) Therefore, the present inventor has proposed (a) not only to minimize the amount of SE dissolved in the aqueous phase side, but also to set the amount to zero and precipitate the entire amount of SE if possible; As a result of conducting many salting-out experiments with the goal of solving the following three points: avoiding decomposition of unreacted sugar, and (c) separating the remaining reaction solvent from SE by dissolving it outside the aqueous phase. When sorghum and a neutral salt are dissolved in an aqueous solution of the reaction mixture, under the appropriate combination of pH 1 temperature, concentration of the neutral salt and sucrose, and amount of water, not only almost the entire amount of SE will precipitate. Surprisingly, we discovered a convenient phenomenon in which the reaction solvent was dissolved in the aqueous phase in addition to the unreacted axes. Therefore,
Taking advantage of this phenomenon, after dissolving the precipitated SE in water again,
By repeating the precipitation operation with a neutral salt and sucrose aqueous solution, the remaining volatiles (residual reaction solvent) can be completely transferred into the aqueous phase while virtually preventing loss of SE; , Furthermore, neutral salts and salts accompanying the precipitated SE are substantially removed by washing the precipitate with acidic water of an appropriate pH, and purified SE is obtained; It has been found that by spray drying the slurry of SE precipitated above, powdered SE can be produced continuously without any loss in quality. (Summary) The present invention is based on the above discovery, and includes a reaction mixture containing unreacted sugar, unreacted fatty acid methyl ester, catalyst, soap, fatty acid, and volatile components in addition to the target SiW sugar fatty acid ester. , water, neutral salt and salt at a pH in the neutral range.1.
The gist of the present invention is a method for producing a powdered sucrose fatty acid ester, which is characterized in that a precipitate produced by adding i-sugar is washed with acidic water, neutralized, and then spray-dried. below. Discusses various matters related to inventions. (Synthesis of SE by a solvent method) In the synthesis of SH by a solvent method, a mixture of sucrose and fatty acid methyl ester is usually added and dissolved in a reaction solvent, such as dimethyl sulfoxide, in an amount several times the total amount of these. It can easily be heated to 90°C by keeping it at 80°C to 90°C for several hours in a vacuum of 20 to 30 Torr in the presence of an alkaline catalyst such as potassium carbonate (K2COs).
SE at a reaction rate of % or more (based on fatty acid methyl ester)
A reaction mixture forms. Next, in order to eliminate the activity of the alkaline catalyst in the SE reaction mixture, an equivalent amount of an organic acid such as lactic acid or acetic acid or a mineral acid such as hydrochloric acid or sulfuric acid is added to the SE reaction composition. This neutralization converts the catalyst into a potassium salt such as potassium lactate. Finally, the reaction solvent, such as dimethyl sulfoxide, is distilled off under vacuum, resulting in a composition (reaction mixture after neutralization and 7A distillation) approximately having the following composition range. Sucrose fatty acid ester = 15-92% unreacted sugar
= 1.0-80% unreacted fatty acid methyl ester = 0.5-10% neutral salt derived from potassium carbonate
= 0.05-7% stone wine =1.
0-10% fatty acid = 0.5-1O
% volatile content (residual reaction solvent) = 5.0-30% At this time, the ester distribution of SE is monoester 10-75%
(Diester or higher is 90 to 25x). The fatty acid radicals mainly contained in each of the fatty acid methyl ester, the fatty acid, and the fatty acid are saturated and have a common carbon number of CI6 to C22. (Addition of water) Next, water was added to the above reaction mixture, water: reaction mixture = 5:1 to 40:1 (weight ratio)... (1
) More preferably, the ratio is as follows. Water: Reaction mixture = 20: 1 (weight ratio)...
- Add to the ratio of formula (2) and adjust the pH to 8.2~
8.2. The pH is preferably 7.5. In this case, the water addition ratio is outside the above range. For example, if the ratio of water to reaction mixture is less than 5, the resulting aqueous solution will have a high viscosity, making subsequent operations substantially difficult. On the other hand, if too much water is added so that the ratio of water to reaction mixture exceeds 40, the viscosity will decrease and subsequent operations will be easier, and the desired reaction solvent will be Although removal is carried out suitably, on the other hand, a large amount of energy cost is required to remove water when recovering unreacted sugars, etc., resulting in a loss of economic efficiency. Furthermore, the pH of the aqueous solution is preferably adjusted between pH 6.2 and 8.2 in order to avoid decomposition of the target SE. At a hydrogen ion concentration of pH 8.2 or higher, quantitative alkali-based There is a concern that SE decomposition will occur,
Furthermore, even in a weakly acidic region of pH 8.2 or less, there is a risk of acid decomposition if exposed to high temperatures of 30° C. or higher, for example. (Salting out) As above <pH; II! ! The aqueous solution of the prepared SE reaction mixture is kept preferably at 50-80°C, and neutral salt and sucrose are further added. In this case, the neutral salt to be added is
First, it is preferable that the following formula (3) is satisfied. =0.015~0.12 (weight ratio)・・・・・・・・・
(3) Here, total base amount = amount of neutral salt to be added + amount of bases formed from catalyst (4) Total amount of sugar = amount of sucrose to be added + Amount of unreacted sugar from the beginning...
(5) Next, the amount of sucrose to be added is preferably determined by the following formula (6). = 0.025 to 0.20 (weight ratio)...
...(6) Furthermore, in addition to both of the above equations, it is preferable that the ff1fit ratio of the total base amount and the total axial amount also satisfy the following equation (7). The present inventors obtained S
When an aqueous solution containing precipitated H is heated to a temperature of 50 to 80°C, even if the composition of volatile matter (residual reaction solvent) contained in the SE reaction mixture varies greatly from 5.0 to 30.0%. It has been found that approximately the entire amount of SE is precipitated no matter how large the amount of SE is. This phenomenon is a unique phenomenon and has an important value for the purpose of the invention. The attached ttS1 diagram is a ternary graph showing this phenomenon in more detail. In this figure, the weight of SH dissolved in the aqueous phase = Y [gl, the weight of precipitated SH = X [gl Total S E (X + Y) [gl] If the weight percentage of SE present = φ [%], then φ is defined by the following formula (8). Here, the following conditions: Temperature = 80°C, pH -7.5° Water: Reaction mixture = 7.4: 1 (weight ratio) Fatty acid residue = Stearic acid Composition of the reaction mixture Sucrose fatty acid ester = 23% Reacted sugar; 35% Unreacted fatty acid methyl ester = 2% Salt derived from catalyst = 1% Soap 23% Fatty acid = 1% Volatile matter (residual reaction solvent) = 29% Ester distribution in SE: Monoester F 3% diester Above = 27%, how the value of φ changes is shown by triangular coordinates. Here, the total salt is the amount defined by the formula (4), and the total sugar is the amount defined by the formula (5), respectively, and they are expressed as water amount, total base amount, and total lees amount = 100%. The shaded part in Figure 1 is the formula (3) discovered by the inventors.
)1 is an area that simultaneously satisfies equations (8) and (7). By determining the amount of dissolved neutral salt and sucrose that falls within this shaded area, it is possible to precipitate substantially φ=O, that is, approximately the entire amount of SE, and the precipitated SE can be collected by filtration. Or, by centrifugation, volatiles dissolved in the aqueous phase (
(residual reaction mixture) can be completely separated (that is, contaminating volatile components can be completely removed). (Washing) After the above salting-out operation, pH-3.0 to 5.5. temperature 10
The separated SE cake described above is washed using acidic water whose temperature is adjusted to about 40°C. The acid used for this is, for example, 11! Acid, mineral acids such as sulfuric acid, and organic acids such as acetic acid and lactic acid are suitable, but are not limited to those exemplified in the side column. By washing under such conditions, desired impurities can be transferred to the aqueous phase while minimizing the amount of SE redissolved from the cake side to the aqueous phase. When the temperature of the acidic water exceeds 40°C during the above-mentioned cleaning operation, if the operation is continued for a long time, for example, several months, there is a risk that the SE will not only be decomposed by the acid, but also that the viscosity will increase. Operation becomes difficult. On the other hand, maintaining a low temperature of 10° C. or less requires a refrigerator that is not economical. Therefore, it is usually preferable to operate at 10 to 40°C, particularly around room temperature. In addition, when washing the SE cake with this acidic water, 1
It is necessary to remove from the SE cake as much as possible the volatile components (reaction solvent) contained in this cake, unreacted sugars, added neutral salts, and salt surroundings produced by neutralization of the catalyst. Therefore, it is desirable that the SE cake be shredded in the acidic water to the smallest possible particle size.
Homo mixer)), homogenizer or colloid mill (
For example, this can be efficiently achieved using a fragmentation device such as the product name (Mycolloider), and volatile matter (reaction solvent), unreacted sugar,
The salts and neutral salts from the catalyst are transferred from the cake of precipitated SE into the acidic aqueous phase. However, although it is said to be a substantially small amount, it is inevitable that some SE will elute into the acidic aqueous phase. Therefore, it can be effectively suppressed by relatively increasing the diester or triester content. The above-mentioned washing of the SE cake with acidic water becomes more complete by increasing the number of washings and increasing the amount of washing water, thus making it possible to obtain purified SE that is virtually pure. (Slurry concentration) The water-containing SE purified in this way is slurry-like, but as it is, the pH is biased toward the acidic side, so the slurry is adjusted to have a pH near neutrality. does not contain unreacted sugars, salts originating from the catalyst, volatile components, and sucrose and neutral salts added during salting out, but S
E contains unreacted fatty acid methyl ester, stone and fatty acid surroundings, and often has a solid content of 1 to 50% and a water content of 99 to 50%. The amount of solids in this slurry is preferably about 40% or less for drying purposes, which will be described later.However, an excessively small amount of solids is undesirable from the viewpoint of energy costs for drying, and is usually , a value of 4% or more is economical. (Spray Drying) In the present invention, a spray drying method is particularly used for drying the SE slurry. The usefulness of this drying means is 1. The present inventor has found from numerous experiments that it is the most suitable method for dehydrating and drying SE slurry having a solid content of 40 to 86%. Incidentally, as mentioned above, Tokogl? Also when using a regular vacuum dryer such as a groove-type agitation dryer. Also, the slurry is continuously supplied, heated and discharged into the vacuum chamber. Even when using a so-called flash dryer, SE
Because of its viscosity characteristics and low melting point,
It is impossible to avoid quality deterioration phenomena such as an increase in acid value, coloration, and caramelization, and in the latter case, the risk of powder explosion cannot be ignored. However, by employing the spray drying means discovered by the inventor, the drawbacks of the existing drying means can be solved at once. In the drying process of the present invention, the hydrous sucrose fatty acid ester in the form of a slurry is continuously supplied to the spray drying tower via a pump, and is turned into fine atomized particles by spraying from a nozzle or centrifugal force from a rotating disk. Divide and contact with drying air stream. This significantly increases the area for water evaporation, which results in dehydration within an extremely short period of time (within a few seconds after spraying). Drying may be completed. Note that as the atomization means, it is desirable to use a rotating disk because the viscosity of the hydrous sucrose fatty acid ester is high. (Spray drying conditions) The supply temperature of the sucrose fatty acid ester solution or slurry was 40°C.
Although the temperature can be changed arbitrarily between 80° C. and 80° C., it is preferable to select a temperature within the range of 40° C. to 60° C. from the viewpoint of quality. When the above solution or slurry is atomized by a rotating disk 1 For example, when the diameter of the disk is 5 to 10 c + mφ, 15.0
A rotational speed of 00 to 24,000 rpm+ is suitable. The air blown into the tower should have more than the amount of heat needed to evaporate the water in the solution or slurry, so if the air temperature is low, a larger amount of air is required. The air temperature at this time may be in a wide range of 10 to 100°C, but it is advantageous to select a temperature between 60 and 80°C in consideration of drying efficiency and prevention of thermal decomposition of the target sucrose fatty acid ester. be. The humidity in the blown air is also related to the drying efficiency along with the air temperature. The absolute humidity suitable for work is approximately: Absolute humidity = o, ooa ~ 0.05 kg ° water kg /
Although the range is for dry air, it is especially economical to use the following range: absolute humidity = 0.01 to 0.04 Kg° water/dry air. When the solid content concentration in the slurry sent to the spray drying tower exceeds 40%, the viscosity increases significantly, and as a result, the particle size of the sprayed slurry becomes relatively large, which slows down the drying of the water. As a result, it tends to adhere to the inner wall of the drying tower. Therefore, it is better to adjust the solid content concentration in the slurry to 40% or less. If the solid content concentration of the slurry is 40% or less, the diameter of the sprayed droplets will be smaller than if it exceeds 40%.
Since it becomes easier to dry, there is no fear of it adhering to the inner wall of the drying tower. However, if the solid content concentration of the slurry is, for example, 3%
If the size is less than 1, drying becomes easier, but it is uneconomical in terms of the energy required. Therefore, the concentration of slurry supplied to the spray drying tower is 4.
A range of % to 40% is suitable. Conditions such as the required volume, required tower length, and required height of the spray drying tower are designed on the premise of the above spray conditions. If the tower design and operating conditions are suitable, powdered dry sucrose fatty acid ester with a moisture content of less than 5% is continuously discharged from the bottom of the spray drying tower. The resulting product has a short thermal history and is of excellent quality, and requires almost no drying personnel.

【作用】[Effect]

未反応の糖、未反応の脂肪酸メチルエステル。 触媒1石鍮、脂肪酸及び揮発分(残留する反応溶媒)を
含むショ糖脂肪酸エステル生成反応混合物に酸を加えて
中性領域のpHに調整後、水、中性塩及びショ糖を加え
て適当な温度下に塩析すると、ショ糖脂肪酸エステル、
未反応の脂肪酸メチルエステル、石鹸及び脂肪酸が沈殿
すると共に、揮発分(残留する反応溶媒)が水相側に移
行するので、全く有機溶媒を使用せずに残留揮発分を除
去することができる。特に、式(3)、式(8)、及び
式(7)の条件を満足させるように操作することによっ
て、SEの損失が実質的に絶無の状態で残留溶媒を除去
することができる。 次いt、この沈殿を酸性の水で洗浄することにより、本
沈殿中に夾雑する揮発分や、未反応糖、加えられた中性
塩及び触媒の中和により副生じた塩等の不純物が除去さ
れ、精製されたSEのスラリーとなる。そしてこの精製
スラリーを噴霧乾燥することにより、水分5%以下の粉
末状SEが連続的に生産される。
Unreacted sugar, unreacted fatty acid methyl ester. Catalyst 1 Add acid to the sucrose fatty acid ester producing reaction mixture containing brass, fatty acids, and volatile matter (residual reaction solvent) to adjust the pH to a neutral range, then add water, neutral salts, and sucrose to the appropriate temperature. When salted out at a certain temperature, sucrose fatty acid ester,
Unreacted fatty acid methyl ester, soap, and fatty acid are precipitated, and volatile components (residual reaction solvent) are transferred to the aqueous phase, so that residual volatile components can be removed without using any organic solvent. In particular, by operating so as to satisfy the conditions of formula (3), formula (8), and formula (7), the residual solvent can be removed with virtually no loss of SE. Next, by washing this precipitate with acidic water, impurities such as volatile components, unreacted sugars, added neutral salts, and salts produced by neutralization of the catalyst are removed. A slurry of purified SE is removed. By spray drying this purified slurry, powdered SE with a moisture content of 5% or less is continuously produced.

【実施例】【Example】

以下、実施例及び比較例に発明実施の態様及び効果を説
明するが、例示は勿論説明のためのものであって、発明
思想の限定又は制限を意図したものではない。 火凰社ニュ 下表−1の組成で表される溶媒法SE反応混合物から反
応溶媒を留去した残液を乳酸で中和後。 乾燥させた乾物100gに水2,000gを加えて溶解
させた。 この水溶液に、ショ糖82.5g及び50%乳酸カリウ
ム97.8gを加えて、75℃まで加熱、昇温させ、沈
澱したケーキを濾別し、固形分53%のケーキを得た。 なお、濾液中にSEは実質的に含まれていなかった。 (以下余白) 表−1 本エステル分布:モノエステル70%、ジエステル以上
は30%。 上のケーキに、常温塩酸水(pH3,5) 2.QOO
gを加えたところ、直ちにSEが白色沈殿として析出し
た。 次いで、この沈殿を含む酸性の水溶液(pH3,5)を
ホモミキサー(特殊機器工業■製)で、充分攪拌した後
、沈澱を吐取した。この沈殿に、再び塩酸水を加えて再
洗外する操作を二回行った後、苛性ソーダでpH7,5
に調整して得た精製ケーキは。 1i150.8.で、25%の固形分を含有し、その乾
燥物は、下表−2の組成を持っていた。なお洗液(i!
!液)中には少量ながらSEが含まれていた。 表−2 このスラリーを、50℃に保ったまま、パイロット噴霧
乾燥塔へ供給し、噴霧乾燥した。乾燥条件は、 噴霧乾燥塔の直径:2.0−φ 直筒部の長さ+ 1.5m 回転円盤(ディスク)径: 10cmφ円盤回転数:2
4,00Orp園 入ロ空気温度二60℃、 であった・ 噴霧乾燥塔の下部から得られた粉末状SEは、水分1.
81%、嵩比i0.41で、過熱による着色も無く、流
動性のよいものであった。 乾燥は安定して!続でき、当初心配された、粉末が噴霧
乾燥塔の内部壁に付着する等のトラブルはみられなかっ
た。 なお、SE中のモノエステル量は乾燥前後を通じ68%
と全く変化がなく2かつ、酸価にも変化がなかった。 衷凰菫二ヱ 実施例−1で得られた、25%固形分の沈澱ケーキ(ス
ラリー)を、50℃の温度に保ちながら、入口空気温度
を40℃、スラリーの供給速度を0.5kg/時に変え
た点を除き、回倒と同様に噴霧乾燥した。 得られたSE粒粉末、水分1.82%、嵩比重Q 、 
42で、流動性がよく、過熱による着色は皆無であった
。なお、SE中のモノエステル量は、68%と乾燥前後
を通じ変化なく、かつ酸価についても同様であった。 さらに、噴霧乾燥塔の内壁部へのSE粒粉末付着も観察
されなかった。
The embodiments and effects of the invention will be explained below using Examples and Comparative Examples, but the examples are of course for explanation and are not intended to limit or limit the idea of the invention. After the reaction solvent was distilled off from the solvent method SE reaction mixture represented by the composition shown in Table 1 below, the residual liquid was neutralized with lactic acid. 2,000 g of water was added to 100 g of the dried material to dissolve it. To this aqueous solution, 82.5 g of sucrose and 97.8 g of 50% potassium lactate were added, heated to 75° C., and the precipitated cake was filtered off to obtain a cake with a solid content of 53%. In addition, SE was not substantially contained in the filtrate. (Left below) Table 1: Distribution of esters: 70% monoester, 30% diester or higher. Add room temperature hydrochloric acid water (pH 3, 5) to the top cake 2. QOO
When g was added, SE was immediately precipitated as a white precipitate. Next, the acidic aqueous solution (pH 3, 5) containing this precipitate was sufficiently stirred with a homomixer (manufactured by Tokushu Kiki Kogyo ■), and then the precipitate was discharged. After adding hydrochloric acid water again to this precipitate and washing it twice, pH 7.5 was added with caustic soda.
The purified cake obtained by adjusting. 1i150.8. The dry product contained 25% solids and had the composition shown in Table 2 below. In addition, washing liquid (i!
! The liquid contained a small amount of SE. Table 2 This slurry was supplied to a pilot spray drying tower while being maintained at 50°C, and was spray dried. The drying conditions are as follows: Diameter of spray drying tower: 2.0-φ Length of straight cylinder part + 1.5 m Rotating disk (disc) diameter: 10 cmφ Disk rotation speed: 2
The temperature of the air entering the garden at 4,00°C was 260°C. The powdered SE obtained from the bottom of the spray drying tower had a moisture content of 1.
81%, bulk ratio i0.41, no coloring due to overheating, and good fluidity. Stable drying! There were no problems such as powder adhering to the internal walls of the spray drying tower, which were initially feared. The amount of monoester in SE was 68% before and after drying.
2, and there was no change in the acid value. The precipitated cake (slurry) with a solid content of 25% obtained in Example-1 was kept at a temperature of 50°C, the inlet air temperature was 40°C, and the slurry feeding rate was 0.5 kg/ Spray drying was performed in the same manner as in the spin-down process, except that the time was changed. The obtained SE grain powder, moisture content 1.82%, bulk specific gravity Q,
42, the fluidity was good, and there was no coloration due to overheating. The amount of monoester in SE was 68%, which remained unchanged before and after drying, and the same was true for the acid value. Furthermore, no SE grain powder was observed to adhere to the inner wall of the spray drying tower.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、精製用有機溶媒を使用せ
ずに粗製のショ糖脂肪酸エステル反応混合物から粉末状
の精製ショ糖脂肪酸エステルを工業的に生産するための
一連の技術を開発したことにより、以下のような多大の
効果を奏する。 (1)安価な水のみを用いてSEの精製が可能となるこ
と。 (2)SEの乾燥を、常圧下に短時間内に行うことがで
きるため、製品の熱劣化がないこと。 (3)溶剤の爆発、火災の心配がなく、従って、防爆仕
様の高価な電気装置も不要となること。 (4)精製用溶媒が製品に混入する懸念がないこと。 (5) NA場の衛生環境カフ向上すること。 (6)低費用で工業化できること。
As explained above, the present invention has developed a series of techniques for industrially producing powdered purified sucrose fatty acid ester from a crude sucrose fatty acid ester reaction mixture without using an organic solvent for purification. This brings about the following great effects. (1) SE can be purified using only inexpensive water. (2) Since SE can be dried under normal pressure within a short time, there is no thermal deterioration of the product. (3) There is no need to worry about solvent explosion or fire, and therefore there is no need for expensive explosion-proof electrical equipment. (4) There is no concern that the purification solvent will mix into the product. (5) Improve the sanitary environment of the NA field. (6) It can be industrialized at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水1合計側及び合計塩各最の変化と、水相中
に溶存するシ!朝脂肪酸エステル量との関係を示す三角
グラフである。 特許出願人 第−工業製薬株式会社 蛸1 図 一合計塩C’l。) 7に今合計jA◆令計機=100
Figure 1 shows the changes in total water and total salt, and the amount of salt dissolved in the water phase. It is a triangular graph showing the relationship with the amount of fatty acid ester in the morning. Patent applicant No. Kogyo Seiyaku Co., Ltd. Tako 1 Figure 1 Total salt C'l. ) 7 now total jA◆Reimeter = 100

Claims (1)

【特許請求の範囲】 1 目的物のショ糖脂肪酸エステルの他、未反応の糖、
未反応の脂肪酸メチルエステル、触媒、石鹸、脂肪酸及
び揮発分を含む反応混合物を、中性領域のpHに調整し
て水、中性塩及びショ糖を加えることにより生じる沈澱
物を酸性の水で洗浄し、中和後、噴霧乾燥することを特
徴とする粉末状ショ糖脂肪酸エステルの製造方法。 2 反応混合物の組成が、 未反応のショ糖=1.0〜80.0% 未反応の脂肪酸メチルエステル=0.5〜10.0% 触媒=0.05〜7.0% 石鹸=1.0〜10.0% 脂肪酸=0.5〜10.0% 揮発分(残留する反応溶媒)=3.0〜50.0% である請求項1記載の方法。 3 反応混合物が、pH6.2〜8.2に調整される請
求項1記載の方法。 4 pH調整後の反応混合物が、50〜80℃に加熱さ
れる請求項1から3のいずれかに記載の方法。 5 反応混合物に加えられる水と反応混合物の重量比が
、水:反応混合物=5:1〜40:1である請求項1記
載の方法。 6 下記の関係式に従って、中性塩及びショ糖が反応混
合物に添加される請求項1又は3記載の方法。 合計塩量/(水量+合計塩量+合計糖量)=0.015
〜0.12 かつ、 合計糖量/(水量+合計塩量+合計糖量)=0.025
〜0.20 かつ、 合計塩量/合計糖量=0.4〜0.8 ここで、 合計塩量=加えられるべき中性塩量+触媒の中和によっ
て生成する塩量 合計糖量=加えられるべきショ糖量+当初からの未反応
糖量 7 反応混合物のpHの調整に使用される酸が、乳酸、
酢酸、塩酸及び硫酸からなる群から選ばれた酸のいずれ
かである請求項1又は3記載の方法。 8 反応混合物中の脂肪酸メチルエステル、石鹸及び脂
肪酸の夫々に主として含まれる脂肪酸根が、炭素数が1
6〜22の共通飽和脂肪酸根を持つ請求項1又は2記載
の方法。 9 反応混合物中の揮発分(残留する反応溶媒)の成分
が、ジメチルスルホキシド又はジメチルホルムアミドで
ある請求項1又は2記載の方法。 10 反応混合物に加えられる中性塩が、食塩、芒硝、
乳酸カリウム及び酢酸カリウムからなる群から選ばれた
塩のいずれかである請求項1又は6記載の方法。 11 ショ糖脂肪酸エステルのエステル分布が、モノエ
ステル含分として、10〜75%(ジエステル以上が8
0〜25%)である請求項1、2又は6記載の方法。 12 酸性の水のpH値が、3.0〜5.5である請求
項1記載の方法。 13 酸性の水の温度が、10〜40℃である請求項1
又は12記載の方法。 14 噴霧乾燥される沈殿のスラリー(泥漿)が、固形
分=4〜40%、水分:96〜60%のものである請求
項1記載の方法。 15 噴霧乾燥時の送風空気の湿度と温度が、 絶対湿度=0.008〜0.05[(kg・水)/(k
g・乾燥空気)] 温度=10.0〜100.0℃ の範囲内に在る請求項1記載の方法。 16 製品の粉末状ショ糖脂肪酸エステルの組成が、下
記範囲内に在る請求項1記載の製法。 水分=0.5〜5.0% 未反応脂肪酸メチルエステル=0.5〜10.0% 石鹸=0.5〜60.0% 脂肪酸=0.5〜10.0% ショ糖脂肪酸エステル=98.0〜15.0%
[Claims] 1. In addition to the target sucrose fatty acid ester, unreacted sugar,
A reaction mixture containing unreacted fatty acid methyl ester, catalyst, soap, fatty acid, and volatile components is adjusted to a pH in the neutral range, and water, a neutral salt, and sucrose are added, and the resulting precipitate is removed with acidic water. A method for producing powdered sucrose fatty acid ester, which comprises washing, neutralizing, and spray drying. 2 The composition of the reaction mixture is: Unreacted sucrose = 1.0-80.0% Unreacted fatty acid methyl ester = 0.5-10.0% Catalyst = 0.05-7.0% Soap = 1. The method according to claim 1, wherein: 0 to 10.0% fatty acid = 0.5 to 10.0% volatile content (residual reaction solvent) = 3.0 to 50.0%. 3. The method according to claim 1, wherein the reaction mixture is adjusted to a pH of 6.2 to 8.2. 4. The method according to any one of claims 1 to 3, wherein the reaction mixture after pH adjustment is heated to 50 to 80°C. 5. The method according to claim 1, wherein the weight ratio of water added to the reaction mixture and the reaction mixture is water:reaction mixture = 5:1 to 40:1. 6. The method of claim 1 or 3, wherein the neutral salt and sucrose are added to the reaction mixture according to the relationship: Total salt amount / (water amount + total salt amount + total sugar amount) = 0.015
~0.12 and total sugar amount/(water amount + total salt amount + total sugar amount) = 0.025
~0.20 and total salt amount/total sugar amount = 0.4 to 0.8 where, total salt amount = neutral salt amount to be added + salt generated by neutralization of catalyst Total sugar amount = addition amount of sucrose to be added + amount of unreacted sugar from the beginning 7 The acid used to adjust the pH of the reaction mixture is lactic acid,
4. The method according to claim 1, wherein the acid is any acid selected from the group consisting of acetic acid, hydrochloric acid and sulfuric acid. 8 The fatty acid radical mainly contained in each of the fatty acid methyl ester, soap, and fatty acid in the reaction mixture has a carbon number of 1.
3. A method according to claim 1 or 2, having from 6 to 22 common saturated fatty acid roots. 9. The method according to claim 1 or 2, wherein the volatile component (residual reaction solvent) in the reaction mixture is dimethyl sulfoxide or dimethylformamide. 10 The neutral salt added to the reaction mixture is common salt, mirabilite,
7. The method according to claim 1, wherein the salt is selected from the group consisting of potassium lactate and potassium acetate. 11 The ester distribution of sucrose fatty acid ester is 10 to 75% as monoester content (diester or more is 8%).
7. The method according to claim 1, 2 or 6. 12. The method according to claim 1, wherein the acidic water has a pH value of 3.0 to 5.5. 13. Claim 1, wherein the temperature of the acidic water is 10 to 40°C.
Or the method described in 12. 14. The method according to claim 1, wherein the slurry of the precipitate to be spray dried has a solid content of 4 to 40% and a moisture content of 96 to 60%. 15 The humidity and temperature of the blown air during spray drying are as follows: absolute humidity = 0.008 to 0.05 [(kg・water)/(k
The method according to claim 1, wherein the temperature is within the range of 10.0 to 100.0°C. 16. The manufacturing method according to claim 1, wherein the composition of the powdered sucrose fatty acid ester of the product is within the following range. Moisture = 0.5-5.0% Unreacted fatty acid methyl ester = 0.5-10.0% Soap = 0.5-60.0% Fatty acid = 0.5-10.0% Sucrose fatty acid ester = 98 .0~15.0%
JP63136329A 1988-06-01 1988-06-01 Method for producing powdery sucrose fatty acid ester Expired - Fee Related JPH0667951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136329A JPH0667951B2 (en) 1988-06-01 1988-06-01 Method for producing powdery sucrose fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136329A JPH0667951B2 (en) 1988-06-01 1988-06-01 Method for producing powdery sucrose fatty acid ester

Publications (2)

Publication Number Publication Date
JPH01305096A true JPH01305096A (en) 1989-12-08
JPH0667951B2 JPH0667951B2 (en) 1994-08-31

Family

ID=15172678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136329A Expired - Fee Related JPH0667951B2 (en) 1988-06-01 1988-06-01 Method for producing powdery sucrose fatty acid ester

Country Status (1)

Country Link
JP (1) JPH0667951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942643A (en) * 2019-03-14 2019-06-28 柳州职业技术学院 A kind of method for purifying and separating of sucrose fatty ester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211242B2 (en) 2019-11-14 2021-12-28 International Test Solutions, Llc System and method for cleaning contact elements and support hardware using functionalized surface microfeatures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942643A (en) * 2019-03-14 2019-06-28 柳州职业技术学院 A kind of method for purifying and separating of sucrose fatty ester
CN109942643B (en) * 2019-03-14 2022-06-28 柳州职业技术学院 Purification and separation method of sucrose fatty acid ester

Also Published As

Publication number Publication date
JPH0667951B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4996309A (en) Process for preparing sucrose fatty acid ester powder
JPH0667953B2 (en) Method for producing powdery sucrose fatty acid ester
US5017697A (en) Process for purifying sucrose fatty acid esters having high HLB
JPH01305096A (en) Production of powdery fatty acid ester of sucrose
US5536435A (en) Process for making peroxyacid containing particles
JP2648936B2 (en) Method for producing sucrose fatty acid ester
JPH02129196A (en) Production of powdery sucrose ester of fatty acid
JPH01311092A (en) Preparation of powdery sucrose fatty acid ester
JPH0240392A (en) Production of powdery sucrose fatty acid ester
JPH029893A (en) Production of powdery sucrose ester of fatty acid
JPH02295995A (en) Production of powdery high-hlb sucrose fatty acid ester
KR100346882B1 (en) Purification of sugar ester
JP2688937B2 (en) Method for producing powdery sucrose fatty acid ester
JP2688930B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH06510300A (en) How to improve the color of sulfated surfactants without bleaching
JP2686972B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH0314595A (en) Production of powdery high-hlb sucrose fatty acid ester
JP2712035B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH0667950B2 (en) Method for drying hydrous sucrose fatty acid ester
JP2686966B2 (en) Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture
JPH0240391A (en) Production of powdery sucrose fatty acid ester
JPH02164889A (en) Production of powdery high-hlb sucrose fatty acid ester
JPH02164886A (en) Production of powdery high-hlb sucrose fatty acid ester
JPH01319491A (en) Production of powdery fatty ester of sucrose
JPH0256494A (en) Production of powdery ester of fatty acid with sucrose

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees