JPH0131729B2 - - Google Patents

Info

Publication number
JPH0131729B2
JPH0131729B2 JP56034885A JP3488581A JPH0131729B2 JP H0131729 B2 JPH0131729 B2 JP H0131729B2 JP 56034885 A JP56034885 A JP 56034885A JP 3488581 A JP3488581 A JP 3488581A JP H0131729 B2 JPH0131729 B2 JP H0131729B2
Authority
JP
Japan
Prior art keywords
signal
transfer
charge
tap
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56034885A
Other languages
Japanese (ja)
Other versions
JPS57150216A (en
Inventor
Tadayoshi Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3488581A priority Critical patent/JPS57150216A/en
Publication of JPS57150216A publication Critical patent/JPS57150216A/en
Publication of JPH0131729B2 publication Critical patent/JPH0131729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

【発明の詳細な説明】 本発明は電荷転送素子(Charge−Transfer
Device、以下簡単にCTDという)等の半導体遅
延線を用いた自動等化器に関する。さらに詳しく
は伝送路中で符号間干渉によつて歪んだ信号波形
を元の波形に復元するため、信号の遅延を非破壊
検出を行うタツプ付き半導体遅延線、各遅延信号
および対応する重み係数とを互いにかけ算する複
数個の乗算器、該乗算器の出力信号を互いにかけ
算する加算器で構成された非巡回形フイルタ、重
み係数の修正に必要な重み係数修正信号を演算す
る回路および該重み係数の修正と記憶を行なう重
み係数回路より構成される自動等化器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge-transfer device.
This invention relates to automatic equalizers using semiconductor delay lines such as devices (hereinafter simply referred to as CTD). In more detail, in order to restore the signal waveform distorted by intersymbol interference in the transmission path to the original waveform, we will introduce a semiconductor delay line with a tap for non-destructive detection of signal delay, each delayed signal and the corresponding weighting coefficient. an acyclic filter composed of a plurality of multipliers that multiply each other, an adder that multiplies the output signals of the multipliers, a circuit that calculates a weighting coefficient correction signal necessary for modifying the weighting coefficient, and the weighting coefficient. The present invention relates to an automatic equalizer composed of a weighting coefficient circuit that corrects and stores .

従来のシリアルイン/パラレルアウト(以後
SI/POと記す)形CTD半導体遅延線を用いた自
動等化器(以下簡単に従来の自動等化器という)
の構成を第1図を参照して説明する。1はSI/
PO形CTD半導体遅延線、2は入力電圧を信号電
荷に変換する該CTD1の入力部、3−k(k=
1、2、…N)は該信号電荷一定周期Tだけ遅延
させる転送段、4−k(k=1、2、…N)は該
信号電荷を非破壊的に検出し、電圧信号xk(k=
1、2、…N)に変換するタツプ回路、5−k
(k=1、2、…N)はタツプ端子である。6−
k(k=1、2、…N)は該xkと重み係数wk(k
=1、2、…N)を互いにかけ算する乗算器、7
は該乗算器6−kからの出力信号、即ちxkとwk
との乗算結果を加え合わせる加算器で、該加算器
7の出力yが該従来の自動等化器の出力信号とな
る。以上の構成要素で非巡回形フイルタが構成さ
れることは周知の通りである。8は該自動等化器
の出力端子、9は外部より与える既知の信号aと
該出力信号yとの差、即ち誤差信号eを得る減算
器、10は該誤差信号eに減衰係数uを掛け算す
る乗算器である。11−k(k=1、2、…N)
は該xkとueを互いに掛け算する乗算器、12−
k(k=1、2、…N)は該wkを記憶すると共
に、次の周期に用いる新しい重み係数を算出し保
持する重み回路である。次に該従来の自動等化器
の動作を第1図を用いて簡単に説明する。本来パ
ルス状のデジタル信号は伝播中に伝送路で符号間
干渉を受けて、受信端に到達した時には大きな歪
を生じている。自動等化器は該歪を除去し、元の
信号を復元するフイルタである。該歪んだ信号は
入力部2に印加された後一定周期Tでサンプルさ
れ、同時に電荷に変換される。該電荷は該一定周
期T毎に該転送段3−k中で1段ずつ転送され、
タツプ回路4−kで非破壊的に検出され、再び電
圧信号xkに変換され、タツプ端子5−kより得
られる。該乗算器6−kで該信号xkは重み回路
12−kの出力、即ち重み係数wkと乗算され、
乗算結果xk・wk(k=1、2、…N)は該加算
器7で加算され、出力yとして端子8より取り出
される。該出力信号yが元の信号に完全に復元さ
れているか否かは、該信号aとの比較によつてな
される。該減算器9の出力信号、即ち誤差信号e
が零であれば、yは元の信号に復元されている。
反対に該eが零でない場合、eに該減衰係数uを
乗算しさらに各タツプ端子5−kの出力xkを該
乗算器11−kで乗算する。次に該重み回路12
−kにて該重み係数wkより該乗算結果u・e・
xkを減ずることにより次の一定周期T後の新し
い重み係数を算出し、保持する。
Conventional serial in/parallel out (hereafter
SI/PO) type automatic equalizer using a CTD semiconductor delay line (hereinafter simply referred to as a conventional automatic equalizer)
The configuration will be explained with reference to FIG. 1 is SI/
PO type CTD semiconductor delay line, 2 is the input part of the CTD 1 that converts input voltage into signal charge, 3-k (k=
1, 2,...N) is a transfer stage that delays the signal charge by a fixed period T, and 4-k (k=1, 2,...N) non-destructively detects the signal charge and transfers the voltage signal xk(k =
1, 2,...N) tap circuit, 5-k
(k=1, 2, . . . N) are tap terminals. 6-
k (k=1, 2,...N) is the xk and the weighting coefficient wk(k
= 1, 2,...N) multiplier, 7
are the output signals from the multiplier 6-k, i.e. xk and wk
The output y of the adder 7 becomes the output signal of the conventional automatic equalizer. It is well known that the above-mentioned components constitute an acyclic filter. 8 is an output terminal of the automatic equalizer, 9 is a subtracter that obtains the difference between a known signal a given from the outside and the output signal y, that is, an error signal e, and 10 is a multiplier for multiplying the error signal e by an attenuation coefficient u. It is a multiplier that performs 11-k (k=1, 2,...N)
is a multiplier that multiplies xk and ue by each other, 12-
k (k=1, 2, . . . N) is a weighting circuit that stores the wk and also calculates and holds a new weighting coefficient to be used in the next cycle. Next, the operation of the conventional automatic equalizer will be briefly explained using FIG. Essentially, pulsed digital signals are subject to intersymbol interference on the transmission path during propagation, resulting in large distortions when they reach the receiving end. An automatic equalizer is a filter that removes the distortion and restores the original signal. After the distorted signal is applied to the input section 2, it is sampled at a constant period T and simultaneously converted into an electric charge. The charge is transferred one stage at a time in the transfer stage 3-k at each constant period T,
It is non-destructively detected by the tap circuit 4-k, converted again into a voltage signal xk, and obtained from the tap terminal 5-k. In the multiplier 6-k, the signal xk is multiplied by the output of the weighting circuit 12-k, that is, the weighting coefficient wk,
The multiplication results xk·wk (k=1, 2, . . . N) are added by the adder 7, and taken out from the terminal 8 as an output y. Whether the output signal y has been completely restored to the original signal is determined by comparing it with the signal a. The output signal of the subtracter 9, that is, the error signal e
If is zero, y has been restored to the original signal.
On the other hand, if e is not zero, e is multiplied by the attenuation coefficient u, and then the output xk of each tap terminal 5-k is multiplied by the multiplier 11-k. Next, the weight circuit 12
−k from the weighting coefficient wk, the multiplication result u・e・
By subtracting xk, a new weighting coefficient after the next fixed period T is calculated and held.

以上述べた信号処理を繰り返し、該差信号eが
零かあるいは極めて小さくなり、該重み係数wk
が修正され、一定かあるいはほぼ一定となつた時
に、該出力信号yは完全に、あるいはほぼ完全に
元のパルス状の信号に復元されたことになる。
By repeating the signal processing described above, the difference signal e becomes zero or extremely small, and the weighting coefficient wk
When y is corrected and becomes constant or almost constant, the output signal y has been completely or almost completely restored to the original pulse-like signal.

次に従来の自動等化器に用いられていたSI/
PO形CTD半導体遅延線の具体的な構成を説明す
る。従来のSI/PO形CTDの代表的なものにタツ
プ付きバケツトブリゲードデバイス(Bucket−
Brigade Device、以下簡単にBBDという)とタ
ツプ付き電荷結合素子(Charge−Coupled
Device、以下簡単のためCCDという)がある。
第2図は該タツプ付きBBDの一転送段、一タツ
プ回路およびタツプ端子を示したものである。同
図において、3−k,4−k,5−kはそれぞれ
第k番目の転送段、第k番目のタツプ回路、第k
番目のタツプ端子で、それぞれ第1図に示した同
一番号の構成要素に対応する。101と102は
それぞれトランジスタと静電容量で共通配線10
3に接続されている。104と105はそれぞれ
トランジスタと静電容量で共通配線106に接続
されている。該配線103および106へは通常
周期的にオン−オフし、かつ互いに位相が180度
異なる2個の電圧パルスがそれぞれ印加されてい
る。今配線103および106の印加パルスがそ
れぞれ高レベルおよび低レベルの時、静電容量1
02に信号電荷が蓄積されているとする。次に配
線103の印加パルスが低レベルに戻ると同時
に、配線106へ印加されているパルスが高レベ
ルとなると、該トランジスタ104が導通して、
該静電容量102に蓄積されていた信号電荷は静
電容量105へ転送される。従つて、該トランジ
スタ104と該静電容量の結合点107に電位変
化が生ずる。108は該結合点107の電位変化
を検出するためのトランジスタ、109は該トラ
ンジスタ108の負荷として用いられるトランジ
スタである。通常108,109はMOSトラン
ジスタが用いられる。端子110は直流電源に接
続されている。
Next, the SI/
The specific configuration of the PO type CTD semiconductor delay line will be explained. A typical conventional SI/PO type CTD is a bucket brigade device with a tap.
Brigade Device (hereinafter simply referred to as BBD) and Charge-Coupled Device (BBD) with a tap.
Device (hereinafter referred to as CCD for simplicity).
FIG. 2 shows one transfer stage, one tap circuit, and tap terminal of the BBD with taps. In the figure, 3-k, 4-k, and 5-k are the k-th transfer stage, the k-th tap circuit, and the k-th transfer stage, respectively.
The tap terminals correspond to the same numbered components shown in FIG. 1, respectively. 101 and 102 are transistors and capacitors, respectively, and common wiring 10
Connected to 3. 104 and 105 are connected to a common wiring 106 through transistors and capacitances, respectively. Two voltage pulses, which are normally turned on and off periodically and whose phases are 180 degrees different from each other, are applied to the wirings 103 and 106, respectively. Now, when the applied pulses to the wirings 103 and 106 are at high level and low level, respectively, the capacitance is 1
Assume that signal charges are accumulated in 02. Next, when the pulse applied to the wiring 103 returns to a low level and at the same time the pulse applied to the wiring 106 becomes high, the transistor 104 becomes conductive.
The signal charges accumulated in the capacitor 102 are transferred to the capacitor 105. Therefore, a potential change occurs at the connection point 107 between the transistor 104 and the capacitance. 108 is a transistor for detecting a potential change at the coupling point 107, and 109 is a transistor used as a load of the transistor 108. Usually, MOS transistors are used for 108 and 109. Terminal 110 is connected to a DC power source.

第2図に示したタツプ付きBBDの重大欠点は
転送効率〔信号電荷が1個の蓄積部(第2図では
静電容量102)から次の蓄積部(第2図では静
電容量105)へ転送される時、転送された電荷
量に対するもとの電荷量との割り合いで、CTD
の性能を示す重要な指数である〕が極めて低い、
即ち、悪いこと、および転送雑音が非常に大きい
ことがあげられる。これはBBDの電荷転送モー
ドが不完全転送モードであることに起因してい
る。以上の理由により、該タツプ付きBBDは自
動等化器等、高精度の信号処理が必要とするシス
テムの応用としては適切ではない。
The major drawback of the BBD with taps shown in Fig. 2 is the transfer efficiency [signal charge is transferred from one storage section (capacitance 102 in Fig. 2) to the next storage section (capacitance 105 in Fig. 2)]. When transferred, the CTD is the ratio of the original charge to the transferred charge.
is an important index indicating the performance of
That is, it is bad and the transfer noise is very large. This is due to the fact that the charge transfer mode of the BBD is an incomplete transfer mode. For the above reasons, the tapped BBD is not suitable for application to systems that require high-precision signal processing, such as automatic equalizers.

従来のタツプ付きCTDのその他の構成として、
タツプ付きCCDを第3図に示す。ここでは信号
電荷の検出方法を、一例として、浮遊電極による
方法を述べる。第2図と同様、3−k,4−k,
5−kはそれぞれ第1図に示した構成要素3−
k,4−k,5−kとそれぞれ対応する。120
は半導体基板、121,122,123,124
は該半導体基板120の上に形成された絶縁膜
(図示していない)を介して、規則的に配列され
た第1相の電極、第2相の電極、第3相の電極、
浮遊電極(第4相の電極)である。125は該浮
遊電極124を周期的にプリセツトするためのト
ランジスタである。126,127,129は信
号電荷を転送するために必要な周期的にオン−オ
フするクロツクパルスを供給する配線、128と
130は直流電圧を供給する配線である。4−k
を構成する要素108,109,110は第2図
の同一番号の要素と全く同一の要素である。次に
該タツプ付きCCDの電荷の検出方法を概説する。
今、配線127の印加パルスが高レベルにあり、
該電極122直下の半導体基板120中に電位の
井戸に形成され、該電位の井戸に信号電荷が蓄積
されているとする。この時、配線129の印加パ
ルスが一時的に高レベルとなると、該トランジス
タ125が導通するので、該浮遊電極124は配
線130の直流電位レベルにセツトされ、該配線
129のパルスが低レベルへ戻つても、該浮遊電
極の電位は該配線130の該直流電位のレベルを
保持する。すなわち浮遊状態となり、該浮遊電極
124下の半導体基板120中に電位の井戸が形
成されている。次に配線127のパルスが低レベ
ルに戻ると該電極122直下の信号電荷は、該電
極123直下の該半導体基板120中に形成され
た電荷の通路を通つて、該浮遊電極124直下の
電位の井戸へ転送され、そこで蓄積される。従つ
て、該浮遊電極の電位は先にリセツトされた時の
直流レベル(配線130の直流レベル)より、該
信号電荷の量に比例した値だけ電位の変化を生ず
る。該電位の変化は該タツプ回路4−kにより検
出され、該タツプ端子5−kより外部へ導びかれ
る。
Other configurations of conventional CTDs with taps include:
Figure 3 shows a CCD with taps. Here, as an example of a signal charge detection method, a method using floating electrodes will be described. Similar to Figure 2, 3-k, 4-k,
5-k are the constituent elements 3- shown in FIG.
k, 4-k, and 5-k, respectively. 120
are semiconductor substrates, 121, 122, 123, 124
A first phase electrode, a second phase electrode, a third phase electrode, which are regularly arranged through an insulating film (not shown) formed on the semiconductor substrate 120,
This is a floating electrode (fourth phase electrode). 125 is a transistor for periodically presetting the floating electrode 124; Wirings 126, 127, and 129 supply clock pulses that are periodically turned on and off necessary for transferring signal charges, and wirings 128 and 130 supply DC voltage. 4-k
Elements 108, 109, and 110 constituting are exactly the same elements as the elements with the same numbers in FIG. Next, the method for detecting the charge of the CCD with taps will be outlined.
Now, the pulse applied to the wiring 127 is at a high level,
It is assumed that a potential well is formed in the semiconductor substrate 120 directly below the electrode 122, and signal charges are accumulated in the potential well. At this time, when the pulse applied to the wiring 129 temporarily becomes a high level, the transistor 125 becomes conductive, so the floating electrode 124 is set to the DC potential level of the wiring 130, and the pulse applied to the wiring 129 returns to a low level. However, the potential of the floating electrode remains at the level of the DC potential of the wiring 130. In other words, it is in a floating state, and a potential well is formed in the semiconductor substrate 120 below the floating electrode 124. Next, when the pulse of the wiring 127 returns to a low level, the signal charge immediately below the electrode 122 passes through the charge path formed in the semiconductor substrate 120 immediately below the electrode 123, and the potential immediately below the floating electrode 124 decreases. It is transferred to the well where it is accumulated. Therefore, the potential of the floating electrode changes from the DC level (DC level of the wiring 130) when it was previously reset by a value proportional to the amount of the signal charge. The change in potential is detected by the tap circuit 4-k and led to the outside from the tap terminal 5-k.

以上概略した浮遊電極形タツプ付きCCDの最
大の欠点は高速駆動が不可能なことである。従つ
て高帯域の信号処理を必要とするシステムへの応
用は全く不可能であるという欠点があつた。該タ
ツプ付きCCDの出力信号に生ずる歪を低レベル
に制限するためには、電荷の転送チヤネルとし
て、表面チヤネルを用いねばならない。ところが
表面チヤネルの電荷転送において、1つの電位の
井戸から次の電位の井戸への電荷の転送がほぼ終
了する転送過程の末期では、電荷の移動は拡散の
みに依存するため、高い周波数で駆動すると電荷
の取り残しが極めて高くなる。即ち、前述した転
送効率が極めて劣化するという重大な欠点があつ
た。一方、高速駆動において、転送効率の劣化を
防止するため、埋込みチヤネルを用いる必要があ
る。しかしこの場合前記タツプ出力の直線性が極
めてそこなわれるという欠点があつた。
The biggest drawback of the CCD with floating electrode taps outlined above is that it cannot be driven at high speed. Therefore, it has the disadvantage that it is completely impossible to apply it to systems requiring high-band signal processing. In order to limit the distortion occurring in the output signal of the tapped CCD to a low level, a surface channel must be used as a charge transfer channel. However, in surface channel charge transfer, at the end of the transfer process when the transfer of charge from one potential well to the next potential well is almost complete, charge movement depends only on diffusion, so driving at a high frequency The amount of charge left behind becomes extremely high. That is, there was a serious drawback in that the transfer efficiency described above was extremely degraded. On the other hand, in high-speed driving, it is necessary to use a buried channel in order to prevent deterioration of transfer efficiency. However, in this case, there was a drawback that the linearity of the tap output was severely impaired.

また従来のタツプ付きBBDをSI/PO形CTD半
導体遅延線として用いた従来の自動等化器は、該
タツプ付きBBDに起因する欠点、即ち、極めて
低い転送効率と大きな転送雑音、のため高い精度
の自動等化を行なうことができなかつた。さらに
表面チヤネル形タツプ付きCCDを遅延線として
用いた従来の自動等化器においては、該自動等化
器を高速駆動すると転送効率が極めて劣化するた
め、高帯域の自動等化には適用できなかつた。一
方、埋め込みチヤネル形タツプ付きCCDを用い
た自動等化器ではタツプ出力に大きな歪が生じ、
品質の高い自動等化が不可能であつた。
In addition, conventional automatic equalizers that use conventional tapped BBDs as SI/PO type CTD semiconductor delay lines have high precision due to drawbacks caused by tapped BBDs, namely extremely low transfer efficiency and large transfer noise. automatic equalization could not be performed. Furthermore, in conventional automatic equalizers that use a CCD with surface channel type taps as a delay line, the transfer efficiency deteriorates extremely when the automatic equalizer is driven at high speed, so it cannot be applied to high-band automatic equalization. Ta. On the other hand, an automatic equalizer using a CCD with an embedded channel type tap causes large distortion in the tap output.
High-quality automatic equalization was not possible.

本発明の目的は前記従来の自動等化器の欠点を
除去せした自動等化器を提供することにある。
An object of the present invention is to provide an automatic equalizer that eliminates the drawbacks of the conventional automatic equalizers.

本発明によれば電圧信号を信号電荷に変換する
入力部、該信号電荷を転送する埋込みチヤネル形
転送部および転送された該信号電荷を電圧信号に
変換する浮遊拡散層で構成されるタツプ回路より
構成された第1の電荷転送素子、第2の電荷転送
素子、…第N(Nは整数)の電荷転送素子の合計
N個の電荷転送素子を備え、該第1の電荷転送素
子の該転送部は信号電荷を一定期間だけ遅延させ
る転送段を1個備え、第2の電荷転送素子の該転
送部は該転送段を2個備え、…第N番目の電荷転
送素子の該転送部は該転送段をN個備え、各該電
荷転送素子の該各入力部を共通配線で接続し、各
該電荷転送素子が同一タイミングで駆動するタツ
プ付き半導体遅延線と、各該タツプ回路毎に設け
られ、かつ該タツプ回路の出力信号と重み係数を
互いにかけ算する第1の乗算器N個と、該乗算器
出力信号を加え合せる加算器と、加算結果を量子
化する比較器、加算結果と量子化結果との差を得
る減算器と、減算結果と減衰係数を互いにかけ算
する乗算器と、各タツプ回路毎に設けられ、かつ
該タツプ回路の出力信号と該乗算器の出力を互い
にかけ算する第2の乗算器N個と、各該タツプ回
路毎に設けられ、第2の乗算器の出力信号を積分
し、その結果を前記重み係数とする重み係数回路
とを備えていることを特徴とする自動等化器が得
られる。
According to the present invention, a tap circuit includes an input section that converts a voltage signal into a signal charge, an embedded channel type transfer section that transfers the signal charge, and a floating diffusion layer that converts the transferred signal charge into a voltage signal. A total of N charge transfer devices including a first charge transfer device, a second charge transfer device, an Nth (N is an integer) charge transfer device configured, and the transfer of the first charge transfer device is provided. The transfer section includes one transfer stage that delays the signal charge by a certain period of time, the transfer section of the second charge transfer element includes two transfer stages, and the transfer section of the N-th charge transfer element delays the signal charge by a certain period of time. N transfer stages are provided, each of the input parts of each of the charge transfer elements is connected by a common wiring, and each of the charge transfer elements is driven at the same timing, and a semiconductor delay line with a tap is provided for each of the tap circuits. , and N first multipliers that mutually multiply the output signals of the tap circuits and the weighting coefficients, an adder that adds the multiplier output signals, a comparator that quantizes the addition results, and a comparator that quantizes the addition results. a subtracter for obtaining the difference between the results, a multiplier for multiplying the subtraction result and the attenuation coefficient, and a second multiplier provided for each tap circuit and for multiplying the output signal of the tap circuit and the output of the multiplier. and a weighting coefficient circuit provided for each tap circuit, which integrates the output signal of the second multiplier and uses the result as the weighting coefficient. An equalizer is obtained.

前記本発明によれば高転送効率、高直線性を備
えた小形で集積化可能な自動等化器が実現され、
かつ高帯域の自動等化を行なうことができる。
According to the present invention, a compact automatic equalizer with high transfer efficiency and high linearity that can be integrated is realized,
In addition, high-band automatic equalization can be performed.

以下本発明について図面を用いて説明する。 The present invention will be explained below with reference to the drawings.

第4図は本発明の自動等化器の一実施構成例を
示す。同図において20はタツプ付き半導体遅延
線でN個(Nは整数)の独立したCTDで構成さ
れている。21−k(k=1、2、…N)は電圧
信号を信号電荷に変換する各CTDの入力部、2
2−k(k=1、2、…N)は該信号電荷を転送
する転送部、23−k(k=1、2、…N)は該
信号電荷を検出し、電圧信号xk(k=1、2、…
N)に再び変換するタツプ回路、24−k(k=
1、2、…N)はタツプ端子である。25は該信
号電荷を一定周期Tだけ遅延させる転送段で、該
転送部22−kはk個の該転送段25より構成さ
れる。従つて、21−k,22−k,23−kで
構成されるk番目のCTDは入力信号を該一定周
期Tのk倍だけ遅延させ、該出力信号xkをタツ
プ端子24−kより該タツプ付き半導体遅延線2
0の外部へ導びく。26および27はそれぞれ本
発明の自動等化器の入力端子および出力端子であ
る。28−k(k=1、2、…N)は該xkと重み
係数wk(k=1、2、…N)を互いにかけ算する
第1の乗算器、29は該乗算器28−kの出力信
号、即ち、xkとwkの乗算結果を加え合わせる加
算器で、該加算器29の出力信号yが本発明の自
動等化器の出力信号となる。130は該出力信号
yと外部より供給される基準電位と比較して出力
aを与える比較器、131は該yと該aの差、即
ち、誤差信号eを得る減算器、132は該eに減
衰係数uを掛け算する乗算器である。なお該13
0,131,132で構成される回路をここでは
検出回路と呼ぶ。133−k(k=1、2、…N)
は該xkと該第2の乗算器32の出力信号を掛け
算する第2の乗算器である。134−k(k=1、
2、…N)は該wkを記憶すると共に、該一定期
間T後が次の周期に用いる新しい重み係数を算出
し、これを記憶する重み係数回路で、通常積分器
等が用いられる。
FIG. 4 shows an example of the configuration of an automatic equalizer according to the present invention. In the figure, reference numeral 20 denotes a semiconductor delay line with taps, which is composed of N (N is an integer) independent CTDs. 21-k (k=1, 2,...N) is the input part of each CTD that converts the voltage signal into signal charge, 2
2-k (k=1, 2,...N) is a transfer unit that transfers the signal charges, and 23-k (k=1, 2,...N) detects the signal charges and generates a voltage signal xk (k= 1, 2,...
24-k (k=
1, 2,...N) are tap terminals. Reference numeral 25 denotes a transfer stage that delays the signal charge by a certain period T, and the transfer section 22-k is composed of k transfer stages 25. Therefore, the k-th CTD composed of 21-k, 22-k, and 23-k delays the input signal by k times the constant period T, and sends the output signal xk from the tap terminal 24-k to the tap terminal 24-k. Semiconductor delay line 2 with
Lead to the outside of 0. 26 and 27 are the input terminal and output terminal of the automatic equalizer of the present invention, respectively. 28-k (k=1, 2,...N) is a first multiplier that multiplies the xk and the weighting coefficient wk (k=1, 2,...N), and 29 is the output of the multiplier 28-k. The output signal y of the adder 29 is an adder that adds together the multiplication results of the signals, ie, xk and wk, and the output signal y of the adder 29 becomes the output signal of the automatic equalizer of the present invention. 130 is a comparator that compares the output signal y with a reference potential supplied from the outside and provides an output a; 131 is a subtracter that obtains the difference between y and a, that is, an error signal e; 132 is a subtracter that obtains the error signal e; This is a multiplier that multiplies the attenuation coefficient u. In addition, 13
The circuit composed of 0, 131, and 132 is called a detection circuit here. 133-k (k=1, 2,...N)
is a second multiplier that multiplies the output signal of the second multiplier 32 by the xk. 134-k (k=1,
2,...N) is a weighting coefficient circuit that stores the wk, calculates a new weighting coefficient to be used in the next cycle after the certain period T, and stores this, and usually an integrator or the like is used.

次に本自動等化器の主要部であるタツプ付き半
導体遅延線の具体的な構造を説明する。第5図は
第3図に示した各CTDの具体的な構造を示した
もので、信号電荷の進行方向と平行に切断した断
面図である。ここでは一例として、転送段が2個
で2相駆動の埋め込みチヤネル形CCDを用いて
説明する。30は半導体基板、31は該半導体基
板30と反対の導電形不純物を該半導体基板に拡
散して形成した埋め込みチヤネル層、32は該半
導体基板30と同一の導電形でかつ濃度の高い不
純物層のバリア領域である。33は信号電荷を注
入するための拡散層、34は信号電荷を集めるた
めの拡散層で、いずれも該埋め込み層31と同一
の導電形でかつ該埋め込み層31より濃度の高い
不純物拡散層である。35,36はいずれも入力
電極で、電荷平衡法による電荷注入方法を用いた
場合、いずれか一方の電極に直流電位を、他方の
電極には直流電位重畳された信号電圧を、それぞ
れ印加する。なおこの時、該拡散層33へは周期
的にオン−オフするパルス電圧を印加する。37
A,37Bは第1相の転送電極、38A,38B
は第2相の転送電極であつて、該電極37A,3
7B,38A,38Bで第1転送段を形成する。
同様に39A,39Bは第1相の転送電極、40
A,40Bは第2相の転送電極で、これら4個の
電極で第2転送段を形成する。電極37A,37
B,39A,39Bは共通配線41により、電極
38A,38B,40A,40Bは共通配線42
によりそれぞれ接続されている。該配線41およ
び42へは互いに位相が180度異る周期的なパル
ス電圧が供給され、よく知られた2相駆動モード
の電荷転送が行なわれる。43は出力電極で直流
電位が供給されている。44は拡散層34を周期
的にプリセツトするためのトランジスタで、端子
47および端子48はそれぞれ周期的にオン−オ
フするパルス電源および直流電源に接続されてい
る。45は該拡散層34の電位変化を検出するた
めのトランジスタで端子49より直流電圧が供給
されている。46は該トランジスタ45の負荷と
して用いるトランジスタで、トランジスタ45と
共にバツフア回路を構成する。なお前記電極3
5,36,37A,37B,38A,38B,3
9A,39B,40A,40B,43は該半導体
基板30の上に形成された図示しない絶縁膜上に
規則的に配列されている。33,35,36で形
成される入力部は第3図の入力部21−kに、3
7A,37B,38A,38Bあるいは39A,
39B,40A,40Bの転送段は第3図の転送
段25に、34,44,45,46,47のタツ
プ回路は第3図のタツプ回路23−kに、端子2
4−kは第3図のタツプ端子24−kにそれぞれ
対応する。
Next, the specific structure of the tapped semiconductor delay line, which is the main part of the automatic equalizer, will be explained. FIG. 5 shows the specific structure of each CTD shown in FIG. 3, and is a cross-sectional view taken parallel to the direction in which signal charges travel. Here, as an example, a buried channel CCD with two transfer stages and two-phase drive will be described. 30 is a semiconductor substrate, 31 is a buried channel layer formed by diffusing an impurity of a conductivity type opposite to that of the semiconductor substrate 30 into the semiconductor substrate, and 32 is an impurity layer of the same conductivity type as the semiconductor substrate 30 and with a high concentration. It is a barrier area. 33 is a diffusion layer for injecting signal charges, and 34 is a diffusion layer for collecting signal charges, both of which are impurity diffusion layers that have the same conductivity type as the buried layer 31 and have a higher concentration than the buried layer 31. . Both 35 and 36 are input electrodes, and when a charge injection method based on a charge balance method is used, a DC potential is applied to one of the electrodes, and a signal voltage superimposed with a DC potential is applied to the other electrode. At this time, a pulse voltage that periodically turns on and off is applied to the diffusion layer 33. 37
A, 37B are first phase transfer electrodes, 38A, 38B
is a second phase transfer electrode, and the electrodes 37A, 3
7B, 38A, and 38B form a first transfer stage.
Similarly, 39A and 39B are first phase transfer electrodes, 40
A and 40B are second phase transfer electrodes, and these four electrodes form a second transfer stage. Electrodes 37A, 37
B, 39A, 39B are connected to a common wiring 41, and electrodes 38A, 38B, 40A, 40B are connected to a common wiring 42.
are connected to each other by Periodic pulse voltages having phases different from each other by 180 degrees are supplied to the wirings 41 and 42, and charge transfer in the well-known two-phase drive mode is performed. 43 is an output electrode to which a DC potential is supplied. Reference numeral 44 denotes a transistor for periodically presetting the diffusion layer 34, and terminals 47 and 48 are connected to a pulse power source and a DC power source, respectively, which are turned on and off periodically. Reference numeral 45 denotes a transistor for detecting potential changes in the diffusion layer 34, and a DC voltage is supplied from a terminal 49. A transistor 46 is used as a load for the transistor 45, and forms a buffer circuit together with the transistor 45. Note that the electrode 3
5, 36, 37A, 37B, 38A, 38B, 3
9A, 39B, 40A, 40B, and 43 are regularly arranged on an insulating film (not shown) formed on the semiconductor substrate 30. The input section formed by 33, 35, and 36 is the input section 21-k in FIG.
7A, 37B, 38A, 38B or 39A,
The transfer stages 39B, 40A, and 40B are connected to the transfer stage 25 in FIG. 3, and the tap circuits 34, 44, 45, 46, and 47 are connected to the tap circuit 23-k in FIG.
4-k correspond to the tap terminal 24-k in FIG. 3, respectively.

今配線42への印加パルスが高レベルにあり、
電極40B直下の埋め込みチヤネル層31に電位
の井戸が形成され、該電位の井戸に信号電荷が蓄
積されているとする。次に端子47に印加された
パルスが一時的に高レベルとなり、次に低レベル
に戻ると、該パルスが高レベルの期間だけ該トラ
ンジスタ44が導通し、該浮遊拡散層34は端子
48に印加された直流電圧レベルにリセツトされ
た後、該直流電圧レベルに保持される。次の配線
42の印加パルスが低レベルに戻ると、電極40
B直下の該信号電荷は該電極43直下の埋め込み
チヤネル層31に形成された電荷の通路を介し
て、該浮遊拡散層34へ転送され、そこで蓄積さ
れる。従つて、浮遊拡散層34は、光にリセツト
された時の該直流電圧レベルから、該信号電荷の
量に比例した値の電位の変化を生ずる。該電位変
化は該バツフア回路により検出され、出力端子2
4−kより外部へ導びかれる。なお該電極37
B,38B,39B,40B直下の埋め込みチヤ
ネル層に形成される電位の井戸には常に信号電荷
の転送方向に電位の勾配が生じているから、一個
の電極下から次の電極下へ電荷が転送される時、
前述した電荷転送の末期の期間でもドリフトによ
る電荷の移動が行なわれている。このため高速の
電荷転送が行なわれると同時に電荷の取り残しは
生じない、即ち、極めて高い転送効率が得られ
る。これは転送過程の末期では電荷転送が拡散に
よつて行なわれた従来の表面チヤネルを用いた
SI/PO形CCDと著しく異る点である。
The pulse applied to the wiring 42 is now at a high level,
It is assumed that a potential well is formed in the buried channel layer 31 directly under the electrode 40B, and signal charges are accumulated in the potential well. Next, when the pulse applied to the terminal 47 temporarily becomes a high level and then returns to a low level, the transistor 44 becomes conductive only during the period when the pulse is at a high level, and the floating diffusion layer 34 receives the voltage applied to the terminal 48. After being reset to the specified DC voltage level, it is held at that DC voltage level. When the next applied pulse on the wiring 42 returns to a low level, the electrode 40
The signal charge immediately below B is transferred to the floating diffusion layer 34 through a charge path formed in the buried channel layer 31 immediately below the electrode 43, and is accumulated there. Therefore, the floating diffusion layer 34 produces a potential change proportional to the amount of signal charge from the DC voltage level when it is reset by light. The potential change is detected by the buffer circuit, and the output terminal 2
It is led to the outside from 4-k. Note that the electrode 37
Since there is always a potential gradient in the direction of signal charge transfer in the potential wells formed in the buried channel layer directly below B, 38B, 39B, and 40B, charges are transferred from under one electrode to under the next electrode. When it is done,
Even during the final period of the charge transfer described above, charge movement occurs due to drift. Therefore, high-speed charge transfer is performed and at the same time, no charge is left behind, that is, extremely high transfer efficiency is obtained. This is because a conventional surface channel was used in which charge transfer was performed by diffusion at the end of the transfer process.
This is significantly different from the SI/PO type CCD.

次に第4図を用いて本発明の自動等化器の動作
を説明する。
Next, the operation of the automatic equalizer of the present invention will be explained using FIG.

パルス状のデジタル信号は伝送路中で符号間干
渉を受け歪んだ信号となる。本発明の自動等化器
は該信号の歪を除去し、元のパルス状のデジタル
信号に復元する高速・高帯域フイルタである。該
入力端子26へ印加された該歪んだ信号は該入力
部21−kで一定周期T毎にサンプリングされ、
同時に電荷に変換される。次に該信号電荷は対応
する転送部22−kへ注入されると共に、該信号
電荷は一定周期T毎に、該転送段25を一段毎移
動する。各CTD毎に、タツプ回路23−kに到
達した信号電荷は電圧に変換され、タツプ端子2
4−kを介し、該CTD20の外部へ導びかれる。
該タツプ端子24−kの出力信号をx(nT−kT)
とすれば、該タツプ端子24−1の出力信号はx
(nT−T)、該タツプ端子24−Nの出力信号は
x(nT−NT)と書ける。ここでnは入力部21
−kにおけるサンプリング番号である。なお第5
図で説明したように、該タツプ付き半導体遅延線
20は高速駆動が実現されるから、該一定周期T
を極めて短かくすることができる。従つて、本発
明の自動等化器はビツトレート(1/T)の極め
て高い入力信号、即ち、高帯域の信号の処理を行
なうことができる。該出力信号x(nT−kT)は
該第1の乗算器28−kで、該重み係数wkと乗
算され、その乗算結果は該加算器29で加算さ
れ、出力信号yとなり、該出力端子27より取り
出される。該比較器30は該出力信号yと基準電
位を比較して該出力信号aを発生する。次に減算
器31で、該yより該aを減算し、誤差信号eを
得る。該eが零となつた時、該歪んだ入力信号の
符号間干渉が除去され、該yは元の該パルス状の
デジタル信号に完全に復元されている。この時、
該重み回路34−kの出力信号、即ち重み係数
wkは一定の値となつている。反対に、eが零で
はない場合、該e、該u、および該x(nT−kT)
の乗算結果を該重み係数wkから減算し修正する
ことにより、次の周期に用いる重み係数を算出す
る。以上の修正過程を繰り返すことにより該eを
零とし、重み係数の修正を完了する。この結果各
重み回路34−kの重み係数は一定に保持される
から、本発明の自動等化器は歪んだ入力信号の符
号間干渉を除去し、元の信号を完全に復元する。
A pulsed digital signal becomes a distorted signal due to intersymbol interference in the transmission path. The automatic equalizer of the present invention is a high-speed, high-bandwidth filter that removes distortion from the signal and restores it to the original pulsed digital signal. The distorted signal applied to the input terminal 26 is sampled at a constant period T by the input section 21-k,
At the same time, it is converted into electric charge. Next, the signal charge is injected into the corresponding transfer section 22-k, and the signal charge moves one step at a time through the transfer stage 25 at a constant period T. For each CTD, the signal charge that reaches the tap circuit 23-k is converted into voltage, and the tap terminal 23-k is converted into a voltage.
4-k to the outside of the CTD 20.
The output signal of the tap terminal 24-k is x(nT-kT)
Then, the output signal of the tap terminal 24-1 is x
(nT-T), and the output signal of the tap terminal 24-N can be written as x(nT-NT). Here, n is the input section 21
−k is the sampling number. Furthermore, the fifth
As explained in the figure, since the tapped semiconductor delay line 20 can be driven at high speed, the constant period T
can be made extremely short. Therefore, the automatic equalizer of the present invention can process an extremely high bit rate (1/T) input signal, that is, a high band signal. The output signal x(nT-kT) is multiplied by the weighting coefficient wk in the first multiplier 28-k, and the multiplication result is added in the adder 29 to become an output signal y, which is sent to the output terminal 27. taken out from The comparator 30 compares the output signal y with a reference potential and generates the output signal a. Next, a subtracter 31 subtracts a from y to obtain an error signal e. When the e becomes zero, the intersymbol interference of the distorted input signal is removed, and the y is completely restored to the original pulsed digital signal. At this time,
The output signal of the weighting circuit 34-k, that is, the weighting coefficient
wk remains a constant value. Conversely, if e is not zero, then e, u, and x(nT−kT)
By subtracting and correcting the multiplication result from the weighting coefficient wk, the weighting coefficient to be used in the next cycle is calculated. By repeating the above modification process, e is set to zero and the modification of the weighting coefficients is completed. As a result, the weighting coefficient of each weighting circuit 34-k is held constant, so that the automatic equalizer of the present invention eliminates intersymbol interference of the distorted input signal and completely restores the original signal.

以上本発明の自動等化器の構造と動作を詳細に
説明した。本発明によれば、埋め込みチヤネル形
CCDでタツプ付き遅延線の転送部を構成するこ
とができるから、高速駆動においても高い転送効
率が得られる。従つて、自動等化器の高帯域化が
実現される。信号電荷の検出は直線性が優れた浮
遊拡散層を用いたタツプ回路で行なわれるから、
高精度の自動等化が実現される。タツプ付き遅延
線、乗算器、加算器、比較器、重み回路は共にプ
ロセスコンパチブルな半導体素子、例えばMOS
構造の半導体素子、で構成できるから、システム
の1チツプ集積化が実現され、小形、低消費電
力、高帯域、高信頼性、低価格の自動等化器を提
供することができる。
The structure and operation of the automatic equalizer of the present invention have been described above in detail. According to the invention, the embedded channel type
Since the transfer section of the tapped delay line can be constructed using a CCD, high transfer efficiency can be obtained even in high-speed driving. Therefore, a high bandwidth automatic equalizer is realized. Signal charge detection is performed using a tap circuit using a floating diffusion layer with excellent linearity.
High-precision automatic equalization is achieved. The tapped delay lines, multipliers, adders, comparators, and weight circuits are all process compatible semiconductor devices, e.g. MOS
Since the present invention can be constructed from semiconductor elements having the same structure, the system can be integrated into a single chip, and an automatic equalizer that is small in size, has low power consumption, has a high bandwidth, is highly reliable, and is low in price can be provided.

タツプ付き半導体遅延線の説明で、一例とし
て、1個のCTDの転送部が2個の転送段で構成
され、2相のクロツクパルスで駆動される埋め込
みチヤネル形CCDを用いたが、本発明の機能が
達成されれば、これに限定されず、該1個の
CTDの転送部の構造や駆動方法を用いてもかま
わない。
In the explanation of the semiconductor delay line with taps, an embedded channel CCD was used as an example in which the transfer section of one CTD consists of two transfer stages and is driven by two-phase clock pulses. If this is achieved, it is not limited to this, and the one
The structure and driving method of the CTD transfer section may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSI/PO形CTDを用いた従来の自動等
化器の構成、第2図および第3図はそれぞれ
BBDおよびCCDを用いたSI/PO形CTDである。
第4図は本発明の自動等化器の一実施構成例を示
し、第5図は第4図に示した半導体遅延線の断面
図である。第1図において、1はPI/SO形
CTD、6−k,10,11−kは乗算器、7は
加算器、9は減算器、12−kは重み回路であ
る。第1図、第2図、第3図において3−k,4
−k,5−kはそれぞれ転送段、タツプ回路、タ
ツプ端子である。第2図、第3図において、10
1,104,108,109,125はトランジ
スタ、102,105は静電容量、121,12
2,123は転送電極、124は浮遊電極であ
る。第4図、第5図において、20はタツプ付き
半導体遅延線、21−kは入力部、22−kは転
送部、23−kはタツプ回路、24−kはタツプ
端子、25は一転送段、26は入力端子、27は
出力端子、28−kは第1の乗算器、29は加算
器、130は比較器、131は減算器、132は
乗算器、135は検出器、133−kは第2の乗
算器、134−kは重み回路、30は半導体基
板、31は埋め込みチヤネル層、32はバリア、
33,34は高濃度不純物拡散層、35,36,
37A,37B,38A,38B,39A,39
B,40A,40B,43は電極、44,45,
46はトランジスタである。
Figure 1 shows the configuration of a conventional automatic equalizer using SI/PO type CTD, Figures 2 and 3 respectively
This is an SI/PO type CTD using BBD and CCD.
FIG. 4 shows an example of an embodiment of the automatic equalizer of the present invention, and FIG. 5 is a sectional view of the semiconductor delay line shown in FIG. 4. In Figure 1, 1 is PI/SO type
CTD, 6-k, 10, and 11-k are multipliers, 7 is an adder, 9 is a subtracter, and 12-k is a weighting circuit. 3-k, 4 in Figures 1, 2, and 3
-k and 5-k are a transfer stage, a tap circuit, and a tap terminal, respectively. In Figures 2 and 3, 10
1,104,108,109,125 are transistors, 102,105 are capacitances, 121,12
2, 123 is a transfer electrode, and 124 is a floating electrode. 4 and 5, 20 is a semiconductor delay line with a tap, 21-k is an input section, 22-k is a transfer section, 23-k is a tap circuit, 24-k is a tap terminal, and 25 is one transfer stage. , 26 is an input terminal, 27 is an output terminal, 28-k is a first multiplier, 29 is an adder, 130 is a comparator, 131 is a subtracter, 132 is a multiplier, 135 is a detector, 133-k is a a second multiplier, 134-k a weight circuit, 30 a semiconductor substrate, 31 a buried channel layer, 32 a barrier,
33, 34 are high concentration impurity diffusion layers, 35, 36,
37A, 37B, 38A, 38B, 39A, 39
B, 40A, 40B, 43 are electrodes, 44, 45,
46 is a transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 電圧信号を信号電荷に変換する入力部、該信
号電荷を転送する埋込みチヤネル形転送部および
転送された該信号電荷を電圧信号に変換する浮遊
拡散層で構成されるタツプ回路より構成された第
1の電荷転送素子、第2の電荷転送素子、…第N
(Nは整数)の電荷転送素子の合計N個の電荷転
送素子を備え、該第1の電荷転送素子の該転送部
は信号電荷を一定期間だけ遅延させる転送段を1
個備え、第2の電荷転送素子の該転送部は該転送
段を2個備え、…第N番目の電荷転送素子の該転
送部は該転送段をN個備え、各該電荷転送素子の
該各入力部を共通配線で接続し、各該電荷転送素
子が同一タイミングで駆動するタツプ付き半導体
遅延線と、各該タツプ回路毎に設けられ、かつ該
タツプ回路の出力信号と重み係数を互いにかけ算
する第1の乗算器N個と、該乗算器出力信号を加
え合せる加算器と、加算結果を量子化する比較
器、加算結果と量子化結果との差を得る減算器
と、減算結果と減衰係数を互いにかけ算する乗算
器と、各該タツプ回路毎に設けられ、かつ該タツ
プ回路の出力信号と該乗算器の出力を互いにかけ
算する第2の乗算器N個と、各該タツプ回路毎に
設けられ、第2の乗算器の出力信号を積分し、そ
の結果を前記重み係数とする重み係数回路とを備
えていることを特徴とする自動等化器。
1. A tap circuit consisting of an input section that converts a voltage signal into a signal charge, an embedded channel type transfer section that transfers the signal charge, and a floating diffusion layer that converts the transferred signal charge into a voltage signal. 1st charge transfer element, 2nd charge transfer element, ... Nth charge transfer element
(N is an integer) charge transfer elements in total, and the transfer section of the first charge transfer element has one transfer stage that delays signal charges by a certain period of time.
The transfer unit of the second charge transfer element includes two transfer stages, the transfer unit of the N-th charge transfer element includes N transfer stages, and the transfer unit of the N-th charge transfer element includes N transfer stages, Each input section is connected by a common wiring, and each charge transfer element is driven at the same timing, and a semiconductor delay line with a tap is provided for each tap circuit, and the output signal of the tap circuit and the weighting coefficient are multiplied by each other. N first multipliers, an adder that adds the multiplier output signals, a comparator that quantizes the addition result, a subtractor that obtains the difference between the addition result and the quantization result, and a subtraction result and attenuation. a multiplier that multiplies coefficients with each other; N second multipliers that are provided for each tap circuit and that multiply the output signal of the tap circuit and the output of the multiplier; and a weighting coefficient circuit that integrates the output signal of the second multiplier and uses the result as the weighting coefficient.
JP3488581A 1981-03-11 1981-03-11 Automatic equalizer Granted JPS57150216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3488581A JPS57150216A (en) 1981-03-11 1981-03-11 Automatic equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3488581A JPS57150216A (en) 1981-03-11 1981-03-11 Automatic equalizer

Publications (2)

Publication Number Publication Date
JPS57150216A JPS57150216A (en) 1982-09-17
JPH0131729B2 true JPH0131729B2 (en) 1989-06-27

Family

ID=12426594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3488581A Granted JPS57150216A (en) 1981-03-11 1981-03-11 Automatic equalizer

Country Status (1)

Country Link
JP (1) JPS57150216A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528251A (en) * 1978-08-18 1980-02-28 Matsushita Electric Ind Co Ltd Induction heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528251A (en) * 1978-08-18 1980-02-28 Matsushita Electric Ind Co Ltd Induction heater

Also Published As

Publication number Publication date
JPS57150216A (en) 1982-09-17

Similar Documents

Publication Publication Date Title
KR101126035B1 (en) Device for subtracting/adding a constant amount of charge in a charge-coupled device
US4686648A (en) Charge coupled device differencer
EP0030173B1 (en) Switched capacitor charge transfer filter
US4034199A (en) Programmable analog transversal filter
US4035628A (en) Analog transversal filtering and correlation with progressive summation of analog signals
US4156818A (en) Operating circuitry for semiconductor charge coupled devices
EP0078674B1 (en) Programmable transversal filter and method of filtering a signal
US3946248A (en) Dispersion compensated circuitry for analog charged systems
US4528684A (en) Charge-coupled device output circuit
US5325322A (en) High-speed programmable analog transversal filter having a large dynamic range
JPH0311038B2 (en)
EP0015446B1 (en) Non-destructive charge transfer device differencing circuit
US3931510A (en) Equalization storage in recirculating memories
JPH0131729B2 (en)
FR2582461A1 (en) DECIMATION FILTER
Haque et al. Design and characterization of a real-time correlator
JPS6112408B2 (en)
JPH055434B2 (en)
WO1997024767A1 (en) Charge-domain generation and replication devices
Sequin et al. Self-contained charge-coupled split-electrode filters using a novel sensing technique
JPS6069969A (en) Image sensor
JPH04126477A (en) Digital ccd camera
Gandolfo et al. Analog-binary CCD correlator: A VLSI signal processor
Emmons et al. The performance of charge-coupled devices in signal processing at low signal levels
JPS5867061A (en) Device for reading charged amount with current and charge transfer filter with same device