JPH01318217A - Manufacture of permanent magnet for magnetron - Google Patents

Manufacture of permanent magnet for magnetron

Info

Publication number
JPH01318217A
JPH01318217A JP15189488A JP15189488A JPH01318217A JP H01318217 A JPH01318217 A JP H01318217A JP 15189488 A JP15189488 A JP 15189488A JP 15189488 A JP15189488 A JP 15189488A JP H01318217 A JPH01318217 A JP H01318217A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
alloy
soft magnetic
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15189488A
Other languages
Japanese (ja)
Inventor
Takeshi Seto
毅 瀬戸
Tatsuya Shimoda
達也 下田
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15189488A priority Critical patent/JPH01318217A/en
Publication of JPH01318217A publication Critical patent/JPH01318217A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics and mechanical strength by using a hot processing and heat treatment together with melting and casting R-TM-B alloy being employed as a basic process. CONSTITUTION:After melting and casting an alloy which basically consists of a rare-earth element including Y, a transition metal and boron, a template ingot is subject to hot processing at 500 deg.C or more. Namely, an alloy of Pr17Fe76 Cu3B4 is melted as a composition of magnet, casted into a template made by using a soft magnetic material template 2, a cover is welded at the upper part after cooling, is heated to 950 deg.C, and hot-processing and hot-drawing machining is performed. Then, heat processing is performed to obtain an attached body of a permanent magnet 1 and the soft magnetic material template. After cutting the obtained attached body into a desired shape, a yoke 3 is sealed. Thus, a compact magnetron with a magnetic characteristics of approximately 7 times larger than that of ferrite magnet can be achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業機器等において、電子レンジ等のマグネト
ロンに用いられるマグネトロン用永久磁石の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a permanent magnet for a magnetron used in a magnetron such as a microwave oven in industrial equipment and the like.

[従来の技術] 従来マグネトロンにはフェライト、アルニコ、希土類焼
結磁石等が用いられていた。
[Prior Art] Conventionally, magnetrons have used ferrite, alnico, rare earth sintered magnets, and the like.

[発明が解決しようとする課題] しかし従来のマグネトロン用永久磁石は次のような問題
点を有していた。
[Problems to be Solved by the Invention] However, conventional permanent magnets for magnetrons have had the following problems.

フェライト磁石を用いた場合、磁気的特性が希土類磁石
に比較してはるかに劣るため、それを補うためには大量
の磁石と大きな磁気回路を構成して磁束を集束する必要
があった。
When using ferrite magnets, their magnetic properties are far inferior to those of rare earth magnets, so in order to compensate for this, it was necessary to construct a large number of magnets and a large magnetic circuit to focus the magnetic flux.

アルニコ磁石を用いた場合には、磁石の特徴として保磁
力がきわめて小さいことから磁気回路組み込み後の着磁
が必要であるという問題があった。
When alnico magnets are used, there is a problem in that the magnets have extremely small coercive force, which requires magnetization after the magnetic circuit is installed.

希土類焼結磁石を用いた場合、磁気的特性においては十
分に満足できるが、原料コスト、製造コストが大きく磁
石が非常に高価になるという問題点を有していた。
When a rare earth sintered magnet is used, although the magnetic properties are sufficiently satisfactory, there is a problem that the raw material cost and manufacturing cost are large, making the magnet very expensive.

また原料コストの安い希土類鉄ボロン系の焼結磁石にお
いても焼結法により製造する場合、合金を粉末にする工
程が必須であるが、R−T M−B系合金は酸素に対し
て非常に活性であり、そのため粉末にする工程を経ると
表面積が増え、酸化が激しくなり焼結体中の酸素温度は
どうしても高くなってしまう、また、粉末を成形すると
きに、例えばステアリン酸亜鉛のような成形助材を使用
しなければならない、これは焼結工程以前に取り除かれ
るのではあるが、数刻は磁石の中に炭素の形で残ってし
まいR−T M−B系磁石の磁気性能を低下させてしま
うという問題がある。
In addition, when manufacturing rare earth iron boron based sintered magnets with low raw material costs by the sintering method, a process of turning the alloy into powder is essential, but R-T M-B alloys are extremely sensitive to oxygen. It is active, so when it goes through the process of powdering, the surface area increases, oxidation becomes intense, and the oxygen temperature in the sintered body inevitably increases.Also, when molding the powder, it is difficult to use materials such as zinc stearate. A molding aid must be used, and although it is removed before the sintering process, it remains in the magnet in the form of carbon for several moments, impairing the magnetic performance of the R-T M-B magnet. There is a problem of lowering the value.

成形助材を加えてプレス成形した後の成形体はグリーン
体と言われる。これは大変脆く、ハンドリングが難しい
、従って、焼結炉にきれいに並べて入れるのは相当の手
間がかかることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle, and therefore, it is a major drawback that it takes considerable effort to neatly arrange them in the sintering furnace.

また、異方性の磁石を得るためには磁場中でプレス成形
しなければならず、磁場電源、コイル等の大きな装置が
必要となる。
Furthermore, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, which requires large equipment such as a magnetic field power source and a coil.

以上の欠点があるので、一般的に言って、R−TM−B
系の焼結磁石の製造には高価な設備が必要になるばかり
でなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう、従って、比較的原料の安いR−TM−B
系磁石の長所を生かすことができなかった。
Because of the above drawbacks, generally speaking, R-TM-B
Manufacturing sintered magnets of the R-TM-B type not only requires expensive equipment, but also reduces production efficiency and increases the manufacturing cost of the magnets.
It was not possible to take advantage of the advantages of the system magnet.

さらに従来の全ての磁石が磁石のみを単体で製造し、そ
の後、継鉄、構造部材等に接着等の固定を行なっていた
ため、軸受の高速回転に伴う遠心力の影響で継鉄、構造
部材等からの磁石の剥離が起こるという重大な問題もあ
った。
Furthermore, all conventional magnets were manufactured as a single magnet and then fixed to yokes, structural members, etc. by means of adhesives, etc.; There was also the serious problem of the magnet coming off.

そこで本発明は、このような課題を解決するもので、そ
の目的とするところはR−TM−B系合金を溶解・鋳造
することを基本工程とし、熱間加工及び熱処理を併用し
、磁気特性に優れ、機械的強度も大きく、しかも低コス
トのマグネトロン用永久磁石を提供するところにある。
Therefore, the present invention is intended to solve such problems, and its purpose is to melt and cast R-TM-B alloy as a basic process, and to use hot working and heat treatment in combination to improve magnetic properties. The purpose of the present invention is to provide a permanent magnet for a magnetron that has excellent properties, high mechanical strength, and low cost.

[課題を解決するための手段] 上記課題を解決するために本発明のマグネトロン用永久
磁石の製造方法は、R(ただしRはYを含む希土類元素
のうち少なくとも1種)、遷移金属、およびボロンを基
本成分とする合金を溶解及び鋳造後、前記鋳造インゴッ
トを500℃以上の温度で熱間加工することを特徴とす
る。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a permanent magnet for a magnetron of the present invention includes R (where R is at least one rare earth element including Y), a transition metal, and boron. The method is characterized in that after melting and casting an alloy whose basic components are, the cast ingot is hot worked at a temperature of 500° C. or higher.

また磁石合金を溶解、鋳造する工程、ついで鋳造インゴ
ットを軟磁性体で覆い、500℃以上で熱間加工を施し
、その後250℃以上の温度で熱処理を行い永久磁石と
軟磁性体の接合体を製造し、さらに前記接合体の軟磁性
体部分の1部を構造部材あるいは磁気回路として残すよ
うに切削等の後加工することを特徴とする。
In addition, the magnetic alloy is melted and cast, the cast ingot is then covered with a soft magnetic material, hot worked at a temperature of 500°C or higher, and then heat treated at a temperature of 250°C or higher to form a joined body of the permanent magnet and the soft magnetic material. It is characterized in that it is manufactured and then subjected to post-processing such as cutting so that a part of the soft magnetic material portion of the joined body remains as a structural member or a magnetic circuit.

あるいは磁石合金を溶解し、軟磁性体、または磁石と接
合して使う材料でできた鋳型に鋳造する工程、鋳造イン
ゴットを鋳型ごと500℃以上で熱間加工を施し、その
後250℃以上の温度で熱処理を行い永久磁石と鋳型材
の接合体を製造し、さらに前記接合体の鋳型材部分の1
部を構造部材あるいは磁気回路として残すように切削等
の後加工することを特徴とする。
Alternatively, a process of melting the magnet alloy and casting it into a mold made of a soft magnetic material or a material used to bond with the magnet, hot working the cast ingot together with the mold at a temperature of 500°C or higher, and then heating it at a temperature of 250°C or higher. Heat treatment is performed to produce a joined body of the permanent magnet and the mold material, and further, one part of the mold material part of the joined body is
It is characterized by post-processing such as cutting so that the portion remains as a structural member or magnetic circuit.

磁石を用いた磁気回路の縦断面図を示す、1は希土類、
遷移金属およびボロンを特徴とする特許磁石、2は軟磁
性体鋳型、3はヨークである。
A longitudinal cross-sectional view of a magnetic circuit using magnets, 1 is a rare earth,
A patented magnet featuring a transition metal and boron, 2 a soft magnetic mold, and 3 a yoke.

第1表に本実施例の磁石合金の組成を示す。Table 1 shows the composition of the magnet alloy of this example.

第1表 ただし、磁石の組成としては表1に示した組成に限らず
、希土類金属としては、Y、La、Ce、Pr、  N
d%Sm、  Eu%Gd、  Tb%Dy。
Table 1 However, the composition of the magnet is not limited to the composition shown in Table 1, and the rare earth metals include Y, La, Ce, Pr, and N.
d%Sm, Eu%Gd, Tb%Dy.

HOlEr、Tm、Yb、Luが候補として挙げられ、
これらの内1種類、あるいは2種類以上を組み合わせて
用いられる。最も高い磁気特性はPrで得られる。従っ
て実用的には、Pr、Pr−Nd、Ce−Pr−Nd合
金等が用いられる。
HOlEr, Tm, Yb, Lu are listed as candidates,
One or a combination of two or more of these may be used. The highest magnetic properties are obtained with Pr. Practically, therefore, Pr, Pr-Nd, Ce-Pr-Nd alloys, etc. are used.

遷移金属としてはFe、Co、NiS Cu、  等が
候補として挙げられ、これらの内1種類、あるいは2種
類以上を組み合わせて用いられる。また、小量の添加元
素、例えば重希土類のDy、’rb等や、A1、Si、
Mo、Ga等は保磁力の向上に有効である。
Candidates for the transition metal include Fe, Co, NiS Cu, etc., and one or more of these may be used in combination. In addition, small amounts of additive elements such as heavy rare earths Dy, 'rb, etc., A1, Si,
Mo, Ga, etc. are effective in improving coercive force.

R−T M−B系永久磁石の主相はR2T M + a
 B化合物相である。従ってRが8原子%未満ではもを
よ<)上記化合物を形成せず、高い磁気性能は得られな
い、一方、Rが30原子%を越えると非磁性のRリッチ
相が多くなり磁気特性は著しく低下する。
The main phase of R-T M-B permanent magnet is R2T M + a
This is the B compound phase. Therefore, if R is less than 8 at%, the above compounds will not be formed and high magnetic performance will not be obtained.On the other hand, if R is more than 30 at%, the non-magnetic R-rich phase will increase and the magnetic properties will deteriorate. Significantly decreased.

従ってRの範囲は8〜30原子%が適当である。Therefore, the appropriate range for R is 8 to 30 atomic %.

しかし、鋳造磁石とするため、好ましくは8〜25原子
%が適当である。
However, in order to form a cast magnet, it is preferably 8 to 25 atomic %.

BはR2T M Ia B化合物相を形成するための必
須元素であり、2原子%以下では菱面体のR−TM系に
なるために高い保磁力は望めない、また、28原子%を
越えるとBを含む非磁性相が多くなり、残留磁束密度は
著しく低下してくる。しかし、鋳造磁石としては好まし
くはBは8原子%以下がよく、それ以上では特殊な冷却
を施さない限り微細なR2TM14B化合物相を得るこ
とが出来ず、適切な保磁力が得られない。
B is an essential element for forming the R2TM Ia B compound phase, and if it is less than 2 atom%, it becomes a rhombohedral R-TM system, so a high coercive force cannot be expected, and if it exceeds 28 atom%, B The amount of non-magnetic phase containing increases, and the residual magnetic flux density decreases significantly. However, for cast magnets, B is preferably 8 atomic % or less; if it exceeds this, a fine R2TM14B compound phase cannot be obtained unless special cooling is performed, and an appropriate coercive force cannot be obtained.

A1、Ga等は保磁力増大の効果を示す、しかしながら
、A1やGaは非磁性元素であるため、その添加量を増
すと残留磁束密度が低下し、A1では15原子%を越え
ると、Gaでは6原子%を越えるとハードフェライト以
下の残留磁束密度になってしまうので希土類磁石として
の目的を果たし得ない、よってAlの添加量は15原子
%以下、Gaは6原子%以下がよい。
A1, Ga, etc. exhibit the effect of increasing coercive force. However, since A1 and Ga are non-magnetic elements, increasing the amount added lowers the residual magnetic flux density. If it exceeds 6 atomic %, the residual magnetic flux density will be lower than that of hard ferrite, and the purpose of the rare earth magnet cannot be achieved.Therefore, the amount of Al added should be 15 atomic % or less, and the amount of Ga should be 6 atomic % or less.

第1表の組成の合金を溶解し、軟磁性体鋳型2を用いて
構成したU型に訪込み、冷却後上部に蓋を溶接し、95
0℃に加熱し、熱間圧延加工を行なった。ついで熱処理
をおこない永久磁石1、軟磁性体鋳型2の接合体を得た
。この永久磁石1の磁気特性を第2表に示す。
The alloy having the composition shown in Table 1 is melted, poured into a U-shape constructed using a soft magnetic mold 2, and after cooling, a lid is welded to the upper part.
It was heated to 0°C and hot rolled. Then, heat treatment was performed to obtain a joined body of the permanent magnet 1 and the soft magnetic mold 2. The magnetic properties of this permanent magnet 1 are shown in Table 2.

得られた接合体は所望の形状に切断した後、ヨーク3を
固着しマグネトロン用永久磁石磁気回路を構成した。
The obtained joined body was cut into a desired shape, and then a yoke 3 was fixed thereon to form a permanent magnet magnetic circuit for a magnetron.

[発明の効果] 以上述べたように、本発明のマグネトロン用永久磁石の
製造方法は、鋳造インゴットを粉砕・焼結という工程を
経ることなく大量生産しやすい熱間加工と熱処理を施す
だけで十分な保磁力が得られ、永久磁石の生産工程を大
幅に削減し低コストのマグネトロン用永久磁石を提供す
ることができる。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet for a magnetron according to the present invention is sufficient by simply subjecting a cast ingot to hot working and heat treatment, which facilitates mass production, without going through the steps of crushing and sintering. It is possible to obtain a high coercive force, significantly reduce the production process of permanent magnets, and provide a low-cost permanent magnet for magnetrons.

さらに、磁気特性としても最大エネルギー積が実施例1
では、16〜17 (MGOe)と従来のフェライト磁
石に比べ約7倍の磁気特性を持つため小型のマグネトロ
ンを構成することが可能となっている。
Furthermore, as a magnetic property, the maximum energy product of Example 1
Since it has a magnetic property of 16 to 17 (MGOe), about seven times that of conventional ferrite magnets, it is possible to construct a small magnetron.

また磁石と他の構造部材との接合は、磁石の加工性が劣
るため、一般に難しいが本発明では磁石の両面に軟磁性
体鋳型が固相接合されているため、鋳型部へネジ穴を開
ける等の方法で磁気回路全体の組立性を非常に向上させ
ることができる。
In addition, joining magnets to other structural members is generally difficult due to the poor machinability of magnets, but in the present invention, since soft magnetic molds are solid phase joined to both sides of the magnet, screw holes are drilled into the mold parts. By these methods, the ease of assembling the entire magnetic circuit can be greatly improved.

また本発明の製造方法は進行波管等の静磁界を用いて荷
電粒子を制御する機器の永久磁石の製造にも有効である
The manufacturing method of the present invention is also effective for manufacturing permanent magnets for devices such as traveling wave tubes that control charged particles using a static magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法によるマグネトロン用永久磁
石の縦断面図である。 1・・・永久磁石 2・・・軟磁性体鋳型 3・・・ヨーク 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 銘木 喜三部 他1名第1図
FIG. 1 is a longitudinal sectional view of a permanent magnet for a magnetron manufactured by the manufacturing method of the present invention. 1... Permanent magnet 2... Soft magnetic mold 3... York and above Applicant Seiko Epson Co., Ltd. agent Patent attorney Kisanbe Meiki and 1 other person Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)マグネトロン用永久磁石の製造方法において、R
(ただしRはYを含む希土類元素のうち少なくとも1種
)、遷移金属、およびボロンを基本成分とする合金を溶
解及び鋳造後、前記鋳造インゴットを500℃以上の温
度で熱間加工することを特徴としたマグネトロン用永久
磁石の製造方法。
(1) In the method for manufacturing a permanent magnet for magnetron, R
(wherein R is at least one rare earth element including Y), a transition metal, and an alloy whose basic components are boron are melted and cast, and then the cast ingot is hot worked at a temperature of 500°C or higher. A method for manufacturing permanent magnets for magnetrons.
(2)磁石合金を溶解、鋳造する工程、ついで鋳造イン
ゴットを軟磁性体で覆い、500℃以上で熱間加工を施
し、その後250℃以上の温度で熱処理を行い永久磁石
と軟磁性体の接合体を製造し、さらに前記接合体の軟磁
性体部分の1部を構造部材あるいは磁気回路として残す
ように切削等の後加工を施すことを特徴とする請求項1
に記載のマグネトロン用永久磁石の製造方法。
(2) Process of melting and casting the magnetic alloy, then covering the cast ingot with a soft magnetic material, performing hot working at a temperature of 500°C or higher, and then heat treatment at a temperature of 250°C or higher to join the permanent magnet and the soft magnetic material. Claim 1, characterized in that a body is manufactured and further post-processing such as cutting is performed so that a part of the soft magnetic material portion of the joined body remains as a structural member or a magnetic circuit.
A method for manufacturing a permanent magnet for a magnetron described in .
(3)磁石合金を溶解し、軟磁性体、または磁石と接合
して使う材料でできた鋳型に鋳造する工程、鋳造インゴ
ットを鋳型ごと500℃以上で熱間加工を施し、その後
250℃以上の温度で熱処理を行い永久磁石と鋳型材の
接合体を製造し、さらに前記接合体の鋳型材部分の1部
を構造部材あるいは磁気回路として残すように切削等の
後加工を施すことを特徴とする請求項1に記載のマグネ
トロン用永久磁石の製造方法。
(3) The process of melting the magnet alloy and casting it into a mold made of a soft magnetic material or a material used for bonding with the magnet. The method is characterized in that a bonded body of a permanent magnet and a mold material is produced by heat treatment at a high temperature, and further post-processing such as cutting is performed so that a part of the mold material portion of the bonded body remains as a structural member or a magnetic circuit. A method for manufacturing a permanent magnet for a magnetron according to claim 1.
JP15189488A 1988-06-20 1988-06-20 Manufacture of permanent magnet for magnetron Pending JPH01318217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15189488A JPH01318217A (en) 1988-06-20 1988-06-20 Manufacture of permanent magnet for magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15189488A JPH01318217A (en) 1988-06-20 1988-06-20 Manufacture of permanent magnet for magnetron

Publications (1)

Publication Number Publication Date
JPH01318217A true JPH01318217A (en) 1989-12-22

Family

ID=15528522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15189488A Pending JPH01318217A (en) 1988-06-20 1988-06-20 Manufacture of permanent magnet for magnetron

Country Status (1)

Country Link
JP (1) JPH01318217A (en)

Similar Documents

Publication Publication Date Title
CN102103917B (en) Neodymium iron boron magnet, preparation method and device applying same
CN104851545B (en) A kind of permanent-magnet material preparation method with grain boundary decision layer
CN111151916B (en) Foil brazing filler metal for brazing sintered neodymium-iron-boron permanent magnet material and preparation method
JPH06302417A (en) Permanent magnet and its manufacture
JPH01318217A (en) Manufacture of permanent magnet for magnetron
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JP2579787B2 (en) Manufacturing method of permanent magnet
CN104439234B (en) Preparing method for nickel-silicon-aluminum soft magnetic material doped with rare earth elements
JPH05135976A (en) Manufacture of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH027855A (en) Generator
JPH01318216A (en) Manufacture of permanent magnet for magnetic bearing
JPH02269463A (en) Linear motor
JPH01321854A (en) Reciprocating driver
JPS6136361B2 (en)
JPH01171207A (en) Manufacture of parmanent magnet
JPH01321609A (en) Manufacture of magnetic gear
JPH01318537A (en) Magnetic circuit of voice coil motor
CN105903950A (en) Preparation method of nanometer neodymium iron boron magnetic material
JPH04134806A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH027503A (en) Magnetic field generator
JPH05315170A (en) Manufacture of permanent magnet
JPS6077951A (en) Co-fe type permanent magnet alloy and its manufacture
JPH0418704A (en) Manufacture of permanent magnet