JPH01318208A - Cylindrical multipole magnet constituting body - Google Patents

Cylindrical multipole magnet constituting body

Info

Publication number
JPH01318208A
JPH01318208A JP15086888A JP15086888A JPH01318208A JP H01318208 A JPH01318208 A JP H01318208A JP 15086888 A JP15086888 A JP 15086888A JP 15086888 A JP15086888 A JP 15086888A JP H01318208 A JPH01318208 A JP H01318208A
Authority
JP
Japan
Prior art keywords
magnet
rare
magnetic
permanent magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15086888A
Other languages
Japanese (ja)
Inventor
Seiji Miyazawa
宮沢 清治
Kenichi Endo
健一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15086888A priority Critical patent/JPH01318208A/en
Publication of JPH01318208A publication Critical patent/JPH01318208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magnetic pole position, magnet force strength, and magnetic pole width by melting and casting an alloy which basically consists of a rare- earth element, a transition metal, and boron, covering it with a soft magnetic material or a material used being attached to a magnet, and using a rare-earth magnet subjected to hot processing and heat treatment are performed. CONSTITUTION:With a permanent magnet 201, an alloy which basically consists of a rare-earth element, a transition metal, and boron is melted and cast, a casted ingot is covered with a carbon steel for machine construction which is a general soft magnetic material, and then it is subject to hot processing at 500 deg.C or more. After that, heat treating is performed at 250 deg.C or more and the produced rare-earth magnet is drilled and a metal axis 205 is entered. Then, the soft magnetic material covering the casted ingot is cut and used in reference to this metal axis 205. The permanent magnet 201 is used by providing an 8-pole multiple-pole magnetization on the periphery with a magnetizing yoke. In this rare-earth magnet, the peak value reaches 950 Gausses and a required magnetic force can be obtained. Thus, magnetic pole position, magnetic force strength, and magnetic pole width can be obtained easily.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は円柱状多極磁石構成体に関り、より詳細には円
周面に4極以上の磁極を有する特に複写機用マグネット
ロール等に使用される円柱状多極磁石構成体に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a cylindrical multipolar magnet structure, and more particularly to a magnetic roll for a copying machine having four or more magnetic poles on a circumferential surface. The present invention relates to a cylindrical multipolar magnet structure used for.

[従来の技術] 従来の円柱状多極磁石構成体は、通常アルミニウムやス
テンレス等の非磁性金属よりなる筒状カバー内に円柱状
あるいは棒状の永久磁石を配置し、円周面に4極以上の
磁極が得られるように構成されており、第3図の断面図
に示すように永久磁石201に非磁性金属筒状カバー2
02で覆った構造となっている。
[Prior Art] A conventional cylindrical multi-pole magnet structure has a cylindrical or rod-shaped permanent magnet arranged inside a cylindrical cover made of non-magnetic metal such as aluminum or stainless steel, and has four or more poles on the circumferential surface. As shown in the cross-sectional view of FIG.
It has a structure covered with 02.

永久磁石201は、一般にフエライトプラマグと呼ばれ
ている永久磁石などを用い、要求仕様側に必要な磁極を
必要な分布になるよう着磁していた。
The permanent magnet 201 is a permanent magnet generally called a ferrite plastic magnet, and is magnetized so that the required magnetic poles are distributed according to the required specifications.

ところがフエライトプラマグは一般的に磁気特性が低く
、着磁において取り出せる磁力の強さを調整することは
限度が有った。
However, ferrite plastic mags generally have low magnetic properties, and there is a limit to the ability to adjust the strength of the magnetic force that can be extracted during magnetization.

そこで第4図の断面図に示すように異形の、特定方向に
強い磁力を取り出せる異方性永久磁石203を用い磁石
支持体204により非磁性金属筒状カバー202内に入
れ、所定の磁極が所定の強さで得れるようにして使用す
るものもあった。
Therefore, as shown in the cross-sectional view of FIG. 4, an anisotropic permanent magnet 203 of an irregular shape that can extract strong magnetic force in a specific direction is placed inside the non-magnetic metal cylindrical cover 202 by a magnet support 204, and a predetermined magnetic pole is set in a predetermined position. Some were used to obtain strength.

[発明が解決しようとする課題] しかしながら、これら従来の技術においては、一体の永
久磁石では必要量の磁力を取り出すには限界が有り、ま
た異形の異方性永久磁石を組み合わせて使用するには数
多くの永久磁石を揃えなければならず繁雑で、しかも組
み立て費が余計にかかるなど問題であった。
[Problems to be Solved by the Invention] However, in these conventional techniques, there is a limit in extracting the necessary amount of magnetic force with a single permanent magnet, and it is difficult to use a combination of irregularly shaped anisotropic permanent magnets. This was a problem because it required a large number of permanent magnets to be assembled, which was complicated and required additional assembly costs.

本発明は以上の従来技術の問題点を解決するものであり
、その目的とするところは、奇数極の製作も含めて磁極
位置、磁力強さ、磁極幅等が容易にかつ安価に、任意に
得られる円柱状多極磁石構成体を提供するところにある
The present invention solves the problems of the prior art described above, and its purpose is to easily and inexpensively adjust the magnetic pole position, magnetic strength, magnetic pole width, etc., including the production of odd number of poles. The object of the present invention is to provide a cylindrical multipolar magnet structure obtained.

[課題を解決するための手段] 本発明の円周状に4極以上の磁極を有する円柱状多極磁
石構成体は、磁石として希土類元素(但しイツトリウム
を含む)と遷移金属、及びボロンを基本成分とする合金
を溶解、鋳造し、ついで鋳造インゴットを軟磁性体ある
いは磁石と接合して使う材料で覆う、または少なくとも
前記基本成分から成る合金を溶解し、軟磁性体あるいは
磁石と接合して使う材料でできた鋳型に鋳造し、更に鋳
造インゴットを覆った軟磁性体あるいは磁石と接合して
使う材料または、鋳型ごと500℃以上で熱間加工を施
し、その後250℃以上の温度で熱処理を行い製造され
た希土類磁石を使用したことを特徴とする。
[Means for Solving the Problems] The cylindrical multipolar magnet structure having four or more circumferential magnetic poles of the present invention is based on rare earth elements (including yttrium), transition metals, and boron as magnets. Melting and casting the alloy as a component, then covering the cast ingot with a material used in conjunction with a soft magnetic material or magnet, or melting an alloy consisting of at least the above basic components and using it in conjunction with a soft magnetic material or magnet. The material is cast into a mold made of a material, and then the material used is bonded to a soft magnetic material or magnet that covers the cast ingot, or the entire mold is hot worked at a temperature of 500°C or higher, and then heat treated at a temperature of 250°C or higher. It is characterized by the use of manufactured rare earth magnets.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

〔実施例1〕 第1図の断面図において円柱状多極磁石構成体は永久磁
石201、非磁性金属筒状カバー202、金属製軸20
5よりなる。
[Example 1] In the cross-sectional view of FIG.
Consists of 5.

永久磁石201は、希土類元素(但しイツトリウムを含
む)と遷移金属、及びボロンを基本成分とする合金を溶
解、鋳造し、ついで鋳造インゴットを一般的な軟磁性体
である機械構造用炭素鋼で覆い、500℃以上で熱間加
工を施し、その後250℃以上の温度で熱処理を行い製
造された希土類磁石を穴明は加工して金属製軸205を
入れ、この金属製軸205を基準にして鋳造インゴット
を覆った軟磁性材料を削り落として使用した。
The permanent magnet 201 is made by melting and casting an alloy whose basic components are rare earth elements (including yttrium), transition metals, and boron, and then covering the cast ingot with carbon steel for mechanical structures, which is a general soft magnetic material. A rare earth magnet manufactured by hot working at a temperature of 500° C. or higher and then heat treatment at a temperature of 250° C. or higher is machined, a metal shaft 205 is inserted, and the metal shaft 205 is used as a reference for casting. The soft magnetic material covering the ingot was scraped off.

永久磁石201は、着磁ヨークによりその円周上に8極
の多極着磁を施して使用した。
The permanent magnet 201 was used by being magnetized with eight poles on its circumference by a magnetizing yoke.

市販のガウスメーターとホールプローブにより非磁性金
属筒状カバー202の上から永久磁石201を回転させ
表面に取り出すことが可能な磁力を測定をした。
The permanent magnet 201 was rotated from above the non-magnetic metal cylindrical cover 202 using a commercially available Gauss meter and a Hall probe, and the magnetic force that could be taken out to the surface was measured.

それによると従来技術によるフエライトプラマグを用い
た円柱状多極磁石構成体ではピーク値で650ガウスで
あったものが、本発明の希土類磁石を使用した円柱状多
極磁石構成体では、ピーク値で950ガウスあり必要の
磁力を取り出すことができた。
According to the results, the peak value of the cylindrical multipolar magnet structure using ferrite plastic magnets according to the prior art was 650 Gauss, but the peak value of the cylindrical multipolar magnet structure using the rare earth magnet of the present invention was 650 Gauss. It was 950 gauss and was able to extract the necessary magnetic force.

〔実施例2〕 第2図の断面図において円柱状多極磁石構成体は永久磁
石201、非磁性金属筒状カバー202、金属製軸20
5などよりなる。
[Example 2] In the cross-sectional view of FIG. 2, the cylindrical multipolar magnet structure includes a permanent magnet 201, a non-magnetic metal cylindrical cover 202, and a metal shaft 20.
Consists of 5 etc.

永久磁石201は、希土類元素(但しイツトリウムを含
む)と遷移金属、及びボロンを基本成分とする永久磁石
の少なくとも、前記基本成分から成る合金を溶解し、磁
石と接合して使う非磁性材料でできた鋳型に鋳造し、更
に鋳造インゴットを鋳型ごと500℃以上で熱間加工を
施し、その7&250℃以上の温度で熱処理を行い製造
した希土類磁石を使用した。
The permanent magnet 201 is made of a non-magnetic material that is used by melting an alloy consisting of at least the basic components of a rare earth element (including yttrium), a transition metal, and boron, and bonding it to the magnet. A rare earth magnet was used, which was produced by casting in a mold, then hot working the cast ingot together with the mold at a temperature of 500°C or higher, and then heat-treating the ingot at a temperature of 7°C or higher.

このようにして製造された希土類磁石の中央部の軟磁性
体材料に穴加工をして、金属製軸205を打ち込み、必
要部分に非磁性材料よりなる鋳型材の残り206を残す
ように外周を切削加工した。
A hole is drilled in the soft magnetic material at the center of the rare earth magnet manufactured in this way, and a metal shaft 205 is driven into it, and the outer periphery is cut so as to leave the rest of the mold material 206 made of non-magnetic material in the required area. Machined.

以上のようにして造った円柱状多極磁石構成体の表面に
5極の異形状の分布を持つ磁極が取り出せるように着磁
ヨークにより多極着磁を行ない、市販のガウスメーター
とホールプローブにより測定したところ必要な位置に必
要量の磁力が分布した磁極となり、要求仕様を満足する
もので有った。
Multi-pole magnetization was carried out using a magnetizing yoke so that five magnetic poles having an irregularly-shaped distribution could be extracted from the surface of the cylindrical multi-polar magnet structure produced as described above, and using a commercially available Gauss meter and Hall probe. The measurements showed that the magnetic poles had the required amount of magnetic force distributed in the required positions, and satisfied the required specifications.

[発明の効果] 以上述べたように本発明の、円周状に4極以上の磁極を
有する円柱状多極磁石構成体において、前記永久磁石と
して希土類元素(但しイツトリウムを含む)と遷移金属
、及びボロンを基本成分とする合金を溶解、鋳造し、つ
いで鋳造インゴットを軟磁性体あるいは磁石と接合して
使゛う材料で覆う、または少なくとも前記基本成分から
成る合金を溶解し、軟磁性体あるいは磁石と接合して使
う材料でできた鋳型に鋳造し、更に鋳造インゴットを覆
った軟磁性体あるいは磁石と接合して使う材料または、
鋳型ごと500℃以上で熱間加工を施し、そのi&25
0℃以上の温度で熱処理を行い製造された希土類磁石を
使用したことにより、奇数極の製作も含めて磁極位置、
磁力強さ、磁極幅等が容易にかつ安価に得られるという
効果をもたらすものである。
[Effects of the Invention] As described above, in the cylindrical multipolar magnet structure of the present invention having four or more circumferential magnetic poles, the permanent magnet contains rare earth elements (including yttrium), transition metals, melting and casting an alloy whose basic components are boron and then covering the cast ingot with a soft magnetic material or a material to be used in conjunction with a magnet, or by melting an alloy consisting of at least the above-mentioned basic components, A soft magnetic material that is cast in a mold made of a material that is used in conjunction with a magnet, and then covered with a cast ingot, or a material that is used in conjunction with a magnet, or
The entire mold is hot-worked at over 500℃, and the i&25
By using rare earth magnets manufactured through heat treatment at temperatures above 0°C, the magnetic pole position, including the production of odd number poles,
This brings about the effect that magnetic force strength, magnetic pole width, etc. can be easily and inexpensively obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す断面図。 第3図、第4図は従来例を示す断面図。 201・・永久磁石 202・・非磁性金属筒状カバー 203・・異形の永久磁石 204・・磁石支持体  205・・金属製軸206・
・金型材の残り 一以上− 第2図 第4図
FIGS. 1 and 2 are cross-sectional views showing embodiments of the present invention. FIGS. 3 and 4 are sectional views showing conventional examples. 201... Permanent magnet 202... Non-magnetic metal cylindrical cover 203... Irregular permanent magnet 204... Magnet support 205... Metal shaft 206.
・One or more remaining mold materials - Fig. 2 Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)円周状に4極以上の磁極を有する円柱状多極磁石
構成体において、前記永久磁石として希土類元素(但し
イットリウムを含む)と遷移金属、及びボロンを基本成
分とする合金を溶解、鋳造し、ついで鋳造インゴットを
軟磁性体、あるいは磁石と接合して使う材料で覆い、5
00℃以上で熱間加工を施し、その後250℃以上の温
度で熱処理を行い製造された希土類磁石を使用したこと
を特徴とする円柱状多極磁石構成体。
(1) In a cylindrical multipolar magnet structure having four or more magnetic poles circumferentially, as the permanent magnet, an alloy containing a rare earth element (including yttrium), a transition metal, and boron as basic components is melted, The cast ingot is then covered with a soft magnetic material or a material used for bonding with a magnet.
A cylindrical multipolar magnet structure characterized by using a rare earth magnet produced by hot working at a temperature of 00°C or higher and then heat treatment at a temperature of 250°C or higher.
(2)円周状に4極以上の磁極を有する円柱状多極磁石
構成体において、前記永久磁石として希土類元素(但し
イットリウムを含む)と遷移金属、及びボロンを基本成
分とする永久磁石の少なくとも、前記基本成分から成る
合金を溶解し、軟磁性体、あるいは磁石と接合して使う
材料でできた鋳型に鋳造し、更に鋳造インゴットを鋳型
ごと500℃以上で熱間加工を施し、その後250℃以
上の温度で熱処理を行い製造された希土類磁石を使用し
たことを特徴とする円柱状多極磁石構成体。
(2) In a cylindrical multipolar magnet structure having four or more magnetic poles circumferentially, the permanent magnet is at least one of a permanent magnet whose basic components are a rare earth element (including yttrium), a transition metal, and boron. The alloy consisting of the above basic components is melted and cast into a mold made of a soft magnetic material or a material used for bonding with a magnet, and the cast ingot is then hot worked at 500°C or higher together with the mold, and then heated at 250°C. A cylindrical multipolar magnet structure characterized by using a rare earth magnet produced by heat treatment at a temperature above.
JP15086888A 1988-06-17 1988-06-17 Cylindrical multipole magnet constituting body Pending JPH01318208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15086888A JPH01318208A (en) 1988-06-17 1988-06-17 Cylindrical multipole magnet constituting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15086888A JPH01318208A (en) 1988-06-17 1988-06-17 Cylindrical multipole magnet constituting body

Publications (1)

Publication Number Publication Date
JPH01318208A true JPH01318208A (en) 1989-12-22

Family

ID=15506136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15086888A Pending JPH01318208A (en) 1988-06-17 1988-06-17 Cylindrical multipole magnet constituting body

Country Status (1)

Country Link
JP (1) JPH01318208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087950A (en) * 2011-10-14 2013-05-13 Boeing Co:The Apparatus and method utilizing magnetic force to apply force to material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087950A (en) * 2011-10-14 2013-05-13 Boeing Co:The Apparatus and method utilizing magnetic force to apply force to material

Similar Documents

Publication Publication Date Title
EP1193724A3 (en) Magnet consisting of an electromagnet and a permanent magnet, and eddy current retarder
EP0994555A3 (en) Subsynchronous reluctance electrical machine
KR940000524B1 (en) Motor
JPH11206052A (en) Permanent magnet type rotor for small rotating machine
JPS5473217A (en) Movable coil type arc motor
JPH01318208A (en) Cylindrical multipole magnet constituting body
GB2057194A (en) A method of producing a permanent anisotropic magnet
US5236518A (en) Variable reluctance sensor with offset magnets having improved magnetic flux member
US7232495B2 (en) Method of magnetizing rare-earth magnet and rare-earth magnet
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JPH05144627A (en) Radial anisotropic ring magnet and manufacture thereof
JPS6214410A (en) Manufacture of cylindrical magnet
JPS56136264A (en) Electromagnetic stirring method and its device
JPS628506A (en) Radial direction bipolar magnet and apparatus for manufacturing same
JPS55165607A (en) Anisotropic magnet
JPH06140248A (en) Magnetizing method for permanent magnet rotor
ATE330353T1 (en) ELECTROMAGNETIC HYSTERESIS UNIT
JP2576864B2 (en) Magnetization method
JPS61116956A (en) Rotor for motor of magnet rotation type
RU1793485C (en) Work-coil for magnetization of multipole rotor magnets
Chin et al. Manufacturing of Fe--Cr--Co Permanent Magnet by Rolling--Aging
JPS5775410A (en) Manufacture of multipolar magnet
JPS6284898A (en) Manufacture of two-pole magnet in diameter direction
JPH0729726A (en) Manufacture of magnet roll
JP2002346413A (en) Ball mill device