JPH01317186A - Treating device of compound semiconductor having high dissociation pressure - Google Patents

Treating device of compound semiconductor having high dissociation pressure

Info

Publication number
JPH01317186A
JPH01317186A JP14633788A JP14633788A JPH01317186A JP H01317186 A JPH01317186 A JP H01317186A JP 14633788 A JP14633788 A JP 14633788A JP 14633788 A JP14633788 A JP 14633788A JP H01317186 A JPH01317186 A JP H01317186A
Authority
JP
Japan
Prior art keywords
container
dissociation pressure
high dissociation
compound semiconductor
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14633788A
Other languages
Japanese (ja)
Other versions
JP2611336B2 (en
Inventor
Koichi Sasa
佐々 紘一
Takaharu Shirata
敬治 白田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14633788A priority Critical patent/JP2611336B2/en
Publication of JPH01317186A publication Critical patent/JPH01317186A/en
Application granted granted Critical
Publication of JP2611336B2 publication Critical patent/JP2611336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To maintain high purification of crystal and to prevent destruction of joint part of container by equipping joint part of separable closed container charged with a component gas having high dissociation pressure with a specific sealing material. CONSTITUTION:Powder 21 of one or more selected from SiO2, AlN, BN, Al2O3, zirconia, SiC, TiC, TiN and graphite is blended with one or more liquids 22 selected from B2O3, BaCl2, Na2F, NaCl, KCl and CaCl2 to give a sealing material 20. Then a joint part 3 of an upper part 1 of a container and a lower part 2 of container of a separable closed container charged with a component gas having high dissociation pressure is equipped with the sealing material 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、IC用高抵抗基板、光デバイス用ドープ基板
として用いられる高解1ift圧化合物半導体単結晶を
引き上げ成長させる高解離圧化合物半導体処理装置に関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high dissociation pressure compound semiconductor process for pulling and growing a high resolution 1ift pressure compound semiconductor single crystal used as a high resistance substrate for IC or a doped substrate for optical devices. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来、この種の高解IIII辻化合物半導体単結晶を引
き上げ成長させる方法としては、回転引き上げ法(ヂョ
クラルスキー法)が知られている。この回転引き上げ法
は、<100>方位の円形ウェーハを得るのが容易であ
り、デバイス製造プロセスに有利である。そして、Ga
AS(砒化ガリウム)のような高解離圧成分の結晶育成
においては、高解離圧成分の逃散を防ぐことが必要であ
り、大別して二つの手段が考えられる。その一つは酸化
硼素(B203.)のような液体で融液面を覆い、不活
性気体の圧力で抑える方法(LEC法)であり、他の一
つは融液表面を成長操作の量制御された圧力をもつ高解
離圧成分ガス雰囲気で覆うものである。このうち前者の
方法は装置が簡単であるため、現在工業的に広く用いら
れている。
Conventionally, a rotational pulling method (Dochralski method) has been known as a method for pulling and growing this type of high-resolution III-III compound semiconductor single crystal. This rotational pulling method makes it easy to obtain circular wafers with <100> orientation, which is advantageous for device manufacturing processes. And Ga
In crystal growth of a high dissociation pressure component such as AS (gallium arsenide), it is necessary to prevent the high dissociation pressure component from escaping, and two methods can be considered. One method is to cover the melt surface with a liquid such as boron oxide (B203.) and suppress it with the pressure of an inert gas (LEC method), and the other method is to control the amount of growth operation on the melt surface. It is covered with a high dissociation pressure component gas atmosphere with a certain pressure. Among these methods, the former method is currently widely used industrially because the equipment is simple.

しかしながら、上記従来のLEC法は、■蒸気圧制御に
よるストイキオメトリ(化学量論)の制御ができない、
■固液界面直上の温度勾配を小さくできないという問題
を右するため、結晶の高品質化が困難である。一方、上
記第二の方法を具体的に実現する手段として、例えば、
特開昭60=51698号公報において、引き上げ装置
内の容器を密封し、かつその圧力を精密に制御した8解
離圧成分ガス雰囲気の中で結晶引き上げを行なう装置が
開示されている。
However, the above conventional LEC method cannot control stoichiometry by vapor pressure control.
■It is difficult to improve the quality of crystals because the temperature gradient directly above the solid-liquid interface cannot be reduced. On the other hand, as means for concretely realizing the second method, for example,
JP-A-60-51698 discloses an apparatus in which a container in the pulling apparatus is sealed and a crystal is pulled in an atmosphere of eight dissociation pressure component gases whose pressures are precisely controlled.

上記結晶引き上げを行なう装置にあっては、第3図に示
すように1高解離圧成分ガスを密封覆る容器上部1と容
器下部2とをそれぞれ高湿の該ガス雰囲気におかされな
い材料によって互いに分割可能に構成し、その接合部3
に液体あるいは固体シール4を設り、かつ押し上げ軸5
に支持された緩衝機構6によって容器下部2を容器上部
1に押し付けることにより接合部3の密封を行なうよう
になっている。そして、このような構造により、容器の
充分な密封性が得られると共に繰り返し使用が可能にな
った。また、容器の内部にはルツボ軸7にサレプタ8を
介して固定されたルツボ9が配置され、外部に配置され
たヒータ10で容器ごと650〜1300℃程度に加熱
される。さらに、容器上部1には砒素ガス圧制御炉11
が設()られ、この砒素ガス圧制御炉11の湿度を一定
かつ密封容器の他のいかなる部分よりも低く制御し、こ
の部分に砒素12を凝縮することにより、密封容器内の
砒素圧を制御して、上記ルツボ軸7及び引ぎ上げ軸13
を共に回転しながら引き上げ軸13を引き上げで、ルツ
ボ9内の融液14から単結晶15を引き上げるようにな
っている。なお、符号16は液体(B203 )による
シール、17は透光性ロッドである。
In the above-mentioned crystal pulling apparatus, as shown in FIG. 3, a container upper part 1 and a container lower part 2, each of which seals and covers a high dissociation pressure component gas, are separated from each other by a material that will not be exposed to the high-humidity gas atmosphere. The joint part 3
A liquid or solid seal 4 is provided on the
The joint portion 3 is sealed by pressing the container lower portion 2 against the container upper portion 1 by a buffer mechanism 6 supported by the container. With such a structure, the container can be sufficiently sealed and can be used repeatedly. Further, a crucible 9 fixed to a crucible shaft 7 via a salepter 8 is arranged inside the container, and the whole container is heated to about 650 to 1300° C. by a heater 10 arranged outside. Furthermore, an arsenic gas pressure controlled furnace 11 is provided in the upper part 1 of the container.
The arsenic pressure inside the sealed container is controlled by controlling the humidity in the arsenic gas pressure controlled furnace 11 to be constant and lower than in any other part of the sealed container, and by condensing the arsenic 12 in this part. Then, the crucible shaft 7 and the pulling shaft 13
The single crystal 15 is pulled up from the melt 14 in the crucible 9 by pulling up the pulling shaft 13 while rotating the two. Note that the reference numeral 16 is a seal made of liquid (B203), and the reference numeral 17 is a translucent rod.

上記結晶引き上げを行なう装置においては、従来知られ
ていた石英密封容器と異なり、容器の分離、密着の操作
が極めて簡単になり、繰り返し使用が可能になったこと
、及び大口径インゴットの製造が可能に・なったことに
よって、工業的使用に耐えるものになった。
Unlike conventionally known sealed quartz containers, the device for pulling crystals has the following advantages: it is extremely easy to separate and close the container, it can be used repeatedly, and it is possible to manufacture large-diameter ingots. This made it suitable for industrial use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記結晶引き十げを行なう装置は、密封容器
を分割式としたため、容器の繰り返し使用が可能となっ
たが、技術の要点の一つは分割部分(接合部3)のシー
ル方法にある。この接合部3のシール材として液体を使
用する揚台には、従来から、酸化硼素、塩化バリウム、
フン化ナトリウム、塩化ナトリウム、塩化カリウム、塩
化カルシウムのうち−・種または数種の混合物の液体が
知られている(Hetz、JへP 332016(19
62)、Muffin J。
By the way, the above-mentioned device for crystal pulling has a sealed container that is divided into parts, which makes it possible to use the container repeatedly, but one of the key points of the technology lies in the method of sealing the divided part (joint part 3). . Conventionally, the lifting platform that uses liquid as a sealing material for the joint 3 has been made of boron oxide, barium chloride,
Liquids of species or mixtures of several of sodium fluoride, sodium chloride, potassium chloride, and calcium chloride are known (Hetz, J. P. 332016 (19
62), Muffin J.

B、etal J、Phys、Chem、5olids
 26,752(1965)) 。これらの材料は、結
晶の高純度化という観点から見ると不純物元素の汚染を
もたらさない故に優れた材料であるが、問題は操作性が
悪い点である。即ち、液体シール材保持部3内に保持し
た液体シール材の中に容器上部1の下端を浸すことで容
器の密封が図られるが、この構造のシールは、容器内外
の圧力に差が生じた際に、液体シール材が溢出して砒素
を損失するので、容器内外の圧力の均衡に充分注意する
必要がある。特に、原料融解に至る昇温時及び引き上げ
完了後の陪温時の内部砒素圧が大幅に変わるときが問題
であり、容器内外圧の均衡を常にとるように圧力を充分
ゆっくり変更する必要がある。このうち昇温時における
容器内外圧の不均衡が大きいとストイキオメトリ制御を
致命的失敗に至らせるという問題がある。また、液体シ
ール材の第2の問題点は、多くの材料に対してぬれ性が
よく、かつ凝固点以下の温度におりる熱膨張係数が高い
ことから、材料によっては破壊的になることである。例
えば、密封容器材どしてpBN (熱分解窒化硼素)を
使用した場合、使用の度にシール部のpBN材からの剥
離が起こり、ついにはpBN材の破壊に至らしめる。こ
れは、製品価格の低廉化という工業的観点からは大きな
欠点である。
B, etal J, Phys, Chem, 5olids
26,752 (1965)). These materials are excellent materials from the viewpoint of highly purified crystals because they do not cause contamination with impurity elements, but the problem is that they have poor operability. That is, the container is sealed by immersing the lower end of the container upper part 1 into the liquid sealing material held in the liquid sealing material holding part 3, but this structure of the seal does not create a difference in pressure between the inside and outside of the container. In this case, the liquid sealant overflows and arsenic is lost, so careful attention must be paid to the balance of pressure inside and outside the container. This is especially a problem when the internal arsenic pressure changes significantly during heating up to melting the raw material and at still temperature after completion of raising, and it is necessary to change the pressure slowly enough to always maintain a balance between the pressure inside and outside the container. . Among these, there is a problem that if the imbalance between the internal and external pressures of the container is large when the temperature is increased, the stoichiometry control will lead to a fatal failure. The second problem with liquid sealants is that they have good wettability with many materials and have a high coefficient of thermal expansion at temperatures below the freezing point, so they can be destructive to some materials. . For example, when pBN (pyrolytic boron nitride) is used as a material for a sealed container, the seal portion peels off from the pBN material each time it is used, eventually leading to destruction of the pBN material. This is a major drawback from an industrial standpoint of reducing product prices.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、結晶の高純度化を維持できる上に、操
作性が良好でかつ容器接合部に破壊をもたらすことがな
い高解離圧化合物半導体処理装置を提供することにある
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a highly dissociated material that can maintain high crystal purity, has good operability, and does not cause damage to the joints of containers. An object of the present invention is to provide a pressure compound semiconductor processing apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

−〇 − 上記目的を達成づるために、本発明は、高解離圧成分ガ
スで満たした分離可能な密封容器の接合部に、該接合部
をシールする1ζめに、酸化硅素、窒化アルミニウム、
窒化硼素、酸化アルミニウム、ジルコニア、炭化硅素、
炭化ヂタン、窒化ヂクン、グラファイトのうち一種また
は数棟の粉末と、酸化硼素、塩化バリウム、フッ化ナト
リウム、塩化ナトリウム、塩化カリウム、塩化カルシウ
ムのうち一種または数種どの混合物からなる液体とから
構成されたシール材を設けたものである。
-〇- In order to achieve the above object, the present invention provides silicon oxide, aluminum nitride,
Boron nitride, aluminum oxide, zirconia, silicon carbide,
It is composed of powder of one or more of titanium carbide, dicarb nitride, and graphite, and a liquid consisting of one or a mixture of boron oxide, barium chloride, sodium fluoride, sodium chloride, potassium chloride, and calcium chloride. It is equipped with a sealing material.

〔作 用〕[For production]

本発明の高解離圧化合物半導体処理装置にあっては、密
封容器材料の熱膨張係数と等しいかj[たは近い熱膨張
係数を有する酸化硅素、窒化アルミニウム、窒化硼素、
酸化アルミニウム、ジルコニア、炭化硅素、炭化チタン
、窒化チタン、グラファイトの粉末に酸化硼素、塩化バ
リウム、フッ化ナトリウム、塩化す1−リウム、塩化カ
リウム、塩化カルシウムのうち一種または数種との混合
物からなる液体を加えてシール材とすることにより、該
液体が固化した後の見掛は上の熱膨張係数を、上記密封
容器材料のそれとほぼ等しくすることができる。これに
より、密封容器の接合部の破壊を防止Jることができる
。さらに、このシール材は添加した粉末により流動性を
も減少せしめ、シール材の濡出による高解離圧成分ガス
の散逸が防止できる。即ち、高温時には、第1図に示す
ように、シール材20中の粉末21が液体22の流動を
妨げ、また低温となり、シール材20中の液体22が固
化すると第2図に示したように、添加した粉末21と固
化した液体22との熱膨張係数の差により、該液体22
は細かく割れるが、シール材20の収縮率は見掛は上は
ぼ容器下部2の材料の収縮率と等しい値とできるので、
容器接合部の破壊に至ることはない。
In the high dissociation pressure compound semiconductor processing apparatus of the present invention, silicon oxide, aluminum nitride, boron nitride,
Consists of a mixture of powders of aluminum oxide, zirconia, silicon carbide, titanium carbide, titanium nitride, and graphite with one or more of boron oxide, barium chloride, sodium fluoride, monolithium chloride, potassium chloride, and calcium chloride. By adding a liquid to form a sealing material, the apparent coefficient of thermal expansion after solidification of the liquid can be made approximately equal to that of the sealed container material. This can prevent the joints of the sealed container from breaking. Furthermore, the fluidity of this sealing material is also reduced by the added powder, and dissipation of high dissociation pressure component gas due to wetting of the sealing material can be prevented. That is, when the temperature is high, the powder 21 in the sealing material 20 prevents the flow of the liquid 22, as shown in FIG. 1, and when the temperature becomes low and the liquid 22 in the sealing material 20 solidifies, as shown in FIG. , due to the difference in thermal expansion coefficient between the added powder 21 and the solidified liquid 22, the liquid 22
However, the shrinkage rate of the sealing material 20 can be made to have an apparent value equal to the shrinkage rate of the material of the lower part 2 of the container.
This will not result in destruction of container joints.

〔実施例〕〔Example〕

以下、第1図ないし第3図に基づいて本発明の一実施例
を説明Jる。
Hereinafter, one embodiment of the present invention will be explained based on FIGS. 1 to 3.

GaAS単結晶を育成するために、第3図に示すような
シールを有する引き上げ装置を用いた。
In order to grow a GaAS single crystal, a pulling device having a seal as shown in FIG. 3 was used.

そしで、容器上部1としてはモリブデンを使用し、容器
下部2としてはpBN (熱分解窒化硼素)を使用した
。この際、pBNの熱膨張係数に鑑み、添加する粉末2
1として窒化硼素を使用し、混合液体22どしてB20
3(酸化硼素)を用い、第1図と第2図に示す接合部3
のシール材20とした。
Therefore, molybdenum was used for the upper part 1 of the container, and pBN (pyrolytic boron nitride) was used for the lower part 2 of the container. At this time, considering the thermal expansion coefficient of pBN, add powder 2
Using boron nitride as 1, mixed liquid 22 and B20
3 (boron oxide) to form the joint 3 shown in FIGS. 1 and 2.
The sealing material 20 was as follows.

そして、砒素ガス圧を1 atmとした後、GaAS融
液1111をルツボ9内に合成し、結晶回転10rpm
 、ルツボ回転10 rl)m 、引き上げ速度5朧に
て引き上げを行なったところ、密閉容器からの砒素の逃
散はなく、DBN製の容器下部2の剥離も防止された。
After setting the arsenic gas pressure to 1 atm, GaAS melt 1111 is synthesized in the crucible 9, and the crystal rotation is 10 rpm.
When pulling was carried out at a crucible rotation of 10 rl) m and a pulling speed of 5 oboro, arsenic did not escape from the closed container and peeling of the lower part 2 of the container made of DBN was also prevented.

また、育成された単結晶15はストイキオメトリツクな
ものであった。
Furthermore, the grown single crystal 15 was stoichiometric.

なお、本実施例においては、密閉容器の接合部3のシー
ルついて説明したが、これに限られることなく、例えば
、回転シールにも適用可能である。
In this embodiment, the sealing of the joint 3 of a closed container has been described, but the present invention is not limited to this, and can also be applied to, for example, a rotary seal.

′〔発明の効果〕 以上説明したように、本発明は、高解離圧成分ガスで満
たした分離可能な密封容器の接合部に、該接合部をシー
ルするために、酸化硅素、窒化アルミニウム、窒化硼素
、酸化アルミニウム、ジルコニア、炭化硅素、炭化チタ
ン、窒化チタン、グラファイトのうち一種または数種の
粉末と、酸化硼素、塩化バリウム、フッ化ナトリウム、
塩化ナトリウム、塩化カリウム、塩化カルシウムのうち
一種または数種との混合物からなる液体とから構成され
たシール材を設りたものであるから、密封容器材料の熱
膨張係数と等しいかまたは近い熱膨張係数を有する酸化
硅素、窒化アルミニウム、窒化硼素、酸化アルミニウム
、ジルコニア、炭化硅素、炭化チタン、窒化チタン、グ
ラファイトの粉□ 末に酸化硼素、塩化バリウム、フッ
化ナトリウム、塩化ナトリウム、塩化カリウム、塩化カ
ルシウムのうち一種または数種との混合物からなる液体
を加えてシール材とすることにより、該液体が固化した
後の見掛り上の熱膨張係数を、上記密封容器材料のそれ
とほぼ等しくすることができ、従って、密封容器の接合
部の破壊を防止することができると共に、添加した粉末
により上記シール材の流動性を減少せしめ、シール材の
濡出による高j)II!1!fl圧成分ガスの散逸が防
止でき、従って、シール材の操作性が良好で、かつ結晶
の高純度化を維持できるという優れた効果を有する。
[Effects of the Invention] As explained above, the present invention provides silicon oxide, aluminum nitride, nitride, etc. to the joint of a separable sealed container filled with a high dissociation pressure component gas in order to seal the joint. Powder of one or more of boron, aluminum oxide, zirconia, silicon carbide, titanium carbide, titanium nitride, graphite, boron oxide, barium chloride, sodium fluoride,
Since the sealing material is made of a liquid consisting of a mixture of one or more of sodium chloride, potassium chloride, and calcium chloride, the thermal expansion coefficient is equal to or close to the thermal expansion coefficient of the sealed container material. Silicon oxide, aluminum nitride, boron nitride, aluminum oxide, zirconia, silicon carbide, titanium carbide, titanium nitride, graphite powder with coefficients of boron oxide, barium chloride, sodium fluoride, sodium chloride, potassium chloride, calcium chloride By adding a liquid consisting of a mixture of one or more of these to form a sealing material, the apparent coefficient of thermal expansion after solidification of the liquid can be made approximately equal to that of the above-mentioned sealed container material. Therefore, it is possible to prevent the joints of the sealed container from being destroyed, and the added powder reduces the fluidity of the sealing material, resulting in high j) II! 1! Dissipation of the fl-pressure component gas can be prevented, and therefore, the sealing material has excellent operability and the high purity of the crystal can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高解離圧化合物半導体処理装置の一実
施例を示す密封容器接合部の断面図、第2図は同密封容
器接合部が分離した場合の断面図、第3図は高解離圧化
合物半導体処理装置の一例を示す概念図である。 1・・・・・・容器上部、 2・・・・・・容器下部、 3・・・・・・接合部、 15・・・・・・単結晶、 20・・・・・・シール材、 21・・・・・・粉末、 22・・・・・・液体。
FIG. 1 is a sectional view of a sealed container joint showing an embodiment of the high dissociation pressure compound semiconductor processing apparatus of the present invention, FIG. 2 is a sectional view of the same sealed container joint when separated, and FIG. 3 is a high 1 is a conceptual diagram showing an example of a dissociation pressure compound semiconductor processing apparatus. DESCRIPTION OF SYMBOLS 1... upper part of container, 2... lower part of container, 3... joint part, 15... single crystal, 20... sealing material, 21...Powder, 22...Liquid.

Claims (1)

【特許請求の範囲】[Claims]  高解離圧成分ガスで満たした分割可能な密封容器中で
、高解離圧化合物半導体単結晶を引き上げ処理する高解
離圧化合物半導体処理装置において、上記密封容器の接
合部に、該接合部をシールするために、酸化硅素、窒化
アルミニウム、窒化硼素、酸化アルミニウム、ジルコニ
ア、炭化硅素、炭化チタン、窒化チタン、グラファイト
のうち一種または数種の粉末と、酸化硼素、塩化バリウ
ム、フッ化ナトリウム、塩化ナトリウム、塩化カリウム
、塩化カルシウムのうち一種または数種との混合物から
なる液体とから構成されたシール材を設けたことを特徴
とする高解離圧化合物半導体処理装置。
In a high dissociation pressure compound semiconductor processing apparatus that pulls and processes a high dissociation pressure compound semiconductor single crystal in a divisible sealed container filled with a high dissociation pressure component gas, the bonded portion is sealed to the bonded portion of the sealed container. For this purpose, powder of one or more of silicon oxide, aluminum nitride, boron nitride, aluminum oxide, zirconia, silicon carbide, titanium carbide, titanium nitride, graphite, boron oxide, barium chloride, sodium fluoride, sodium chloride, 1. A high dissociation pressure compound semiconductor processing apparatus, comprising a sealing material made of a liquid made of a mixture of one or more of potassium chloride and calcium chloride.
JP14633788A 1988-06-14 1988-06-14 High dissociation pressure compound semiconductor processing equipment Expired - Lifetime JP2611336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14633788A JP2611336B2 (en) 1988-06-14 1988-06-14 High dissociation pressure compound semiconductor processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14633788A JP2611336B2 (en) 1988-06-14 1988-06-14 High dissociation pressure compound semiconductor processing equipment

Publications (2)

Publication Number Publication Date
JPH01317186A true JPH01317186A (en) 1989-12-21
JP2611336B2 JP2611336B2 (en) 1997-05-21

Family

ID=15405411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14633788A Expired - Lifetime JP2611336B2 (en) 1988-06-14 1988-06-14 High dissociation pressure compound semiconductor processing equipment

Country Status (1)

Country Link
JP (1) JP2611336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252845A (en) * 2021-04-22 2021-08-13 联合汽车电子有限公司 Sealing member for sealing sensing element, manufacturing method thereof and gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252845A (en) * 2021-04-22 2021-08-13 联合汽车电子有限公司 Sealing member for sealing sensing element, manufacturing method thereof and gas sensor
CN113252845B (en) * 2021-04-22 2023-10-10 联合汽车电子有限公司 Sealing element for sealing sensor element, method for producing the same, and gas sensor

Also Published As

Publication number Publication date
JP2611336B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
AU2003255657B2 (en) Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon
Yip et al. Method of avoiding ampoule adhesion of ingots in Bridgman growth of CuInSe2
Route et al. Preparation of large untwinned single crystals of AgGaS2
JPH01317186A (en) Treating device of compound semiconductor having high dissociation pressure
Treser et al. Crystal growth of AgGaS2 by the Bridgman-Stockbarger technique using shaped crucibles
JPS6341879B2 (en)
JPH0248490A (en) Device for treating compound semiconductor of high dissociation pressure
JPH052614Y2 (en)
JP2539841B2 (en) Crystal manufacturing method
JPH0355434B2 (en)
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPS59223296A (en) Raw material for producing sealed compound semiconductor crystal
JPH01264989A (en) Device for growing single crystal
RU97103750A (en) METHOD FOR GROWING LANTANGALLIUM SILICON MONOCRYSTALS
JPS5973500A (en) Preparation of compound semiconductor
JP2766716B2 (en) Single crystal manufacturing method
JPH04265297A (en) Method and structure for sealing in treating device of high-dissociation-pressure compound semiconductor crystal
JPH0248500A (en) Apparatus for treating compound semiconductor having high dissociation pressure
JPS62297291A (en) Pulling-up system for gaas single crystal
JPH04357189A (en) Production of compound semiconductor crystal
JPS61106487A (en) Single crystal growing apparatus
RU97115565A (en) METHOD FOR GROWING LANTANGALLIUM SILICON MONOCRYSTALS
RU98113240A (en) METHOD FOR GROWING LANTANGALLIUM SILICON MONOCRYSTALS
JPH0240369B2 (en)
JPS6348837B2 (en)