JPH01318950A - Detecting method for amount of occulsion of hydrogen in titanium material - Google Patents

Detecting method for amount of occulsion of hydrogen in titanium material

Info

Publication number
JPH01318950A
JPH01318950A JP15000988A JP15000988A JPH01318950A JP H01318950 A JPH01318950 A JP H01318950A JP 15000988 A JP15000988 A JP 15000988A JP 15000988 A JP15000988 A JP 15000988A JP H01318950 A JPH01318950 A JP H01318950A
Authority
JP
Japan
Prior art keywords
titanium material
current
amount
magnetic flux
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15000988A
Other languages
Japanese (ja)
Inventor
Michio Matsushita
松下 道雄
Akio Saito
彰夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15000988A priority Critical patent/JPH01318950A/en
Publication of JPH01318950A publication Critical patent/JPH01318950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply detect the amount of occulsion of hydrogen in a titanium material by projecting a magnetic flux to the titanium material to cause an eddy current and by detecting a change in the magnetic flux caused by this eddy current. CONSTITUTION:A high-freqency current is generated from a high-frequency current generator 1 and this high-frequency current is supplied to a standard coil 2 and a probe coil 3. A detecting probe 4 is coupled magnetically to the probe coil 3, and a magnetic flux generated in the coil 3 is projected to a titanium material 5 which is test specimen. In the titanium material 5 an eddy current corresponding to the amount of occulsion of hydrogen is induced by the projected magnetic flux. By this eddy current, a magnetic flux in such a direction as to reduce the projected magnetic flux is generated. This magnetic flux directed reversely is detected as a current by the probe coil 3. The value of this current and the current value of the standard coil 2 are inputted to a differential amplifier 6 to determine the difference between them, and thereby the amount of hydrogen in the titanium material is determined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン材中に吸蔵されている水素量を簡単な
作業で検出し得る水素吸蔵量検出方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting the amount of hydrogen occluded in a titanium material by a simple operation.

(従来の技術) チタン材料は、鋼材、ステンレス鋼のような金属材料に
比べて耐食性、゛耐熱性に富むと共に軽量で優れた機械
的強度特性を有しており、各種プラント装置や航空機を
はじめとする各種用途に広く用いられている。一方各種
プラント装置等の安全性を確保するためには各種チタン
製部材の経時的変化を正確に検出し、適切な保守点検を
行なう必要ある。
(Conventional technology) Titanium materials have excellent corrosion resistance and heat resistance, are lightweight, and have excellent mechanical strength properties compared to metal materials such as steel and stainless steel, and are used in various plant equipment, aircraft, etc. It is widely used for various purposes. On the other hand, in order to ensure the safety of various plant equipment, etc., it is necessary to accurately detect changes over time in various titanium members and perform appropriate maintenance and inspection.

純チタン、チタン合金のような各種チタン材の経時的変
化の主たる要因は水素吸蔵量に起因するもと考えられて
おり、例えば水素吸蔵量が増大すると伸び特性や絞り特
性が低下し、さらに大量の水素を吸蔵するとクランク発
生の原因となることが知られている。従って、チタン材
中に吸蔵されている水素量を検出することによりチタン
材の経時的変化を判断することができ、簡単な作業で水
素吸蔵量を検出できる方法の開発が強く要請されている
It is believed that the main cause of changes over time in various titanium materials such as pure titanium and titanium alloys is due to the amount of hydrogen storage.For example, as the amount of hydrogen storage increases, the elongation and drawing characteristics deteriorate, and It is known that storing hydrogen can cause cranking. Therefore, by detecting the amount of hydrogen occluded in a titanium material, it is possible to judge changes in the titanium material over time, and there is a strong demand for the development of a method that can detect the amount of hydrogen occluded with a simple operation.

従来、チタン材中の水素吸蔵量を測定する方法は、破壊
試験が主流であり、金属組織試験法やX線回折による測
定方法が採用されていた。また、非破壊試験方法として
、水素吸蔵量が増加すると硬さが高くなる性質を利用し
た硬さ測定法も行なわれていた。
Conventionally, the mainstream method for measuring the hydrogen storage amount in titanium materials has been destructive testing, and measurement methods using metallographic testing and X-ray diffraction have been adopted. In addition, as a non-destructive testing method, a hardness measurement method that utilizes the property that hardness increases as the amount of hydrogen storage increases has also been conducted.

(発明が解決しようとする課題) 上述した金属組織試験法やX線回折を利用した測定方法
では、現実に稼働しているプラント装置からチタン製部
材を取はずし、研究所等に設置されている測定装置を用
いて測定しなければならず、現場で簡易に測定すべきと
する要請に反することになる。また、硬さ測定法は非破
壊で測定できる利点があるが、チタン製部材は厚さが薄
いため市販の硬さ計を用いて測定したのでは誤差が大き
すぎ、しかも再現性が劣り、チタン材料の経時的変化を
正確に判断できない不都合があった。
(Problem to be solved by the invention) In the above-mentioned metallographic testing method and measurement method using X-ray diffraction, titanium members are removed from actually operating plant equipment and installed in a research laboratory, etc. The measurement must be performed using a measuring device, which goes against the request for easy measurement on site. In addition, although the hardness measurement method has the advantage of being able to measure non-destructively, titanium parts are thin, so measuring them using a commercially available hardness meter would result in too large an error and poor reproducibility. There was an inconvenience that it was not possible to accurately judge changes in the material over time.

従って、本発明の目的は上述した欠点を解消し、現場に
おいて簡単な作業で水素吸蔵量を正確に検出し得るチタ
ン材の水素吸蔵量検出方法を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for detecting the amount of hydrogen occlusion in a titanium material, which eliminates the above-mentioned drawbacks and allows accurate detection of the amount of hydrogen occlusion in a titanium material with simple work in the field.

(課題を解決するための手段) 本発明によるチタン材中の水素吸蔵量検出方法は、検出
すべきチタン材に磁束を投射して渦電流を誘起させ、誘
起した渦電流によって生ずる磁束を検出し、検出した磁
束に基いて吸蔵されている水素濃度を求めることを特徴
とする。
(Means for Solving the Problems) A method for detecting hydrogen storage amount in a titanium material according to the present invention involves projecting a magnetic flux onto the titanium material to be detected to induce an eddy current, and detecting the magnetic flux generated by the induced eddy current. The method is characterized in that the concentration of occluded hydrogen is determined based on the detected magnetic flux.

(作 用) 純チタンやチタン合金中に水素が吸蔵されると吸蔵水素
が不純物原子として作用することが考えられる。この不
純物原子の存在によりチタン材料の電気抵抗が増大する
。電気抵抗の変化により、外部から磁束を投射した場合
チタン材中に誘起される渦電流量も水素吸蔵量に応じて
変化することが考えられる。本発明は、このような認識
に基いており、外部磁束によってチタン材中に誘起され
渦電流に起因して発生する磁束をプローブコイルによっ
て電流値として検出する。そして、検出された電流値か
らチタン材中に含まれている水素量を求める。このよう
に構成すれば、検出装置をコンパクトなポータプル型の
装置とすることができ、しかもプローブをチタン材に押
し当てるだけで水素吸蔵量を検出することができる。
(Function) When hydrogen is occluded in pure titanium or titanium alloy, it is thought that the occluded hydrogen acts as an impurity atom. The presence of these impurity atoms increases the electrical resistance of the titanium material. It is conceivable that due to changes in electrical resistance, the amount of eddy current induced in the titanium material when magnetic flux is projected from the outside also changes depending on the amount of hydrogen storage. The present invention is based on such recognition, and the magnetic flux induced in the titanium material by external magnetic flux and generated due to eddy current is detected as a current value by a probe coil. Then, the amount of hydrogen contained in the titanium material is determined from the detected current value. With this configuration, the detection device can be made into a compact portaple type device, and the hydrogen storage amount can be detected simply by pressing the probe against the titanium material.

(実施例) 第1図は本発明によるチタン材中の水素吸蔵量検出方法
を実施するための一例の構成を示す線図である。高周波
電流発生器1から500kHz〜3M1lzの高周波電
流を発生し、この高周波電流を標準コイル2及びプロー
ブコイル3にそれぞれ供給する。
(Example) FIG. 1 is a diagram showing the configuration of an example for carrying out the method for detecting the amount of hydrogen occlusion in a titanium material according to the present invention. A high frequency current generator 1 generates a high frequency current of 500kHz to 3M11z, and supplies this high frequency current to the standard coil 2 and probe coil 3, respectively.

標準コイル2及びプローブコイル3は共に同一のコイル
で構成する。プローブコイルに検知プローブ4を磁気的
に結合し、プローブコイル3で発生した磁束を検知プロ
ーブ4を介して被検体であるチタン材5に向けて投射す
る。チタン材5には、投射磁束によって水素吸蔵量に応
じた渦電流が誘起される。この渦電流により投射磁束を
減少させる向きの磁束が発生し、この逆向きの磁束をプ
ローブフィル3により電流として検出する。従って、プ
ローブコイル3の出力側には高周波電流発生器1から供
給される電流に、チタン材5で発生した渦電流に暴く電
流が重畳された電流が発生することになる。この重畳電
流を差動増幅器6の一方の入力端子に供給すると共に標
準コイル2の出力電流を差動増幅器6の他方の入力端子
に供給する。
Both the standard coil 2 and the probe coil 3 are composed of the same coil. A detection probe 4 is magnetically coupled to the probe coil, and the magnetic flux generated by the probe coil 3 is projected via the detection probe 4 toward a titanium material 5 that is a subject. An eddy current is induced in the titanium material 5 by the projected magnetic flux in accordance with the amount of hydrogen storage. This eddy current generates a magnetic flux in a direction that reduces the projected magnetic flux, and the probe fill 3 detects this magnetic flux in the opposite direction as a current. Therefore, on the output side of the probe coil 3, a current is generated in which the current supplied from the high frequency current generator 1 is superimposed with a current that exposes the eddy current generated in the titanium material 5. This superimposed current is supplied to one input terminal of the differential amplifier 6, and the output current of the standard coil 2 is supplied to the other input terminal of the differential amplifier 6.

標準コイル2及びプローブコイル3の出力側に可変コン
デンサ7及び固定コンデンサ8をそれぞれ接続し、これ
らコンデンサを高周波電流発生器1に接続して閉回路を
構成する。尚、可変コンデンサ7は、標準コイル2の出
力電流とプローブコイル3の出力電流との間の位相を整
合させるこめのものであり、可変コンデンサ7を適切に
調整することにより両出力電流の位相を一致させる。標
準コイル2の出力電流は高周波電流発生器1からの出力
される電流に等しく、一方ブロープコイル3からの出力
電流は高周波電流発生器1から出力電流にプローブコイ
ル3によって検知された渦電流によって発生した磁束に
よる電流が重畳された電流となるから、差動増幅器6に
より高周波電流発生器1からの電流が相殺され、差動増
幅器6から渦電流に基く電流が増幅されて出力されるこ
とになる。二〇差動増幅器の出力電流を信号処理回路9
に供給する。信号処理回路9には、予め求めたプローブ
コイル3の検知電流と吸蔵水素量との関係を記憶してお
き、この関係に基いて水素吸蔵量を表わす信号を発生し
て表示装置10に供給する。
A variable capacitor 7 and a fixed capacitor 8 are connected to the output sides of the standard coil 2 and probe coil 3, respectively, and these capacitors are connected to the high frequency current generator 1 to form a closed circuit. The variable capacitor 7 is used to match the phase between the output current of the standard coil 2 and the output current of the probe coil 3, and by appropriately adjusting the variable capacitor 7, the phase of both output currents can be adjusted. Match. The output current of the standard coil 2 is equal to the current output from the high frequency current generator 1, while the output current from the blow coil 3 is generated by the eddy current detected by the probe coil 3 in the output current from the high frequency current generator 1. Since the current generated by the generated magnetic flux becomes a superimposed current, the current from the high frequency current generator 1 is canceled out by the differential amplifier 6, and the current based on the eddy current is amplified and output from the differential amplifier 6. . 20 The output current of the differential amplifier is converted to the signal processing circuit 9
supply to. The signal processing circuit 9 stores the predetermined relationship between the detection current of the probe coil 3 and the amount of absorbed hydrogen, generates a signal representing the amount of hydrogen occlusion based on this relationship, and supplies it to the display device 10. .

表示装置lOはアナログ表示又はデジタル表示とするこ
とができ、吸蔵水素量をそのまま表示したり、或いは限
界値を超えた場合に警報表示として表示することもでき
る。
The display device IO can be an analog display or a digital display, and can display the amount of absorbed hydrogen as it is, or can display an alarm when the limit value is exceeded.

第2図はセンサ部の構成を示す断面図でる。本例では円
筒状チタン材4の水素吸蔵量を検出するものである。プ
ローブ4にはプローブコイル3(図示せず)が装着され
ているものとし、プローブ4の先端をチタン材5に当接
させる。プローブ4は支持台11に摺動自在に支持され
、この支持台11をハウジング12に装着する。プロー
ブ4の他端をハウジング12の外部まで突出させると共
にリード線を接続する。プローブ4には止め板13を取
り付け、ハウジング12に固着したネジ14によりプロ
ーブが回転するのを防止する。ハウジング12と止め板
13との間にバネ15を介挿してバネ15の弾圧力によ
ってプローブ4を常時下向きに押圧する。また、支持台
11の下端をV字状にカットする。検出に際し、支持台
11のv字状部分をチタン材5に当接させると、プロー
ブ4の先端がチタン材5の表面に当接するが、プローブ
4はバネ15によって下側に向けて押圧されているから
常時一定の圧力でチタン材の表面に当接することになる
。これによりリフトオフによる影響を除去することがで
き、ノイズの発生を防止することができる。尚、本例で
は、プローブの先端をチタン材の表面に当接させる構成
としたが、必ずしも当接させる必要はなく、プローブの
先端とチタン材との間の距離を常時一定に継続すればよ
い。このように構成すれば、検出装置をコンパクトなポ
ータプル型のものとすることができ、しかもセンサ部を
チタン材に押し当てるだけで水素吸蔵量を測定できるの
で、現場において簡単な作業で測定を行なうことができ
る。
FIG. 2 is a sectional view showing the configuration of the sensor section. In this example, the hydrogen storage amount of the cylindrical titanium material 4 is detected. It is assumed that a probe coil 3 (not shown) is attached to the probe 4, and the tip of the probe 4 is brought into contact with a titanium material 5. The probe 4 is slidably supported by a support 11, and the support 11 is attached to a housing 12. The other end of the probe 4 is made to protrude to the outside of the housing 12 and a lead wire is connected thereto. A stop plate 13 is attached to the probe 4, and a screw 14 fixed to the housing 12 prevents the probe from rotating. A spring 15 is inserted between the housing 12 and the stop plate 13, and the elastic force of the spring 15 constantly presses the probe 4 downward. Further, the lower end of the support base 11 is cut into a V-shape. During detection, when the V-shaped part of the support base 11 is brought into contact with the titanium material 5, the tip of the probe 4 comes into contact with the surface of the titanium material 5, but the probe 4 is pressed downward by the spring 15. Because of this, it always comes into contact with the surface of the titanium material with a constant pressure. As a result, the influence of lift-off can be removed, and the generation of noise can be prevented. In this example, the tip of the probe is configured to be in contact with the surface of the titanium material, but it is not necessary to make contact, and it is sufficient to keep the distance between the tip of the probe and the titanium material constant at all times. . With this configuration, the detection device can be made into a compact portaple type, and the hydrogen storage amount can be measured simply by pressing the sensor part against the titanium material, so measurements can be performed easily on site. be able to.

次に、本発明による水素吸蔵量検出方法によって得られ
た実験結果について説明する。5M厚の純チタン板を用
い、500°Cに加熱して水素を吸蔵させた後、700
°Cで1時間拡散処理を行なって標準試料を得た。標準
試料の水素吸蔵量は、27.318゜1200、140
0.3800.20100ppmの6種類である。この
測定結果を第3図に示す。第3図において、横軸は標準
試料の吸蔵水素量を示し、縦軸は出力値を示す。第3図
から明らかなように、水素吸蔵量が11000ppをこ
えるあたりから、吸蔵量に応じて出力値が上昇している
。この実験結果より、約11000pp以上の水素吸蔵
量を正確に検出できることは明らかである。尚、チタン
材の経時変化による水素吸蔵量は、表面領域が高く内部
になるに従って低くなる分布を呈しており、経時変化に
よって劣化したチタン材の表面領域の吸蔵水素量は11
000pp以上の大きな値になっているため、本発明に
よる検出方法は十分に実用化可能である。
Next, experimental results obtained by the hydrogen storage amount detection method according to the present invention will be explained. A pure titanium plate with a thickness of 5M was heated to 500°C to absorb hydrogen, and then heated to 700°C.
A standard sample was obtained by performing a diffusion treatment at °C for 1 hour. The hydrogen storage capacity of the standard sample is 27.318°1200, 140
There are six types: 0.3800.20100ppm. The measurement results are shown in FIG. In FIG. 3, the horizontal axis shows the amount of absorbed hydrogen in the standard sample, and the vertical axis shows the output value. As is clear from FIG. 3, the output value increases in accordance with the amount of hydrogen storage when it exceeds 11,000 pp. From the results of this experiment, it is clear that a hydrogen storage amount of about 11,000 pp or more can be detected accurately. The amount of hydrogen absorbed by the titanium material due to changes over time exhibits a distribution in which the surface area is high and the amount decreases as it goes inside.
Since the value is as large as 000 pp or more, the detection method according to the present invention can be fully put into practical use.

第4図は本発明の変形例の構成を示す線図である。被検
体であるチタン材20で発生した渦電流に基く磁束をセ
ンサ21で検知し、この検知電流を増幅器22で増巾し
た後位相弁別器23に供給する。位相弁別器23におい
て、発振器24からの信号を用いて位相検波して渦電流
に基く電流量を発生させる。
FIG. 4 is a diagram showing the configuration of a modified example of the present invention. A sensor 21 detects a magnetic flux based on an eddy current generated in a titanium material 20 that is an object to be inspected, and the detected current is amplified by an amplifier 22 and then supplied to a phase discriminator 23 . The phase discriminator 23 performs phase detection using the signal from the oscillator 24 to generate a current amount based on the eddy current.

この出力信号を増幅器25により増幅し、フィルタ26
で濾波してから表示装置27に供給し、吸蔵水素量に応
じた出力値を表示することができる。
This output signal is amplified by an amplifier 25, and a filter 26
After filtering the hydrogen, it is supplied to the display device 27, and an output value corresponding to the amount of absorbed hydrogen can be displayed.

尚、使用する高周波電流の周波数によって浸透深さが変
化するが、検査すべきチタン材の厚さ、用途、使用状況
等を考慮して周波数を調整し、適切な浸透深さに設定す
ることができる。
Note that the penetration depth changes depending on the frequency of the high-frequency current used, but the frequency can be adjusted and set to an appropriate penetration depth by taking into account the thickness of the titanium material to be inspected, the application, usage conditions, etc. can.

(発明の効果) 以上説明したように、本発明によれば検出装置を持ち運
び可能なポータプル型の装置とすることができ、しかも
センサ部をチタン材に押し当てるだけで水素吸蔵量を正
確に検出することができる。
(Effects of the Invention) As explained above, according to the present invention, the detection device can be made into a portable portable type device, and the hydrogen storage amount can be accurately detected simply by pressing the sensor part against the titanium material. can do.

この結果、現場において簡単な作業で水素吸蔵量を検出
することができ、チタン材が用いられているプラント装
置等の保守点検作業を一層効率よく行なうことができる
As a result, the hydrogen storage amount can be detected with simple work on site, and maintenance and inspection work on plant equipment and the like in which titanium material is used can be performed more efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるチタン材中の水素吸蔵量検出方法
を実施するための構成を示す線図、第2図はセンサ部の
構成を示す断面図、第3図は本発明による検出方法の実
験結果を示すグラフ、 第4図は検出装置の変形例の構成を示す線図である。
FIG. 1 is a diagram showing the configuration for carrying out the method for detecting hydrogen storage amount in titanium material according to the present invention, FIG. 2 is a sectional view showing the configuration of the sensor section, and FIG. Graph showing the experimental results. FIG. 4 is a diagram showing the configuration of a modified example of the detection device.

Claims (1)

【特許請求の範囲】[Claims] 1、チタン材中の水素吸蔵量を検出するにあたり、検出
すべきチタン材に磁束を投射して渦電流を誘起させ、誘
起した渦電流によって生ずる磁束を検出し、検出した磁
束に基いて吸蔵されている水素濃度を求めることを特徴
とするチタン材中の水素吸蔵量検出方法。
1. To detect the amount of hydrogen absorbed in a titanium material, a magnetic flux is projected onto the titanium material to be detected to induce an eddy current, the magnetic flux generated by the induced eddy current is detected, and the amount of hydrogen absorbed is detected based on the detected magnetic flux. A method for detecting the amount of hydrogen absorbed in a titanium material, characterized by determining the hydrogen concentration in a titanium material.
JP15000988A 1988-06-20 1988-06-20 Detecting method for amount of occulsion of hydrogen in titanium material Pending JPH01318950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15000988A JPH01318950A (en) 1988-06-20 1988-06-20 Detecting method for amount of occulsion of hydrogen in titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15000988A JPH01318950A (en) 1988-06-20 1988-06-20 Detecting method for amount of occulsion of hydrogen in titanium material

Publications (1)

Publication Number Publication Date
JPH01318950A true JPH01318950A (en) 1989-12-25

Family

ID=15487482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15000988A Pending JPH01318950A (en) 1988-06-20 1988-06-20 Detecting method for amount of occulsion of hydrogen in titanium material

Country Status (1)

Country Link
JP (1) JPH01318950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509163A (en) * 2002-12-04 2006-03-16 フューエルセル・テクノロジーズ・インコーポレーテッド Hydrogen storage, delivery and recovery system
JP2009243973A (en) * 2008-03-28 2009-10-22 Sumitomo Chemical Co Ltd Standard sample manufacturing method for nondestructive inspection, standard sample for nondestructive inspection, and nondestructive inspection method using the same
JP2010054414A (en) * 2008-08-29 2010-03-11 Sumitomo Chemical Co Ltd Method for inspecting hydrogen embrittlement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142258A (en) * 1985-12-16 1987-06-25 Hitachi Ltd Non-destructive measuring method for zirconium alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142258A (en) * 1985-12-16 1987-06-25 Hitachi Ltd Non-destructive measuring method for zirconium alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509163A (en) * 2002-12-04 2006-03-16 フューエルセル・テクノロジーズ・インコーポレーテッド Hydrogen storage, delivery and recovery system
JP2009243973A (en) * 2008-03-28 2009-10-22 Sumitomo Chemical Co Ltd Standard sample manufacturing method for nondestructive inspection, standard sample for nondestructive inspection, and nondestructive inspection method using the same
JP2010054414A (en) * 2008-08-29 2010-03-11 Sumitomo Chemical Co Ltd Method for inspecting hydrogen embrittlement

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
KR100218653B1 (en) Electronic induced type test apparatus
CN1013461B (en) Nondestructive test to the ferromagnetic workpiece creep impairment
JPS60152950A (en) Eddy current nondestructive testing method and device thereof
Hwang A multi-frequency AC potential drop technique for the detection of small cracks
JP2766929B2 (en) Non-destructive inspection equipment
CA2009901A1 (en) Cathodic protection analyzer
JPH01318950A (en) Detecting method for amount of occulsion of hydrogen in titanium material
US3611119A (en) Method for measuring the ferrite content of a material
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JPS63134947A (en) Measuring device for measuring content of magnetizable substance
JPH0641938B2 (en) Nondestructive measurement method for zirconium alloy materials
Betta et al. Calibration and adjustment of an eddy current based multi-sensor probe for non-destructive testing
JPH01316659A (en) Detection of quantity of hydrogen occlusion in titanium material
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
JPH01269049A (en) Method of inspecting deterioration of metallic material
Mesquita et al. Development of an Electronic Instrument for Eddy Current Testing
Vigness et al. Eddy Current Type Flaw Detectors for Non‐Magnetic Metals
Skelskey et al. A relaxation phenomenon observed in fine gold wire
Bicego et al. JR curve testing utilizing the reversing direct current electrical potential drop method
JPS5850456A (en) Detection of crack
JPH076764B2 (en) Electromagnetic induction type plate thickness measuring method and its measuring device
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
JPH034139A (en) Hardness meter
JPS6271829A (en) Fatigue testing instrument for material