JPH01318540A - Motor for rolling stock - Google Patents

Motor for rolling stock

Info

Publication number
JPH01318540A
JPH01318540A JP14873288A JP14873288A JPH01318540A JP H01318540 A JPH01318540 A JP H01318540A JP 14873288 A JP14873288 A JP 14873288A JP 14873288 A JP14873288 A JP 14873288A JP H01318540 A JPH01318540 A JP H01318540A
Authority
JP
Japan
Prior art keywords
motor
superconducting coil
stator
electric motor
heat loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14873288A
Other languages
Japanese (ja)
Inventor
Hideo Terasawa
英男 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14873288A priority Critical patent/JPH01318540A/en
Publication of JPH01318540A publication Critical patent/JPH01318540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve motor efficiency and to make a motor small in size and light in weight by using a superconducting coil as a stator field winding. CONSTITUTION:A superconducting coil 21 is used for the stator section of a motor for rolling stocks. There will therefore be no heat loss in this part at all. The heat loss is so limited only to an external excitation circuit that the total heat loss will be reduced and the improvement to efficiency can be achieved. In the superconducting coil 21 the current density can be taken so thick that the large-scale reduction of a coil size will be allowed and by miniaturizing the stator section the miniaturization and weight-lightening of the motor as a whole can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、車両用電動機に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a vehicle electric motor.

〔従来の技術〕[Conventional technology]

第5図は車両下部の走行装置である台車の平面図、第6
図は従来の電動機断面図で、(a)が直巻電動機、(b
)が複巻電動機、(Q)が分巻電動機の場合をそれぞれ
示す。図において、(1)は電動機、(2)は継手、(
3)は減速装置、(4)は車軸、(5)は車輪、(6)
は台嵐枠、αηは直巻コイル、(ロ)は分巻コイル、α
1は固定子界磁鉄心、α→は補極コイル、(至)は補極
鉄心、cIQは回転子導体、αηは回転子鉄心、(至)
は磁気枠である。
Figure 5 is a plan view of the bogie that is the traveling device at the bottom of the vehicle;
The figure is a cross-sectional view of a conventional electric motor, where (a) is a series-wound electric motor, and (b)
) shows the case of a compound-wound motor, and (Q) shows the case of a shunt-wound motor. In the figure, (1) is the electric motor, (2) is the joint, (
3) is a reduction gear, (4) is an axle, (5) is a wheel, (6)
(b) is a series winding coil, (b) is a shunt winding coil, α
1 is the stator field core, α→ is the commutator coil, (to) is the commutator core, cIQ is the rotor conductor, αη is the rotor core, (to)
is a magnetic frame.

次に動作について説明する0電動機は固定子巻線(6)
あるいは@に流れる電流値と巻数の積の総和によシ固定
子鉄心(至)に磁束が発生し、この磁束と直角に配置さ
れた回転子導体αQに流れる電流と磁束との積に比例し
た回転トルクが発生する。一般に固定子巻線(ロ)ある
いは(6)の電流と巻数との積の総和をアンペアターン
と呼び、このアンペアターンと固定子鉄心(至)に発生
する磁束には第マ図に示す関係が存在する。また、磁束
1回転数および構造により決定される定数との積は逆起
電圧と呼ばれ、端子電圧から逆起電圧を引いた値を内部
抵抗値で割った値の電流値が回転子導体0Qに流れる。
The 0 motor whose operation will be explained next has a stator winding (6).
Alternatively, a magnetic flux is generated in the stator core (to) by the sum of the product of the current value flowing in @ and the number of turns, and the magnetic flux is proportional to the product of the current flowing in the rotor conductor αQ arranged at right angles to this magnetic flux. Rotational torque is generated. In general, the sum of the product of the current and the number of turns in the stator winding (B) or (6) is called an ampere turn, and the relationship between this ampere turn and the magnetic flux generated in the stator core (to) is shown in Figure M. exist. In addition, the product of the number of revolutions of the magnetic flux and a constant determined by the structure is called the back electromotive force, and the current value obtained by subtracting the back electromotive force from the terminal voltage and dividing it by the internal resistance value is the current value of the rotor conductor 0Q. flows to

すなわち、(1)式によって示される関係が成シ立つ。That is, the relationship shown by equation (1) holds true.

E = Ea + 工aX R−−−−一−(1)E:
電動機端子電圧 E a a逆起電圧=に−N・φ 工a:回転子導体αQの電流 R:内部抵抗値 に:定数 N:回転数 φ:磁束 従って、端子電圧Eあるいは磁束φを調整することによ
シ回転数Nが変化し、回転数Nのときの回転抵抗と、磁
束φと電流工aの積によって求まる回転トルクが約9合
った点で回転数Nが決定される。通常端子電圧Eは電源
電圧(架線あるいは第3軌条)によシ定まるため、回転
数制御には磁束φの調整、すなわち固定子アンペアター
ンのv@整が必要となる。
E = Ea + engineering aX R----1-(1)E:
Motor terminal voltage E. In particular, the rotational speed N changes, and the rotational speed N is determined at the point where the rotational resistance at the rotational speed N and the rotational torque determined by the product of the magnetic flux φ and the current factor a match by about 9. Normally, the terminal voltage E is determined by the power supply voltage (overhead line or third rail), so the rotation speed control requires adjustment of the magnetic flux φ, that is, adjustment of the stator ampere turn v@.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の車両用電動機は以上のように構成されているので
、固定子側の巻線の抵抗による発熱ロスが効率を低下さ
せ、しかも温度上昇が限度以内に入るように導体寸法を
大きくし電流密度を下げる必要があるため固定子が大き
くなフ、電動機が大きくなるという問題点があった。
Conventional vehicle electric motors are configured as described above, so heat loss due to the resistance of the winding on the stator side reduces efficiency, and in order to keep the temperature rise within limits, the conductor dimensions are increased and the current density is increased. Since it is necessary to lower the stator, there is a problem in that the stator is large and the electric motor is also large.

この発明は王妃のような問題点を解消するためになされ
たもので、発熱ロスを少なくして効率を向上し、しかも
固定子の大きさを小さくできる車両用電動機を得ること
を目的とする。
This invention was made in order to solve the above problems, and aims to provide a vehicle electric motor that reduces heat loss, improves efficiency, and can reduce the size of the stator.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る車両用電動機は固定子巻線を超電導コイ
ルとし、外部励磁によシミ流値を制御したものである。
In the vehicle electric motor according to the present invention, the stator winding is a superconducting coil, and the stain current value is controlled by external excitation.

〔作用〕[Effect]

この発明における車両用電動機は固定子部に超電導コイ
ルを使用しておシ、この部分での発熱ロスは皆無となシ
外部励磁回路の発熱ロスのみとなる丸め全体の発熱ロス
が小さく効率の向上が達成できる。さらに超電導コイル
では電流密度を大きくとることができ、コイル寸法の大
幅な縮少が可能で固定子部の小形化による電動機全体の
小形軽量化が達成できる。
The vehicle electric motor of this invention uses a superconducting coil in the stator part, so there is no heat loss in this part, and only the heat loss in the external excitation circuit occurs, so the heat loss in the entire rounding is small and efficiency is improved. can be achieved. Furthermore, the superconducting coil allows a high current density, and the coil dimensions can be significantly reduced, making it possible to reduce the size and weight of the entire motor by downsizing the stator section.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(2)は超電導コイル、(2)は超電導コ
イル(ハ)を収納する非磁性材料タンクである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (2) is a superconducting coil, and (2) is a non-magnetic material tank that houses the superconducting coil (c).

第2図において、に)は超電導コイル21)に通電する
ための電源、(ハ)は電流値を調整するための可変抵抗
器である。
In FIG. 2, 2) is a power source for energizing the superconducting coil 21), and 3) is a variable resistor for adjusting the current value.

次に動作について説明する。直流電源脅、可変抵抗器(
ハ)、超電導コイル(財)は直列に接続されているため
、電源(イ)の電圧E、と可変抵抗器(財)の抵抗値R
,によって超電導コイル(2)に流れる電流値工rが決
定される。すなわち、(2)式が成シ立つ。
Next, the operation will be explained. DC power source, variable resistor (
c) Since the superconducting coils (goods) are connected in series, the voltage E of the power supply (a) and the resistance value R of the variable resistor (goods)
, the current value r flowing through the superconducting coil (2) is determined. That is, equation (2) holds true.

電動機の回転&Nを制御するためには前述のように磁束
φをvIIglする必要があシ、第5図に示す関係から
電流工、を調整しなければならない。第2図に示す励磁
回路では、電源脅の電圧EFは一定であシ、可変抵抗器
(ハ)の抵抗値R,を制御することによシミ流工rの調
整が可能となる。
In order to control the rotation &N of the electric motor, it is necessary to set the magnetic flux φ to vIIgl as described above, and the electric current must be adjusted from the relationship shown in FIG. In the excitation circuit shown in FIG. 2, the voltage EF of the power source is constant, and the stain resistance r can be adjusted by controlling the resistance value R of the variable resistor (c).

可変抵抗器(財)の抵抗値を変化させた場合の電流I、
の変化の時定数τrは超電導コイル3時のインダクタン
スをLrとすれば、(3)式で と表わされ、また超電導コイル(ロ)の巻数をNFとす
れば、同一アンペアターンを得るのに時定数τr。
Current I when changing the resistance value of a variable resistor (goods),
The time constant of change τr is expressed by equation (3), where Lr is the inductance at the time of superconducting coil 3, and if the number of turns of the superconducting coil (b) is NF, to obtain the same ampere-turn, Time constant τr.

抵抗器(ハ)の発熱ロスW?と巻数N、との間には(4
)式及び(5)式の関係があシ、巻数N、を少なくする
方がよシ効果的であることになる。
Resistor (c) heat loss W? and the number of turns N, is (4
) and (5), it is more effective to reduce the number of turns N.

τF QCl’i F     −−−−−−−(4)
W、 OCl/N、   −−−−−−一(5)第3図
及び第4図はこの発明の他の実施例を示す。図において
、(2)は閉口Fjlr構成用の短絡スイッチで、超電
導コイルc2pと並列接続されて、タンク(2)内に収
58されている。
τF QCl'i F -----------(4)
W, OCl/N, ---(5) FIGS. 3 and 4 show other embodiments of the present invention. In the figure, (2) is a short circuit switch for the closed Fjlr configuration, which is connected in parallel with the superconducting coil c2p and housed 58 in the tank (2).

このような構成において、低速域の電圧制御頭載あるい
は高速域の定速走行時には出来を一定に保つ丸めに、短
絡スイッチに)を閉じることによって、永久電流モード
となる。これによって、発熱による損失がなくなるので
、−層の効率向上が図れる。
In such a configuration, the permanent current mode is set by closing the voltage control head in the low speed range or the short circuit switch (to keep the output constant during constant speed driving in the high speed range). This eliminates loss due to heat generation, so that the efficiency of the negative layer can be improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、固定子界磁巻線とし
て超電導コイルを用りているので、発熱ロスは界磁部が
皆無で、外部励磁回路のみとなυ電動機効率を向上でき
るという効果がある。さらに、超電導コイルは電流密度
を高く設定できるためかなシ小さくでき、固定子部の小
形化による電動機の小形軽量化が達成できる。
As described above, according to this invention, since superconducting coils are used as the stator field windings, there is no heat loss in the field section, and the efficiency of the υ motor can be improved with only the external excitation circuit. effective. Furthermore, since the current density of the superconducting coil can be set high, the pinion can be made smaller, and the stator portion can be made smaller and the motor can be made smaller and lighter.

また、短絡スイッチによシ永久電流モードとし得る頻度
が高いので、発熱ロスは極力小1くでき効率の大幅な向
上ができる。
Furthermore, since the short-circuit switch can be used frequently in the persistent current mode, heat loss can be minimized to the minimum, and efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す部分断面図、第2図
は第1図の回路構成図、第3図は他の発明の一実施例を
示す部分断面図、第4図は第3図の回路構成図、第5図
は車両用電動機の使用例を示す平面図、第6図は従来の
車両用電動機の部分断面図、第7図は固定子のアンペア
ターンと磁束の関係を示す説明図である。 図において、3X)は超電導コイル、(イ)はタンク、
に)はuI線電電源(ハ)は可変抵抗器である。 なお、各図中同一符号は同−又は相当部分を示す。
FIG. 1 is a partial sectional view showing one embodiment of the present invention, FIG. 2 is a circuit configuration diagram of FIG. 1, FIG. 3 is a partial sectional view showing another embodiment of the invention, and FIG. Figure 3 is a circuit configuration diagram, Figure 5 is a plan view showing an example of the use of a vehicle electric motor, Figure 6 is a partial cross-sectional view of a conventional vehicle electric motor, and Figure 7 is a diagram showing the relationship between ampere turns of the stator and magnetic flux. FIG. In the figure, 3X) is a superconducting coil, (A) is a tank,
2) is the uI wire power source (c) is a variable resistor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)車両を駆動する車両用電動機において、固定子側
の巻線を超電導材で超電導コイルを形成してタンクに収
容し、上記タンク外に設けられた直流電源と可変抵抗器
とを上記超電導コイルに直列接続したことを特徴とする
車両用電動機。
(1) In a vehicle electric motor that drives a vehicle, the winding on the stator side is made of a superconducting material to form a superconducting coil and housed in a tank, and a DC power source and a variable resistor provided outside the tank are connected to the superconducting coil. A vehicle electric motor characterized by a coil connected in series.
(2)車両を駆動する車両用電動機において、固定子側
の巻線を超電導材で超電導コイルを形成してタンクに収
容し、上記タンクに収容した短絡スイッチを上記巻線と
並列接続して、上記タンク外に設けた直流電源と可変抵
抗とを上記巻線と上記短絡スイッチとの並列回路に直列
接続したことを特徴とする車両用電動機。
(2) In a vehicle electric motor that drives a vehicle, a superconducting coil is formed from a stator side winding using a superconducting material and is housed in a tank, and a short circuit switch housed in the tank is connected in parallel with the winding, A vehicle electric motor characterized in that a DC power source and a variable resistor provided outside the tank are connected in series to a parallel circuit of the winding and the short circuit switch.
JP14873288A 1988-06-16 1988-06-16 Motor for rolling stock Pending JPH01318540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14873288A JPH01318540A (en) 1988-06-16 1988-06-16 Motor for rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14873288A JPH01318540A (en) 1988-06-16 1988-06-16 Motor for rolling stock

Publications (1)

Publication Number Publication Date
JPH01318540A true JPH01318540A (en) 1989-12-25

Family

ID=15459369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14873288A Pending JPH01318540A (en) 1988-06-16 1988-06-16 Motor for rolling stock

Country Status (1)

Country Link
JP (1) JPH01318540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013207A1 (en) * 2005-07-28 2007-02-01 Sumitomo Electric Industries, Ltd. Superconducting device and axial gap type superconducting motor
JP4915681B1 (en) * 2010-12-06 2012-04-11 功一 堀口 A DC electric motor that uses permanent magnets and superconducting coils, and whose output torque is not proportional to power consumption or input power.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013207A1 (en) * 2005-07-28 2007-02-01 Sumitomo Electric Industries, Ltd. Superconducting device and axial gap type superconducting motor
JP2007037343A (en) * 2005-07-28 2007-02-08 Sumitomo Electric Ind Ltd Superconductive device and axial gap type superconducting motor
US7932659B2 (en) 2005-07-28 2011-04-26 Sumitomo Electric Industries, Ltd. Superconducting device and axial-type superconducting motor
JP4915681B1 (en) * 2010-12-06 2012-04-11 功一 堀口 A DC electric motor that uses permanent magnets and superconducting coils, and whose output torque is not proportional to power consumption or input power.

Similar Documents

Publication Publication Date Title
US5682073A (en) Hybrid excitation type permanent magnet synchronous motor
US7777384B2 (en) Permanent magnet dynamoelectric machine with variable magnetic flux excitation
CN105247763B (en) Multiple polyphase windings AC rotary motor and electric power-assisted steering apparatus
US20090160392A1 (en) Virtual Moving Air Gap For An Axial Flux Permanent Magnet Motor With Dual Stators
US20090179518A1 (en) Permanent Magnet Rotating Electric Machine and Electric Car Using the Same
JPH05304752A (en) Ac motor for driving electric automobile
JP3826785B2 (en) Rotating electric machine
JPH01318540A (en) Motor for rolling stock
US599932A (en) Method of and apparatus for regulating electric motors
US3875495A (en) Dynamo-electric rotary transformer
US2508151A (en) Direct-current motor
US802632A (en) Self-propelled vehicle.
JPH01318541A (en) Motor for vehicle
JPS6152182A (en) Drive device of commutatorless motor
TWI770116B (en) Auxiliary coil for an electric machine
JPS62233096A (en) Driving system for stepping motor
SU1328915A1 (en) Servo electric drive
JP2817904B2 (en) DC machine rectifier
JPH02266858A (en) Stator for dc machine
SU758416A1 (en) Power-diode electric motor
SU1207836A1 (en) Electric drive of self-contained vehicle
SU1253853A1 (en) Apparatus for excitation of synchronous generator of diesel locomotive
JP2583702Y2 (en) Stator and pole motor having the stator
US1173090A (en) Dynamo-electric machine.
JP2530297B2 (en) AC generator