JPH01318613A - Marine structure on softly arranged bottom - Google Patents

Marine structure on softly arranged bottom

Info

Publication number
JPH01318613A
JPH01318613A JP63151265A JP15126588A JPH01318613A JP H01318613 A JPH01318613 A JP H01318613A JP 63151265 A JP63151265 A JP 63151265A JP 15126588 A JP15126588 A JP 15126588A JP H01318613 A JPH01318613 A JP H01318613A
Authority
JP
Japan
Prior art keywords
wave
section
foundation
external
dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63151265A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tanaka
良弘 田中
Masafumi Sakai
酒井 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP63151265A priority Critical patent/JPH01318613A/en
Publication of JPH01318613A publication Critical patent/JPH01318613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Foundations (AREA)
  • Revetment (AREA)

Abstract

PURPOSE:To reduce the influence of a wave and reduce grounding pressure and reduce the influence of earthquake and interrupt no seawater exchange by providing a floating body foundation section with internal and external double transmission type wave dissipation body having a retarding basin section and an opening. CONSTITUTION:Transmission type internal-and-external-double-wave-dissipation structural-bodies 5, 6 with slots 4 bored respectively through, on the periphery of a floating body foundation section 1 set on a mound 3 set on a foundation 2 are erected integrally with the foundation section 1 so that retarding basin sections 7 may be placed between the bodies 5, 6. The lower section of the external side wave dissipation structural-body 6 is provided with an opening section 8 for fluid outflow and inflow, communicating with the retarding basin sections 7 and opening to external sea. By an internal structural body 10 erected on the central section of the internal and external wave dissipation structural bodies 5, 6 and the floating body foundation section 1, a deck section 11 is supported, and on the deck section 11, mounted facilities 12 are arranged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は海洋レクリエーション施設、居住施設、海上リ
ゾート施設、水産、海底資源開発、海洋工学等の研究開
発機能及び水産機能を有する施設等の如き海上構造物に
係るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to marine recreation facilities, residential facilities, marine resort facilities, facilities with research and development functions such as fisheries, seabed resource development, marine engineering, etc., and facilities with fisheries functions. This relates to offshore structures.

(従来の技術) 海上施設の立地方式としては、海底に緊密部材を介して
繋留された施設を海面に浮乏させる浮体方式、海洋に築
島を構築して同築島上に施設を設置する築島方式と、水
底に浮体基礎を直接着座させる着底方式とに大別される
(Prior technology) There are two methods for locating offshore facilities: the floating method, in which the facilities are moored to the seabed via tight members and floating on the sea surface, and the Tsukishima method, in which an island is constructed in the ocean and facilities are installed on the island. There are two main types: the bottom-mounting method, in which the floating foundation is placed directly on the bottom of the water.

(発明が解決しようとする課題) 浮体方式は大水深地点では他の2方式に比して経済的で
はあるが、波浪による動揺は避けられず、また繋留のた
めの維持管理が必要であり、更に透過率が他の2方式に
比して大きいため、構造物背後の静穏域の利用が不可能
である。
(Problem to be solved by the invention) Although the floating method is more economical than the other two methods at deep water points, it cannot avoid shaking due to waves and requires maintenance for mooring. Furthermore, since the transmittance is higher than the other two methods, it is impossible to use a quiet area behind the structure.

築島方式は最も実績があり、浅水深地点では比較的経済
的な立地方式ではあるものの、築島建設時及び完成後の
周囲環境への影響が大きく、場合によっては環境悪化を
招来することもある。また工期が一般に長(、施設の利
用可能な面積が上部のみに限定されるので、海上レクリ
エーション施設や、海上リゾート施設としては不利であ
る。
Although the Tsukishima method has the most proven track record and is relatively economical in shallow water locations, it has a large impact on the surrounding environment during and after the construction of the Tsukishima, and in some cases may even lead to environmental deterioration. In addition, the construction period is generally long (and the usable area of the facility is limited to the upper part, which is disadvantageous for marine recreation facilities and marine resort facilities.

これに反して着底方式は、波浪による動揺がなく、構造
物の上部及び内部も利用でき、維持、管理が殆んど不要
となり、また上載荷重の変化に対応し易くなる等の利点
を有する。
On the other hand, the bottom landing method has the advantages of not being shaken by waves, being able to use the upper part and inside of the structure, requiring almost no maintenance or management, and being able to easily respond to changes in overburden loads. .

しかしながら従来の着底方式では地震による影響を大き
く受け、地盤の条件によっては地盤改良が必要である等
の地盤条件の制約を受けたり、或いは構造物が不透過構
造のため海水交換が行なわれない等、自然環境に大きな
影響を与えるという問題点があった。
However, conventional bottom landing methods are significantly affected by earthquakes, are subject to restrictions due to ground conditions such as the need for ground improvement, or are impermeable to structures that prevent seawater exchange. There was a problem that it had a big impact on the natural environment.

本発明は前記従来の着底方式の有する問題点に鑑みて提
案されたもので、その目的とする処は、波浪による水平
力を低減させ、接地圧を軽減し、免震効果が発揮され、
地盤改良を要することなく、しかも周囲環境に悪影響を
及ぼすことのない軟着底海上構造物を提供する点にある
The present invention was proposed in view of the problems of the conventional bottom landing method, and its purpose is to reduce horizontal force caused by waves, reduce ground pressure, and exhibit a seismic isolation effect.
An object of the present invention is to provide a soft-bottomed offshore structure that does not require ground improvement and does not adversely affect the surrounding environment.

(課題を解決するための手段) 前記の目的を達成する゛ため、本発明に係る軟着底海上
構造物は、浮体基礎部の周囲に、中間に遊水部が介在す
る内外二重の透過式消波構造体を一体に立設するととも
に、外側消波構造体に前記遊水部に連通し且つ外海部に
開口する流体流出入用開口部を設け、前記内外消波構造
体上に上部構造体を支承して構成されている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the soft-bottomed offshore structure according to the present invention has a double permeable type structure with an inner and outer structure, in which a floating water retarding section is interposed in the middle, around a floating body foundation. The wave-dissipating structure is integrally erected, and the outer wave-dissipating structure is provided with a fluid inflow/outflow opening that communicates with the water retarding section and opens to the open sea, and an upper structure is installed on the inner and outer wave-dissipating structure. It is constructed based on the following.

本発明においては、越波を小さくするため、前記内外各
消波構造体の外周面を、上方内側に指向して連続して延
びる凹曲面に形成するとよい。
In the present invention, in order to reduce overtopping waves, it is preferable that the outer circumferential surfaces of the inner and outer wave-dissipating structures be formed into concave curved surfaces that continuously extend upward and inward.

(作用) 本発明によれば入射波の流体が内外二重の透過式消波構
造体を透過する際、二重に亘って入射波のエネルギー損
失が生起し、前記内外消波構造体の間に介在する遊水部
と連通している流体流出入用開口部からの流体の流出、
流入は、外側消波構造体からの入射波による水位変動を
打ち消すように作用するため、反射率及び波力が低減す
る。
(Function) According to the present invention, when the fluid of the incident wave passes through the dual inner and outer transparent wave-absorbing structure, energy loss of the incident wave occurs twice, and the energy loss occurs between the inner and outer wave-absorbing structures. Outflow of fluid from a fluid inflow/outflow opening communicating with a retarding section interposed in the
The inflow acts to cancel out water level fluctuations due to incident waves from the outer wave-dissipating structure, thereby reducing reflectance and wave power.

更に前記内外二重の消波構造体の中間に介在する遊水部
に、外側消波構造体に設けた流体流出入用開口部が連通
しているので、遊水部に入射する波浪の水粒子による圧
力が前記開口部を介して開放され、反射率が大幅に低減
する。
Furthermore, since the fluid outflow/inflow opening provided in the outer wave-dissipating structure is in communication with the retarding section interposed between the dual inner and outer wave-dissipating structures, water particles from waves incident on the retarding section are Pressure is released through the opening and the reflectance is significantly reduced.

また前記遊水部に流体流出入用開口部が接続されたこと
によって、後述のように遊水部にいくつかの固有周期が
形成され、この結果、広い周期範囲の入射波浪に対して
、波力の低減及び反射率の低減が可能となる。
In addition, by connecting the fluid inflow and outflow openings to the water retarding section, several natural periods are formed in the retarding section as described later, and as a result, wave force is reduced against incident waves with a wide period range. It becomes possible to reduce the reflection rate and reduce the reflectance.

このように海上構造物に働く波浪による水平力が低減さ
れ、更に前記海上構造物の浮体基礎部に働く浮力によっ
て、海上構造物の接地圧を最小限にして波浪に対して安
定させ、成る規模以上の地震に対して滑動を許容し、構
造物及び搭載施設への免震効果を発揮させる。
In this way, the horizontal force caused by waves acting on the offshore structure is reduced, and the buoyant force acting on the floating foundation of the offshore structure minimizes the ground pressure of the offshore structure and stabilizes it against waves. It allows sliding during earthquakes of the above magnitude and provides a seismic isolation effect for structures and installed facilities.

また前記内外消波構造体の外周面が、上方内側に指向し
て連続して延びる凹曲面に形成されているので、入射し
た波が同凹曲面に沿って上方に移動し、入射波の運動エ
ネルギーが位置エネルギーに変換され、越波が縮減され
る。
In addition, since the outer circumferential surface of the inner and outer wave-dissipating structure is formed into a concave curved surface that continuously extends upward and inward, the incident wave moves upward along the concave curved surface, and the movement of the incident wave Energy is converted to potential energy and wave overtopping is reduced.

またこの凹曲面の形状は入射する進行波の水粒子の運動
軌跡に近いため、入射波浪のエネルギーが円滑に位置エ
ネルギーに変換され、反射率を低下させることにもなる
Moreover, since the shape of this concave curved surface is close to the motion locus of the water particles of the incident traveling wave, the energy of the incident waves is smoothly converted into potential energy, which also reduces the reflectance.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

(1)は在来の海底地盤(2)上に設けられたマウンド
(3)上に着底された浮体基礎部で、同浮体基礎部(1
)の周囲に、夫々孔(4)またはスリットが穿設された
透過式の内外二重の消波構造体(5) (6)が、両者
の中間に遊水部(7)が介在するように前記基礎部(1
)と−体に立設されている。
(1) is a floating body foundation that has landed on a mound (3) built on the conventional seabed ground (2).
), transparent type double inner and outer wave dissipating structures (5) and (6) each having holes (4) or slits are formed in such a way that a water retarding part (7) is interposed between the two. The foundation part (1
) and - are erected on the body.

前記外側消波構造体(6)の下部には遊水部(7)に連
通し、外海に開口する流体流出入用開口部(8)が設け
られている。
A fluid inflow/outflow opening (8) that communicates with the water retarding section (7) and opens to the open sea is provided at the lower part of the outer wave-dissipating structure (6).

前記内外各消波構造体(5:l (6)には孔(4)の
外に第3図に示す如き横スリツ) (4’)、第4図に
示す如き縦スリット(4#)が穿設されてもよく、各外
側面は上方内側に指向して連続して延びる凹曲面に形成
されている。
Each of the internal and external wave dissipating structures (5:l (6) has a horizontal slit (4') as shown in Figure 3 outside the hole (4)) and a vertical slit (4#) as shown in Figure 4. Each outer surface is formed into a concave curved surface that continuously extends upward and inward.

前記内外各消波構造体(5) (6)は横壁(9)で連
結され、(第2図参照)同横壁(9)、及び前記内外消
波構造体(5) (6)、並に前記浮体基礎部(1)の
中心部に立設された内側構造体(10)によってデツキ
部(11)が支承され、同デツキ部(11)上に搭載施
設(12)が配設されている。
The inner and outer wave-dissipating structures (5) (6) are connected by a horizontal wall (9) (see Figure 2), and the inner and outer wave-dissipating structures (5) (6), as well as A deck part (11) is supported by an inner structure (10) erected at the center of the floating body foundation part (1), and a loading facility (12) is arranged on the deck part (11). .

図中(13)は構造内水域である。(13) in the figure is the internal water area of the structure.

図示の実施例は前記したように構成されているので、入
射波(14)の流体が外側消波構造体(6)及び内側消
波構造体(5)の孔(4)またはスリットを通過する際
、通過流体の急激な収縮、拡開に伴なうエネルギー損失
が2度に亘って生起し、透過率が大幅に低減される。
The illustrated embodiment is constructed as described above so that the fluid of the incident wave (14) passes through the holes (4) or slits in the outer wave-dampening structure (6) and the inner wave-dampening structure (5). At this time, energy loss occurs twice due to rapid contraction and expansion of the passing fluid, and the transmittance is significantly reduced.

また前記内側消波構造体(5)(6)間に設けられた遊
水部(7)に連通した流体流出入用開口部(8)を介し
て得られる流体の流出、流入は、外側消波構造体(6)
より入射した波による遊水部(7)における水位変動を
打ち消すように作用して、反射率及び波力が低減する。
In addition, the outflow and inflow of the fluid obtained through the fluid outflow and inflow opening (8) communicating with the retarding section (7) provided between the inner wave dissipating structures (5) and (6) is carried out by the outer wave dissipating structure. Structure (6)
This acts to cancel out water level fluctuations in the water retarding section (7) due to more incident waves, reducing reflectance and wave power.

また前記遊水部(7)には外側消波構造体(6)に設け
られた流体流出入用開口部(8)が連通しているので、
前記遊水部(7)に入射する波浪の水粒子による圧力は
不透退場では大きな値を示すが、前記開口部(7)を介
して開放されることとなり、このため重複波とはならず
、反射率は大幅に低下する。
Furthermore, since the water retarding section (7) is connected to the fluid inflow/outflow opening (8) provided in the outer wave dissipating structure (6),
Although the pressure caused by the water particles of the waves incident on the water retarding section (7) shows a large value in the impermeable exit field, it is released through the opening section (7), and therefore, there are no overlapping waves. Reflectance is significantly reduced.

また前記遊水部(7)が従来の空隙を有する透過壁によ
って構成されている場合、反射される波は遊水部の幅及
び空隙率によって1つの固有周期が決っていたが、前記
実施例によれば、流体流出入用開口部(8)が設けられ
ていることによって、遊水部(7)にいくつかの固有周
期を形成することが可能となる。(この現象はMult
iresonanceという。
Furthermore, when the water retarding section (7) is constituted by a conventional transparent wall having voids, the reflected wave has one natural period determined by the width and porosity of the water retarding section. For example, by providing the fluid inflow and outflow openings (8), it becomes possible to form several natural periods in the water retarding section (7). (This phenomenon is Mult
It's called iresonance.

参考文献 N、 Aibli and et al+ 1982 
 The KvaernerMultiresonan
t OWC,The Znd Internation
alSymposium on Wave Energ
y 1Jtilization。
Reference N, Aibli and et al+ 1982
The Kvaerner Multiresonan
t OWC, The Znd International
alSymposium on Wave Energ
y 1Jtilization.

Trondheim、 Norway )このことは入
射する波浪は種々の波周期を持つことに対して、入射波
及び反射波を打ち消す位相効果を入射波の広い周期範囲
で可能とするものである。
(Trondheim, Norway) This allows for a phase effect that cancels the incident wave and the reflected wave over a wide period range of the incident wave, since the incident wave has various wave periods.

換言すれば広い周期範囲の入射波浪に対して、波力の低
減及び反射率の低減が可能となる。
In other words, it is possible to reduce wave force and reflectance for incident waves in a wide period range.

また前記内側消波構造体(5) (6)の外周面が、上
方内側に指向して連続して延びる凹曲面に形成されてい
るので、入射した波はこの凹曲面に沿って上方に押上げ
られ、入射波(14)の運動エネルギーが位置エネルギ
ーに変換され、このため越波が減小される。
Furthermore, since the outer circumferential surface of the inner wave-dissipating structure (5) (6) is formed into a concave curved surface that continuously extends upward and inward, the incident wave is pushed upward along this concave curved surface. The kinetic energy of the incident wave (14) is converted into potential energy, thus reducing wave overtopping.

このように越波が小さいと、これに伴って波の透過率が
低下し、デツキ部(11)の高さを低(することができ
経済的である。
When the overtopping is small in this way, the wave transmittance is reduced accordingly, and the height of the deck portion (11) can be reduced, which is economical.

図中(15)は第1次透過波、(16)は第2次透過波
を示す。
In the figure, (15) indicates the first transmitted wave, and (16) indicates the second transmitted wave.

第5図は前記海上構造物の平面形状を円形とした場合を
示し、第6図は矩形とした場合を示すが、勿論任意の平
面形状をとることができる。なお第5図に示すように海
上構造物を円形の平面形状とした場合、入射波の入射角
の影響を受けない。
Although FIG. 5 shows the case where the planar shape of the marine structure is circular, and FIG. 6 shows the case where it is rectangular, it is of course possible to take any planar shape. Note that when the offshore structure has a circular planar shape as shown in FIG. 5, it is not affected by the incident angle of the incident wave.

図中前記実施例と均等部分には同一符号が附されている
In the figure, parts equivalent to those of the above embodiment are given the same reference numerals.

前記実施例に示す海上構造物によれば、浮体基礎部より
得られる浮力を積極的に利用することによって、従来の
着底方式による基礎部接地圧力を小さく抑え、ある規模
以上の加速度が地盤より入力された場合に、構造体と支
持地盤との間で滑動を生起することによって地震入力を
遮断する、いわゆる免震効果が期待できるようにしたも
のである。更にこのように接地圧力が低減されることは
支持地盤の支持耐力が小さくてよいということになり、
支持地盤の改良工費が大幅に低減されることとなる。
According to the offshore structure shown in the above embodiment, by actively utilizing the buoyancy obtained from the floating body foundation, the grounding pressure of the foundation caused by the conventional bottoming method can be suppressed to a low level, and acceleration of a certain scale or more can be lowered from the ground. When input is applied, sliding occurs between the structure and the supporting ground, thereby blocking the earthquake input, which can be expected to have a so-called seismic isolation effect. Furthermore, reducing the ground pressure in this way means that the support capacity of the supporting ground may be small.
The cost of improving the supporting ground will be significantly reduced.

ここで注意すべき点は、接地圧力を低くする場合には同
圧力に下限値があるということである。
What should be noted here is that when lowering the ground pressure, there is a lower limit to the same pressure.

即ち前記海上構造体には波浪による水平力が作用し、同
水平力によって構造体が滑動することなく安定する必要
があり、これによって海上構造物の必要最小限の接地圧
力が決定される。
That is, a horizontal force due to waves acts on the offshore structure, and the horizontal force needs to stabilize the structure without causing it to slide. This determines the minimum required ground pressure of the offshore structure.

而して前記実施例によれば、浮体基礎部(1)の周囲に
、中間に遊水部(7)が介在する内外二重の透過式消波
構造体(5) (6)を設け、外側の消波構造体(6)
に遊水部(7)に連通し外海に開口する流体流出入用開
口部(8)を設けたことによって、従来のケーソンタイ
プの着底式構造物に比して波力を大幅に低減し、接地圧
力を極力低減し、軟着底海上構造物の免震効果をより向
上しうるものである。
According to the embodiment, the floating body foundation (1) is surrounded by a dual-internal and external transparent wave-dissipating structure (5) (6) with the retarding part (7) interposed in the middle. wave-dissipating structure (6)
By providing a fluid inflow/outflow opening (8) that communicates with the water retarding section (7) and opens to the open sea, wave force is significantly reduced compared to conventional caisson-type bottom-mounted structures. It is possible to reduce the ground pressure as much as possible and further improve the seismic isolation effect of soft-bottomed offshore structures.

またケーソンタイプの着底式海上構造物では入射波が完
全に反射されるので、構造物の背後に静穏域が形成され
るものの、海水の交換がなく、自然環境への影響が大き
いが、前記実施例によれば前記内外消波構造体(5)(
6)に設けた孔(4)またはスリットによって海水の交
換が自由にできるので、自然環境への影響は小さく、し
かも入射波(14)の反射率が小さいため、構造物前面
は従来の構造物よりも波高分布が小さくなる。
In addition, with caisson-type bottom-mounted offshore structures, incident waves are completely reflected, so a calm area is formed behind the structure, but there is no exchange of seawater, which has a large impact on the natural environment. According to the embodiment, the internal and external wave dissipating structures (5) (
Seawater can be exchanged freely through the holes (4) or slits provided in 6), so the impact on the natural environment is small, and the reflectance of incident waves (14) is small, so the front of the structure is similar to conventional structures. The wave height distribution becomes smaller.

(発明の効果) 本発明によれば前記したように浮体基礎部の周囲に、中
間に遊水部が介在する内外二重の透過式消波構造体を一
体に立設し、外側消波構造体には前記遊水部に連通し、
且つ外海に開口する流体流出入用開口部を設けたことに
よって、広い周期範囲の入射波浪に対して水平波力の大
幅な低減、及び反射率と透過率との大幅な低減を可能な
らしめ、浮力を積極的に利用した軟着底方式を組み込ん
だことによって、地震時に免震効果が発揮される海上構
造物が構成される。
(Effects of the Invention) According to the present invention, as described above, a dual transmission type wave-dissipating structure (inside and outside) with a water retarding section interposed in the middle is integrally erected around the floating body foundation, and the outer wave-dissipating structure communicates with the water retarding section,
In addition, by providing fluid inflow and outflow openings that open to the open sea, it is possible to significantly reduce horizontal wave force and reflectance and transmittance for incident waves in a wide period range, By incorporating a soft bottoming method that actively utilizes buoyancy, a marine structure is constructed that exhibits a seismic isolation effect during an earthquake.

また前記内外二重の透過式消波構造体によって従来の着
底方式の海上構造物では不可能であった同構造物内外の
海水の変換を可能ならしめ、自然環境の変化をなくし、
また構造物周辺に生起する洗掘を防止できる。
In addition, the double internal and external transparent wave-dissipating structure enables conversion of seawater inside and outside the structure, which was impossible with conventional bottom-mounted offshore structures, eliminating changes in the natural environment.
In addition, scouring that occurs around the structure can be prevented.

また従来の着底式海上構造物に比して接地圧力が小さい
ため、在来地盤の改良が不要となり、工費が節減される
Furthermore, since the ground pressure is lower than that of conventional bottom-mounted offshore structures, there is no need to improve the existing ground, reducing construction costs.

更に前記浮体基礎部は完成時に浮力を与えるばかりでな
く、内部空間を施設として利用することができ、また施
工時においては足場浮体として利用できるので、上部構
造を浮かせた状態での海上施工が可能となり、工期を短
縮し、工費を節減できる。
Furthermore, the floating foundation not only provides buoyancy when completed, but also allows the interior space to be used as a facility, and during construction, can be used as a scaffolding floating body, so construction can be carried out on the sea with the superstructure floating. This shortens the construction period and reduces construction costs.

更にまた海上構造体内の水域は外部との海水の交換があ
り、静穏であるのでマリン施設に好適した空間を特徴す
る 請求項2の発明は、前記内外消波構造体の外周面を上方
内側に指向して連続して延びる凹曲面に形成したことに
よって、越波を小さくし、波浪の透過率を低減し、前記
消波構造体によって支持される上部構造体のデツキの高
さを低くすることができるようにしたものである。
Furthermore, the invention as claimed in claim 2, wherein the water area inside the marine structure exchanges seawater with the outside and is quiet, is a space suitable for a marine facility. By forming the concave curved surface that extends directionally and continuously, it is possible to reduce wave overtopping, reduce wave transmittance, and lower the height of the deck of the upper structure supported by the wave-dissipating structure. It has been made possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る軟着底海上構造物の一実施例を示
す縦断面図、第2図はその要部分解斜面図、第3図及び
第4図は夫々消波構造体の斜視図、第゛5図及び第6図
は夫々円形並に矩形の平面形状を有する軟着底海上構造
物の斜視図である。 CI)−一浮体基礎部、   (4)−孔、(4’) 
(4’)−m−スリット、 (5)−内側消波構造体、
(6)−外側消波構造体、 (7)−・遊水部、(8)
−・−流体流出入用開口部、(11)−・・デツキ部。 代理人 弁理士 岡 本 重 文 外2名 刻3昌 荊4図 躬5足 l 躬6m
Fig. 1 is a longitudinal sectional view showing an embodiment of the soft-bottomed marine structure according to the present invention, Fig. 2 is an exploded slope view of the main part thereof, and Figs. 3 and 4 are perspective views of the wave-dissipating structure, respectively. 5 and 6 are perspective views of soft-bottomed marine structures having circular and rectangular planar shapes, respectively. CI) - one floating body foundation, (4) - hole, (4')
(4')-m-slit, (5)-inner wave-dissipating structure,
(6) - Outer wave dissipating structure, (7) - Retarding section, (8)
---Fluid inflow/outflow opening, (11) ---Deck portion. Agent Patent Attorney Shige Okamoto 2 extra-literary inscriptions 3 shogi 4 illustrations 5 feet 1 6 meters

Claims (2)

【特許請求の範囲】[Claims] (1)浮体基礎部の周囲に、中間に遊水部が介在すする
内外二重の透過式消波構造体を一体に立設するとともに
、外側消波構造体に前記遊水部に連通し且つ外海部に開
口する流体流出入用開口部を設け、前記内外消波構造体
上に上部構造体を支承してなることを特徴とする軟着底
海上構造物。
(1) A dual transmission type wave-dissipating structure (internal and external) with a retarding section interposed in the middle is erected around the floating body foundation, and the outer wave-dissipating structure is connected to the retarding section and externally. 1. A soft-bottomed marine structure, comprising: a fluid inflow/outflow opening opening into the sea; and an upper structure supported on the inner and outer wave dissipating structures.
(2)前記内外消波構造体の外周面は、上方内側に指向
して連続して延びる凹曲面に形成された請求項1記載の
軟着底海上構造物。
(2) The soft-bottomed marine structure according to claim 1, wherein the outer circumferential surface of the inner and outer wave-dissipating structure is formed into a concave curved surface that continuously extends upward and inward.
JP63151265A 1988-06-21 1988-06-21 Marine structure on softly arranged bottom Pending JPH01318613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63151265A JPH01318613A (en) 1988-06-21 1988-06-21 Marine structure on softly arranged bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151265A JPH01318613A (en) 1988-06-21 1988-06-21 Marine structure on softly arranged bottom

Publications (1)

Publication Number Publication Date
JPH01318613A true JPH01318613A (en) 1989-12-25

Family

ID=15514884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151265A Pending JPH01318613A (en) 1988-06-21 1988-06-21 Marine structure on softly arranged bottom

Country Status (1)

Country Link
JP (1) JPH01318613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499722U (en) * 1991-01-25 1992-08-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499722U (en) * 1991-01-25 1992-08-28

Similar Documents

Publication Publication Date Title
US4232623A (en) Apparatus to reduce vessel motions
US4776724A (en) Floating wave dissipation structure
US4982681A (en) Floating marine structure of thin disc form
JPH01318613A (en) Marine structure on softly arranged bottom
JPH0465931B2 (en)
US5653188A (en) Semi submersible platform with porous pontoons
FI117904B (en) Wave absorbing large floating structure
ES2048055A2 (en) Permeable energy-dissipating system for making up marine constructions, and with perforated laminar elements
JP4120812B2 (en) Floating body damping device and floating body seismic isolation structure equipped with floating body damping device
JP4416344B2 (en) Artificial ground
JPH06212611A (en) Breakwater
JP2639577B2 (en) Wave absorber
KR100920396B1 (en) Oscillating water column breakwater based on floating objects
JP3396432B2 (en) Earthquake-resistant caisson pier bridge
KR200219567Y1 (en) Breakwater exchanging seawater
JPH0339870B2 (en)
JP2988509B2 (en) breakwater
JPH0860634A (en) Submarine fixed type penetrating wave dissipating revetment
JPH0529212Y2 (en)
JP2596772B2 (en) Wave absorber
JP2825423B2 (en) Wave-dissipating caisson
JPH0624407Y2 (en) Floating structure
RU2068045C1 (en) Hawser structure
JPH0112881B2 (en)
JPS6237174B2 (en)