JPH01318213A - Inductance component and manufacture thereof - Google Patents

Inductance component and manufacture thereof

Info

Publication number
JPH01318213A
JPH01318213A JP15071388A JP15071388A JPH01318213A JP H01318213 A JPH01318213 A JP H01318213A JP 15071388 A JP15071388 A JP 15071388A JP 15071388 A JP15071388 A JP 15071388A JP H01318213 A JPH01318213 A JP H01318213A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
melting point
point glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15071388A
Other languages
Japanese (ja)
Inventor
Shinji Harada
真二 原田
Hajime Kawamata
川又 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15071388A priority Critical patent/JPH01318213A/en
Publication of JPH01318213A publication Critical patent/JPH01318213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To improve high-frequency magnetic characteristics and magnetic shield by incorporating winding within a mixture of magnetic powder and low- melting point glass powder and performing integration with a low-melting point glass which is softened and melted below a temperature where sintering of magnetic powder starts after the formation under pressure or under application of pressure. CONSTITUTION:A winding 3 is incorporated between a magnetic powder 1 and the winding 3 and the magnetic powder 1 are integrated by a low-melting point glass 2. Since the magnetic powder 1 is fused and hardened by a low- melting point glass 2, the area between the powder is electrically isolated by glass constituents and a high-resistance core material can be obtained regardless of proper resistance of the magnetic powder 1. Namely, a high resistance can be obtained even in an allow or ferrite material where resistivity of the magnetic powder 1 is low. Furthermore, since the winding 3 is incorporated into the magnetic powder 1, there is no external leakage of magnetic flux and an efficient magnetic characteristics can be obtained. It eliminates the need for magnetic shield owing to an improved high-frequency magnetic characteristics.

Description

【発明の詳細な説明】 r□n業」二の利用分野 本発明−は、磁性粉末内に巻線コイルが内蔵されこれら
をガラス材で結着固化してなるインダクタンス部品とそ
の製造方法に関するものである。
[Detailed Description of the Invention] Field of Application of the Second Field of the Invention The present invention relates to an inductance component in which a winding coil is built in magnetic powder and is bonded and solidified with a glass material, and a method for manufacturing the same. It is.

従来の技術 従来のトランス、フィルタ、コイル等のインダクタンス
部品は必要な磁く(特性および形状を有しA磁性材料(
以下、磁心と呼ぶ)に外部から導線を巻きつけた9rg
でインダクタンス部品を作成する。そしてこれら磁心に
用いられる磁性材料としては、Fe−8i合金、パーマ
ロイ、フェライト等の材料がそれぞれ用途にあわせて最
も一般的に使用されている。
Conventional technology Conventional inductance components such as transformers, filters, coils, etc. have the necessary magnetic properties and shapes and are made of magnetic materials (
9rg (hereinafter referred to as magnetic core) with a conductor wrapped around it from the outside
Create an inductance component with . As magnetic materials used for these magnetic cores, materials such as Fe-8i alloy, permalloy, and ferrite are most commonly used depending on the purpose.

発明が解決しようとする課題 このような従来のインダクタンス部品は、近年の電子機
2gの小型、軽量、iii、l、i型化、さらには高周
波化に対応した高性能のインダクタンス部品としては、
1−ランスを初めとして高周波数(I MHz以−L)
下のもとではFe−8i合金、パーマロイ。
Problems to be Solved by the Invention These conventional inductance parts are not suitable as high-performance inductance parts that are compatible with recent 2G electronic devices that are smaller, lighter, III, L, and I type, and even higher frequency.
1-Lance and other high frequencies (below I MHz-L)
Below are Fe-8i alloy and permalloy.

フェライトは利料の固有抵抗が小さいためうず電流損に
よる鉄損が大きくなるという問題点を有しており優れた
高周波磁気特性を有する有効な磁心材料がない。
Ferrite has a problem in that iron loss due to eddy current loss is large due to its low specific resistance, and there is no effective magnetic core material with excellent high frequency magnetic properties.

またフェライト磁心については1000°C〜1400
’Cの高温プロセスで作成するため10〜20%の形状
収縮が起こり製品の寸法バラツキを生じたり品精度の磁
心を得ることが困難である。
For ferrite magnetic cores, the temperature is 1000°C to 1400°C.
Since it is manufactured using a high-temperature process, the shape shrinks by 10 to 20%, resulting in dimensional variations in the product and making it difficult to obtain a magnetic core with high quality.

従って研磨などの機械加工が必要とされることもある。Therefore, machining such as polishing may be required.

さらに従来のものは磁心の外部1に巻線を施しているた
めに基本的に磁束の山1れがあり、周辺部品に悪影響を
及ぼすこともあるため磁気シールドをする必要があるな
ど実装面での問題点を有している。
Furthermore, since the conventional type has a winding on the outside of the magnetic core, there is basically a peak of magnetic flux, which may have an adverse effect on peripheral components, so it is necessary to provide magnetic shielding. It has the following problems.

さらにまた巻線が外部に露出しているため樹脂コートす
る必要があるなど耐環境性の面での問題点も有していた
Furthermore, since the windings are exposed to the outside, it is necessary to coat them with a resin, which causes problems in terms of environmental resistance.

課題を解決するだめの手段 この課題をμi′決するために本発明は磁性粉末と低融
点ガラス粉末の混合物内に巻線が内蔵され、加圧成形後
あるいは加圧下のもとに上記磁性粉末の’t、r(、結
化が始捷る温度以下で軟化溶融する一h記低融点ガラス
で結着した構成とするものである。
Means for Solving the Problem In order to solve this problem, the present invention incorporates a winding wire in a mixture of magnetic powder and low-melting glass powder, and forms the magnetic powder after pressure molding or under pressure. 't, r(, The structure is such that the glass is bonded with the low melting point glass described in item 1h, which softens and melts at a temperature below the point at which crystallization begins.

作用 この構成によれば、磁性粉末を低融点ガラス粉末で溶融
固化しているだめ、粉末間はガラス成分で電気的に絶縁
されるため磁性粉末の固有抵抗によらず高抵抗の磁心材
料を得ることができる。つまり磁性粉末の固有抵抗が低
い合金あるいは)。
Effect: According to this configuration, since the magnetic powder is melted and solidified with the low melting point glass powder, the particles are electrically insulated by the glass component, so a magnetic core material with high resistance is obtained regardless of the specific resistance of the magnetic powder. be able to. In other words, alloys with low resistivity of magnetic powder).

ソイト材料でも非常に嘉い抵抗値を得ることができる。Very high resistance values can be obtained even with soite materials.

従って、高周波領域で問題になる渦電流による鉄損は少
なく高周波磁気特性の極めて優れたインダクタンス部品
を実現できるのである。
Therefore, the iron loss caused by eddy current, which is a problem in the high frequency region, is reduced, and an inductance component with extremely excellent high frequency magnetic properties can be realized.

また磁性粉末を粉末どうしが焼結する温度(1oOO〜
1400°C)より十分低い低融点ガラスの溶融温度で
熱処理するため、形状収縮がほとんどなく寸法バラツキ
の少ない高名17度のインダクタンス部品を得ることが
できる。
Also, the temperature at which magnetic powders are sintered together (1oOO ~
Since the heat treatment is performed at a melting temperature of low-melting glass, which is sufficiently lower than 1400°C, it is possible to obtain an inductance component with a famous 17°C with almost no shape shrinkage and little dimensional variation.

さらに、巻線が磁性粉末の中に内蔵されているため基本
的に外部に磁束の山1れがなく、効率的な磁気特性を得
ることができ、さらに磁気シールド対策を施す必要性も
ない。
Furthermore, since the winding is built into the magnetic powder, there is basically no peak of magnetic flux outside, and efficient magnetic properties can be obtained, and furthermore, there is no need to take magnetic shielding measures.

さらにまた、従来のものが巻線を樹脂でもって保護コー
トしているのに対し、本発明によって得られる磁性部品
では磁性粉末の結着材として低融点ガラスを使用してい
るため、従来より耐熱性、耐環境性に優れたインダクタ
ンス部品を得ることができるなど幅広い用途が期待でき
るものである。
Furthermore, while conventional products have windings coated with resin for protection, the magnetic parts obtained by the present invention use low-melting glass as a binder for magnetic powder, making them more heat resistant than before. This product is expected to have a wide range of applications, including the ability to obtain inductance parts with excellent durability and environmental resistance.

実施例 以下、本発明を実施例にもとづいて詳細に説明する。Example Hereinafter, the present invention will be explained in detail based on examples.

第1図は本発明で得られるインダクタンス部品の一実施
例でありその構造断面図を示している。
FIG. 1 is an embodiment of an inductance component obtained by the present invention, and shows a structural sectional view thereof.

つ1り巻線3が磁性粉末1間に内蔵され、巻線3と磁性
粉末1とが低融点ガラス2でもって結着されている。4
は外部端子電極、6は第2図に示すように低融点ガラス
2で磁性粉末1が結着された磁性体である。
A single winding 3 is built in between the magnetic powders 1, and the windings 3 and the magnetic powder 1 are bonded together with a low melting point glass 2. 4
2 is an external terminal electrode, and 6 is a magnetic material in which magnetic powder 1 is bonded with low melting point glass 2, as shown in FIG.

本発明によるインダクタンス部品は次のようにして製造
する。
The inductance component according to the present invention is manufactured as follows.

まず、第3図の製造工程例に示すように磁性粉末1とし
ての粒径60〜10011mのMn−Zn系フェライト
粉末に低融点ガラス粉末2を3wt%〜30wt%入れ
十分に混合した後、さらに6wt%PVA水溶液を上記
フェライト粉末と低融点ガラス粉末2の混合物に対し1
0wt%添加し造粒を行った。次に0.2朋φの耐熱導
線で巻線3を作成し、これを金型内に設置した後上記造
粒粉を充填し、1(t//c−)〜3(t々Δ)でプレ
ス成形を行った。そしてこの成形体を金型から取り出し
た後、420°Cで10分間熱処理を行った。
First, as shown in the manufacturing process example in FIG. 3, 3 wt% to 30 wt% of low melting point glass powder 2 is added to Mn-Zn ferrite powder with a particle size of 60 to 10011 m as magnetic powder 1, and then mixed thoroughly. 6 wt % PVA aqueous solution was added to the mixture of the above ferrite powder and low melting point glass powder by 1 part.
Granulation was performed by adding 0 wt%. Next, a winding 3 is made with a heat-resistant conductor wire of 0.2 mmφ, and after placing it in the mold, it is filled with the above granulated powder. Press molding was performed. After this molded body was taken out from the mold, it was heat-treated at 420°C for 10 minutes.

ここで使用する磁性粉末1は、Mn−Zn系フエライト
ニ限ることはな(Ni−Zn m、 Ni−Cu −Z
n系、Mn−Mg−Zn系、Mg−Cu−Zn系7 z
 ライトなどの酸化物磁性粉末あるいは金属磁性粉末ま
たはそれら磁性粉末を単独または組み合わせた混合物で
もよいものである。また、上記実施例では磁性粉末の粒
径が50〜10077+11の場合について示したが、
軟質磁性体を得る場合、磁性粉末の粒径は大きい程好ま
しいが粉末の成形性の観点からは200μmまでの粒径
が適している。
The magnetic powder 1 used here is not limited to Mn-Zn ferrite (Ni-Znm, Ni-Cu-Z
n-based, Mn-Mg-Zn-based, Mg-Cu-Zn-based 7 z
It may be an oxide magnetic powder such as light, a metal magnetic powder, or a mixture of these magnetic powders alone or in combination. In addition, in the above example, the case where the particle size of the magnetic powder was 50 to 10077+11 was shown,
When obtaining a soft magnetic material, the larger the particle size of the magnetic powder is, the more preferable it is, but from the viewpoint of moldability of the powder, a particle size of up to 200 μm is suitable.

また、磁性粉末1を低融点ガラス粉末2で結着する作業
温度は磁性粉末1どうしの焼結化が始まらない温度でか
つ低融点ガラス粉末2が十分に溶融し、磁性粉末1間の
空隙に素早く浸透し結着する温度が最適である。つまり
、通常の粉末冶金法によって作成されるフェライトなど
の焼結型磁性体の焼結開始温度は約700°C程度以−
ヒ、また金属金型の実用強度は650′Cまでが限界と
されているため、本発明によるインダクタンス部品作成
時の低融点ガラスの結着作業温度はこの温度以下で行う
必要があり、使用する低融点ガラス粉末2は650’C
以下で軟化溶融するものであればよい。
Further, the working temperature for binding the magnetic powder 1 with the low melting point glass powder 2 is such that the magnetic powders 1 do not start sintering each other, and the low melting point glass powder 2 is sufficiently melted to fill the voids between the magnetic powders 1. The optimum temperature is for quick penetration and binding. In other words, the sintering start temperature of sintered magnetic materials such as ferrite produced by ordinary powder metallurgy is about 700°C or higher.
Also, since the practical strength of metal molds is said to be limited to 650'C, the temperature for bonding low-melting glass when creating inductance parts according to the present invention must be below this temperature. Low melting point glass powder 2 is 650'C
Any material may be used as long as it softens and melts below.

さらに磁性粉末1に加える低融点ガラス粉末2の県は3
〜30wt%が良く、awt%より少ない場合、磁性わ
)未聞結着効果が小さく機械強度が確保できない。一方
低融点ガラス粉末量が3゜wt%より多い場合、結着力
は十分強くなる低融点ガラス量つまり非磁性量が増える
ため磁気特性は著しく低下し良好な特性が得られないの
である。
Furthermore, the prefecture of low melting point glass powder 2 added to magnetic powder 1 is 3.
~30wt% is good; if it is less than awt%, the magnetic binding effect is small and mechanical strength cannot be ensured. On the other hand, if the amount of low melting point glass powder is more than 3% by weight, the binding force will be sufficiently strong, but the amount of low melting point glass, that is, the amount of nonmagnetic properties will increase, so the magnetic properties will drop significantly and good properties will not be obtained.

また@4図に示すように低融点ガラス粉末量が30wt
%より多い場合、得られる粉末成形体の寸法収縮が起こ
り?:5精度の磁性部品を得ることができないのである
Also, as shown in Figure @4, the amount of low melting point glass powder is 30wt.
If the amount exceeds %, will the resulting powder compact undergo dimensional shrinkage? :5 precision magnetic parts cannot be obtained.

またインダクタンス部品作成における熱処理時の雰囲気
としてはJ二記フェライトのような酸化物磁性粉末の場
合大餐中でもよいが、金属磁性粉末を使用する場合は、
その材料の酸化を防ぐ意味で非酸化性雰囲気中で行うの
が好ましい。
In addition, the atmosphere during heat treatment in the production of inductance parts may be a large meal in the case of oxide magnetic powder such as J2 ferrite, but when using metal magnetic powder,
It is preferable to carry out the process in a non-oxidizing atmosphere in order to prevent oxidation of the material.

ところで磁性粉末成形体の密度は上記インダクタンス部
品の磁気特性と強い相関があるため高密度成形体を実現
できるプレス圧力であればよく、」記実施例では磁性粉
末1の成形においてプレス圧力を1 (t/l−1) 
〜3 (t /cd )で行った。
By the way, since the density of the magnetic powder compact has a strong correlation with the magnetic properties of the above-mentioned inductance component, any press pressure that can realize a high-density compact may be sufficient. t/l-1)
~3 (t/cd).

また電気抵抗は従来のフェライトおよび金属磁性体など
が102(Ω・cIjI)以下であるのに対し本発明で
得られる磁性体では107(Ω・clR)以上の非常に
高抵抗のものが得られた。従って高周波領域での使用に
おける渦電流損失を大幅に改善できるものであり、優れ
た高周波特性が実現できるものである。
Furthermore, while the electrical resistance of conventional ferrite and metal magnetic materials is 102 (Ω・cIjI) or less, the magnetic material obtained by the present invention has a very high resistance of 107 (Ω・clR) or more. Ta. Therefore, it is possible to significantly improve eddy current loss when used in a high frequency region, and achieve excellent high frequency characteristics.

なお本発明における熱処理工程は磁性粉末成形後行った
が、これに限るものではなく成形加圧時に同時に熱処理
を行ってもよいものである。この場合成形物は金型寸法
どうりのものが得られるため収縮が基本的に起きないこ
とから高精度の成形体を得ることができる。
Although the heat treatment step in the present invention was carried out after the magnetic powder was molded, the present invention is not limited to this, and the heat treatment may be performed at the same time as the molding and pressurizing process. In this case, since the molded product can be obtained in accordance with the dimensions of the mold, shrinkage basically does not occur, so that a highly accurate molded product can be obtained.

第6図は本発明によって得られるトランスの一実施例を
示している。つまりこれは第1次巻線3−aと2次巻線
3−bが、低融点ガラス2で結着された磁性粉末からな
る磁性体5内に内蔵されたものである。4−a、4−b
はそれぞれ1次。
FIG. 6 shows an embodiment of a transformer obtained according to the present invention. In other words, the primary winding 3-a and the secondary winding 3-b are housed in a magnetic body 5 made of magnetic powder bound together by a low melting point glass 2. 4-a, 4-b
are each of first order.

2次巻線の端子電極を示す。The terminal electrodes of the secondary winding are shown.

さらにまたこのほかにコンデンサセコイルなどの異種部
品の複合化によるLCI−ラップ、LCフィルタ、KM
Iノイズフィルタを初め、バイアス用磁石として硬質磁
性材料を軟質磁性材料に複合化したりニャリティコイル
などの各種インダクタンス応用部品も本発明からは容易
に考えられるものである。
Furthermore, in addition to this, LCI-wrap, LC filter, KM by combining different types of parts such as capacitor Secoil, etc.
In addition to the I-noise filter, various inductance-applied components such as a composite of hard magnetic material with soft magnetic material as a bias magnet, and a magnetic coil can also be easily conceived from the present invention.

発明の効果 以上の説明より期らかなように本発明により得られたガ
ラス結着型高密度のインダクタンス部品は形状寸法の精
度が良く、また磁性材料の抵抗が高抵抗のため高周波特
性に優れ、しかも閉磁路構造のため磁気シールド効果が
高い。さらに耐熱性、耐環境性に優れたインダクタンス
部品が比較的節単に作成でき、各種インダクタンス応用
電子部品として幅広い用途が期待できるものであり、そ
の産業性は大なるものである。
Effects of the Invention As can be expected from the above explanation, the glass bonded high-density inductance component obtained by the present invention has good shape and dimension precision, and has excellent high frequency characteristics due to the high resistance of the magnetic material. Moreover, the closed magnetic circuit structure provides high magnetic shielding effect. Furthermore, inductance parts with excellent heat resistance and environmental resistance can be produced relatively easily, and can be expected to have a wide range of uses as various inductance-applied electronic parts, so their industrial potential is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるインダクタンス部品の一実施例を
示す一部切欠斜視図、第2図は同要部の拡大断面図、第
3図は本発明の方法によるインダクタンス部品の製造方
法の工程を示す図、第4図は本発明による磁性成形体に
おいて低融点ガラス量を変えた場合の成形体の収縮率の
変化する様子を示す図、第5図は本発明の他の実施例を
示す一部切欠斜視図である。 1・・・・・・磁性粉末、2・・・・・・低融点ガラス
、3・・・・・・巻線、3−a・・・・・・1次巻線、
3−b・・・・・・2次巻線、4・・・・・・端子!極
、4−!L・・・・・・1次巻線端子電極、4−b・・
・・・・2次巻線端子電極、5・・・・・・磁性体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第 4 図 第 5 図
Fig. 1 is a partially cutaway perspective view showing an embodiment of an inductance component according to the present invention, Fig. 2 is an enlarged sectional view of the same essential part, and Fig. 3 shows the steps of a method for manufacturing an inductance component according to the method of the present invention. Figure 4 is a diagram showing how the shrinkage rate of the magnetic molded body of the present invention changes when the amount of low melting glass is changed, and Figure 5 is a diagram showing another embodiment of the present invention. FIG. 1... Magnetic powder, 2... Low melting point glass, 3... Winding wire, 3-a... Primary winding,
3-b...Secondary winding, 4...Terminal! Extreme, 4-! L...Primary winding terminal electrode, 4-b...
...Secondary winding terminal electrode, 5...Magnetic material. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (8)

【特許請求の範囲】[Claims] (1)磁性粉末と低融点ガラス粉末の混合物内に巻線が
内蔵され、加圧成形した後あるいは加圧下のもとに上記
磁性粉末の焼結化が始まる温度以下で軟化溶融する上記
低融点ガラスで結着したインダクタンス部品。
(1) A winding wire is built into a mixture of magnetic powder and low melting point glass powder, and the low melting point softens and melts at a temperature below the temperature at which the magnetic powder starts to sinter after being press-formed or under pressure. Inductance component bonded with glass.
(2)磁性粉末として軟質磁性粉末を用いた請求項(1
)記載のインダクタンス部品。
(2) Claim (1) in which soft magnetic powder is used as the magnetic powder.
) Inductance components listed.
(3)磁性粉末として酸化物磁性粉末を用いた請求項(
1)記載のインダクタンス部品。
(3) Claim in which oxide magnetic powder is used as the magnetic powder (
1) Inductance components described.
(4)磁性粉末として金属磁性粉末を用いた請求項(1
)記載のインダクタンス部品。
(4) Claim (1) in which metal magnetic powder is used as the magnetic powder.
) Inductance components listed.
(5)磁性粉末として酸化物磁性粉末と金属磁性粉末の
混合粉末を用いた請求項(1)記載のインダクタンス部
品。
(5) The inductance component according to claim (1), wherein a mixed powder of oxide magnetic powder and metal magnetic powder is used as the magnetic powder.
(6)磁性粉末に対する低融点ガラスの比率が3〜30
wt%である請求項(1)記載のインダクタンス部品。
(6) The ratio of low melting point glass to magnetic powder is 3 to 30
The inductance component according to claim 1, wherein the inductance component is wt%.
(7)低融点ガラスとしてその軟化温度が650℃以下
であるガラス粉末を用いた請求項(1)記載のインダク
タンス部品。
(7) The inductance component according to claim (1), wherein a glass powder having a softening temperature of 650° C. or lower is used as the low melting point glass.
(8)磁性粉末と低融点ガラス粉末とを混合、造粒した
混合物内に巻線を内蔵した後、加圧成形したのちあるい
は加圧成形しながら磁性粉末間に介在する低融点ガラス
粉末を磁性粉体どうしの焼結化が始まる温度以下で軟化
溶融させて磁性粉末を低融点ガラスで結着するインダク
タンス部品の製造方法。
(8) After mixing and granulating magnetic powder and low melting point glass powder and incorporating a winding wire into the mixture, after or during pressure molding, the low melting point glass powder interposed between the magnetic powders is made magnetic. A method for manufacturing inductance parts in which magnetic powder is softened and melted at a temperature below the temperature at which sintering of the powders begins, and magnetic powder is bonded with low-melting glass.
JP15071388A 1988-06-17 1988-06-17 Inductance component and manufacture thereof Pending JPH01318213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15071388A JPH01318213A (en) 1988-06-17 1988-06-17 Inductance component and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15071388A JPH01318213A (en) 1988-06-17 1988-06-17 Inductance component and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01318213A true JPH01318213A (en) 1989-12-22

Family

ID=15502779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15071388A Pending JPH01318213A (en) 1988-06-17 1988-06-17 Inductance component and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01318213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062424A (en) * 2008-09-05 2010-03-18 Toko Inc Manufacturing method of electronic component
WO2014024976A1 (en) * 2012-08-10 2014-02-13 株式会社村田製作所 Magnetic material composition and coil component
WO2014061670A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Laminated coil device and manufacturing method therefor
US10128041B2 (en) 2015-09-01 2018-11-13 Murata Manufacturing Co., Ltd. Magnetic core and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062424A (en) * 2008-09-05 2010-03-18 Toko Inc Manufacturing method of electronic component
WO2014024976A1 (en) * 2012-08-10 2014-02-13 株式会社村田製作所 Magnetic material composition and coil component
KR20150021951A (en) * 2012-08-10 2015-03-03 가부시키가이샤 무라타 세이사쿠쇼 Magnetic material composition and coil component
JPWO2014024976A1 (en) * 2012-08-10 2016-07-25 株式会社村田製作所 Magnetic composition and coil component
WO2014061670A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Laminated coil device and manufacturing method therefor
US9236181B2 (en) 2012-10-19 2016-01-12 Murata Manufacturing Co., Ltd. Laminated coil component and method for producing same
US10128041B2 (en) 2015-09-01 2018-11-13 Murata Manufacturing Co., Ltd. Magnetic core and method for producing the same

Similar Documents

Publication Publication Date Title
KR100307195B1 (en) Composite magnetic material and process for producing the same
JP4452240B2 (en) Soft magnetic composite powder and method for producing the same, and method for producing soft magnetic compact
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP6256635B1 (en) Inductor element and method of manufacturing inductor element
JP2001011563A (en) Manufacture of composite magnetic material
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
US6179894B1 (en) Method of improving compressibility of a powder and articles formed thereby
JPH04346204A (en) Compound material and manufacture thereof
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JPH01318213A (en) Inductance component and manufacture thereof
JP2017224717A (en) Soft magnetic metal powder, soft magnetic metal sintered compact, and inductor type electronic component
JPS61152004A (en) Iron core
JP2017034069A (en) Powder magnetic core
JP2002231518A (en) Soft magnetic powder and dust core formed thereof
JPH0547563A (en) Inductor and manufacture thereof
JPS62232103A (en) Fe base amorphous dust core and manufacture thereof
JPH06204021A (en) Composite magnetic material and its manufacture
JPH06236808A (en) Composite magnetic material and its manufacture
JP2018168402A (en) Powder for magnetic core and method for manufacturing powder magnetic core
JP2002141213A (en) Dust core
JPH10270226A (en) Powder-molded magnetic core and manufacture therefor
KR100299324B1 (en) A alloy powder core and the manufactureing method thereof
JPH0374811A (en) Ferrite magnetic material