JPH01317004A - Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit - Google Patents

Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit

Info

Publication number
JPH01317004A
JPH01317004A JP14966488A JP14966488A JPH01317004A JP H01317004 A JPH01317004 A JP H01317004A JP 14966488 A JP14966488 A JP 14966488A JP 14966488 A JP14966488 A JP 14966488A JP H01317004 A JPH01317004 A JP H01317004A
Authority
JP
Japan
Prior art keywords
capacitor
circuit
capacitance
resistor
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14966488A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sakurai
桜井 保宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP14966488A priority Critical patent/JPH01317004A/en
Publication of JPH01317004A publication Critical patent/JPH01317004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To devise the circuit so as to change over even a minute capacitance less than a stray capacitance of a switch and a wire by adopting the constitution such that plural series circuits each comprising a capacitor and a switch and at least one of series circuits each comprising a capacitor, a resistor and a switch are connected in parallel. CONSTITUTION:Plural series circuits each comprising a capacitor 125-127 and a switch 115-117 and at least one of series circuits each comprising a capacitor 121-124, a resistor 131-134 and a switch 115-117 are connected in parallel. Since the resistor in the series connection of the capacitor and the resistor limits the charge/discharge speed of the capacitor, the effective capacitance is changed depending on the frequency. The relation between the capacitance of the entire circuit and the frequency depends on the capacitor at a low frequency but the capacitance is reduced effectively through less carrier charged/discharged from/to the capacitor because the succeeding discharge period is transited before the charging of the capacitor is finished at a high frequency. Thus, even a minute capacitance is changed over without the effect of a stray capacitance by selecting a capacitor and a resistor in matching with the operating frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスイッチの開閉により複数の容量値を選択する
スイッチトキャパシタ回路に関し、また、該スイッチト
キャパシタ回路を用いて構成されるディジタル温度補償
水晶発振回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a switched capacitor circuit that selects a plurality of capacitance values by opening and closing a switch, and also relates to a digital temperature compensated crystal oscillator constructed using the switched capacitor circuit. Regarding circuits.

〔発明の背景〕[Background of the invention]

通信機器における周波数源としては各種の水晶発振器が
多用されている。そのなかで自動車無線などの移動体通
信機器の場合は、使用温度環境が一定していないので温
度補償水晶発振器(以下TCXOと称す)が用いられる
。最近は温度補償の高精度化の要求が強(なっており、
仕様の1例を挙げれば温度範囲一20〜+80°Gにお
いて発振周波数12.8 MHz±2pImという精度
になっている。アナログ的な処理でこのような精度を達
成することは、工業的には極めて困難であるため、デジ
タルTCXO(以下DTCXOと称す)が注目を集めて
いる。
Various types of crystal oscillators are often used as frequency sources in communication equipment. Among these, in the case of mobile communication devices such as automobile radios, a temperature compensated crystal oscillator (hereinafter referred to as TCXO) is used because the operating temperature environment is not constant. Recently, there has been a strong demand for higher accuracy in temperature compensation.
To give an example of the specifications, the accuracy is oscillation frequency 12.8 MHz±2 pIm in the temperature range -20 to +80°G. Since it is industrially extremely difficult to achieve such precision through analog processing, digital TCXOs (hereinafter referred to as DTCXOs) are attracting attention.

〔従来の技術〕[Conventional technology]

DTCXOの温度補償は、温度をディジタル符号化し、
このディジタル符号に対応した温度補償値を得、次に温
度補償値をアナログ値化し、このアナログ値(温度情報
)によって可変容量素子を制御し発振周波数を補償する
ものである。
DTCXO temperature compensation digitally encodes the temperature,
A temperature compensation value corresponding to this digital code is obtained, the temperature compensation value is then converted into an analog value, and the variable capacitance element is controlled using this analog value (temperature information) to compensate the oscillation frequency.

近年、DTCXOのLSI化、小型化、低消費電力化を
図るため、DTCXOの構成部分のうち温度補償値のア
ナログ値化および可変容量素子の制御を一体化したスイ
ッチトキャパシタ回路が開発されている。−例を第4図
に示す(宇野武彦、下田義雄rsw−cアレイを用いた
ディジタルCMO8水晶発振回路」昭和58年度電子通
信学会総合全国大会 講演予稿649)。
In recent years, in order to make DTCXOs more integrated into LSIs, smaller in size, and with lower power consumption, switched capacitor circuits have been developed that integrate analogization of temperature compensation values and control of variable capacitance elements among the constituent parts of DTCXOs. - An example is shown in Fig. 4 (Takehiko Uno, Yoshio Shimoda, "Digital CMO8 crystal oscillator circuit using RSW-C array" 1981 Institute of Electronics and Communication Engineers National Conference Lecture Proceedings 649).

第4図ではディジタル量である温度情報をインバータ4
11〜416に入力し、入力した温度情報に対応するス
イッチ421〜426を選択的にオン、オフし、コンデ
ンサ461〜436のうち選択されたコンデンサを水晶
発振回路400に接続することにより発振周波数の補償
を行っている。
In Figure 4, temperature information, which is a digital quantity, is transferred to the inverter 4.
11 to 416, selectively turns on and off switches 421 to 426 corresponding to the input temperature information, and connects a selected capacitor among capacitors 461 to 436 to crystal oscillation circuit 400, thereby changing the oscillation frequency. Compensation is being provided.

この温度補償水晶発振回路では、コンデンサ461の容
量値をCとすると、コンデンサ462.436.434
.435.466の容量値はそれぞれ2C,4C,8C
,16C,32Cとなるように設計され広い範囲の発振
周波数の温度補償を行うことができる。
In this temperature compensated crystal oscillator circuit, if the capacitance value of capacitor 461 is C, capacitor 462.436.434
.. The capacitance values of 435.466 are 2C, 4C, and 8C, respectively.
, 16C, and 32C, and can perform temperature compensation for a wide range of oscillation frequencies.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第4図の水晶発振回路で高精度の温度補償を行
おうとする場合、コンデンサの容量(特に容量値の小さ
いコンデンサ431,432など)はスイッチの容量値
(CMO8)ランスファゲートなら通常0.04pF以
上)や配線の浮遊容量(場合によっては0.1pF以上
)よりも小さい値となってしまう。このため、このよう
な水晶発振回路で高精度の温度補償を行うことはできな
かった。
However, when attempting to perform highly accurate temperature compensation with the crystal oscillator circuit shown in Figure 4, the capacitance of the capacitors (especially capacitors 431, 432, etc. with small capacitance values) is usually 0. .04 pF or more) and the stray capacitance of wiring (in some cases, 0.1 pF or more). For this reason, it has not been possible to perform highly accurate temperature compensation with such a crystal oscillation circuit.

本発明は、このような課題を解決するためになされたも
のであり、微小な容量値の切り替えが可能であるスイッ
チトキャパシタ回路、およびこのスイッチトキャパシタ
回路を用いて構成され広い温度範囲で高精度の発振周波
数補償が可能なディジタル温度補償水晶発振回路の提供
を目的とする。
The present invention has been made to solve these problems, and provides a switched capacitor circuit that allows minute capacitance values to be switched, and a highly accurate switched capacitor circuit configured using this switched capacitor circuit over a wide temperature range. The purpose of this invention is to provide a digital temperature compensated crystal oscillator circuit that can compensate the oscillation frequency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のスイッチトキャパシタ回路は、容量とスイッチ
との直列回路の複数個と、容量と抵抗とスイッチとの直
列回路の少なくとも一個とを並列接続して構成されるも
のである。但し、この場合の抵抗はスイッチのオン抵抗
とは異なる抵抗を意味する。
The switched capacitor circuit of the present invention is configured by connecting in parallel a plurality of series circuits of a capacitor and a switch, and at least one series circuit of a capacitor, a resistor, and a switch. However, the resistance in this case means a resistance different from the on-resistance of the switch.

また、本発明のディジタル温度補償水晶発振回路は、少
なくともディジタル温度情報を作成する温度情報作成部
と、上記スイッチトキャパシタ回路と、水晶発振回路と
からなるものである。本発明のディジタル温度補償水晶
発振回路は、温度情報作成部で作成したディジタル温度
情報をスイッチトキャパシタ回路に入力し、スイッチト
キャパシタ回路では入力された温度情報に対応した容量
および/または容量と抵抗に接続されているスイッチを
選択してオン・オフし、水晶発振回路に接接することに
より発振周波数の温度補償を行うものである。
Further, the digital temperature compensated crystal oscillation circuit of the present invention includes at least a temperature information creation section that creates digital temperature information, the above-mentioned switched capacitor circuit, and a crystal oscillation circuit. The digital temperature compensated crystal oscillator circuit of the present invention inputs the digital temperature information created by the temperature information creation section to the switched capacitor circuit, and in the switched capacitor circuit connects the capacitor and/or capacitor and resistor corresponding to the input temperature information. The oscillation frequency is temperature-compensated by selectively turning the switch on and off and connecting it to the crystal oscillation circuit.

〔作用〕[Effect]

第3図を用いて本発明のスイッチトキャパシタ回路の原
理を説明する。
The principle of the switched capacitor circuit of the present invention will be explained using FIG.

コンデンサと抵抗の直列接続においては、抵抗がコンデ
ンサの充放電速度を制約するから、周波数によって実効
的な容量値が変化する。その様子を第3図に示す。
When a capacitor and a resistor are connected in series, the resistor limits the charging and discharging speed of the capacitor, so the effective capacitance value changes depending on the frequency. The situation is shown in Figure 3.

第3図(alにおいて容量値C1のコンデンサ301と
抵抗値R1の抵抗602は直列に接続されている。コン
デンサ301の容量値C1を配線の浮遊容量よりもはる
かに大きくしておけば、浮遊容量の影響は排除できる。
In Figure 3 (al), a capacitor 301 with a capacitance value C1 and a resistor 602 with a resistance value R1 are connected in series.If the capacitance value C1 of the capacitor 301 is made much larger than the stray capacitance of the wiring, the stray capacitance can be eliminated.

この回路全体の容量値と周波数との関係は、第3図(b
)に示される如(,1/C,R,で決まる周波数よりも
約2桁以上低周波側ではC1の値に等しいが、高周波側
ではコンデンサ301の充電が終わる前に次の放電周期
に移ってしまうため、コンデンサ301に充放電される
キャリアが少なくなり、実効的に容量値が減ることにな
る。1/C,R。
The relationship between the capacitance value and frequency of this entire circuit is shown in Figure 3 (b
) As shown in (, 1/C, R), on the lower frequency side by about two orders of magnitude or more, it is equal to the value of C1, but on the high frequency side, the value shifts to the next discharge cycle before the capacitor 301 finishes charging. Therefore, fewer carriers are charged and discharged into the capacitor 301, and the effective capacitance value is reduced.1/C,R.

で決まる周波数よりも高い周波数ではコンデンサ601
のキャリアはほとんど追随できなくなり、全体の容量値
は0に近づく。
At frequencies higher than the frequency determined by the capacitor 601
carriers can hardly follow it, and the overall capacitance value approaches 0.

したがって使用する周波数に合ったコンデンサと抵抗と
を選択すれば、極めて微小な容量値でも浮遊容量の影響
なしに実現可能となるのである。
Therefore, by selecting a capacitor and resistor that match the frequency used, even extremely small capacitance values can be achieved without the influence of stray capacitance.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて詳述する。 Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明によるスイッチトキャパシタ回路をDT
CXOに応用した一実施例を示す回路図である。第1図
において発振インバータ101のゲート・ドレーン間に
帰還抵抗102と水晶振動子103が並列に接続され、
ゲートおよびドレーンと電極との間にそれぞれコンデン
サ104.105が接続され、ドレーン側のコンデンサ
105と並列に7ビツトのスイッチトキャパシタ回路が
接続されている。各スイッチ111〜117は温度情報
作成部140で作成された温度情報を含むデジタル信号
によって開閉される。
FIG. 1 shows a switched capacitor circuit according to the present invention.
FIG. 2 is a circuit diagram showing an example applied to a CXO. In FIG. 1, a feedback resistor 102 and a crystal resonator 103 are connected in parallel between the gate and drain of an oscillation inverter 101.
Capacitors 104 and 105 are connected between the gate and the drain and the electrodes, respectively, and a 7-bit switched capacitor circuit is connected in parallel with the capacitor 105 on the drain side. Each of the switches 111 to 117 is opened and closed by a digital signal containing temperature information created by the temperature information creation section 140.

水晶振動子103にATカット水晶振動子(12,8M
Hz )を用いる場合、通常−20〜+80°Cの温度
範囲で±15泗の発振周波数の変化がある。この30−
の発振周波数変化を7ピツトのスイッチトキャパシタ回
路で補償するためには、30、−2  =0.23であ
るから、最小ビットの補償量は大体0.25pIII程
度に設定すればよい。
Crystal resonator 103 is an AT cut crystal resonator (12,8M
Hz), there is usually a change in the oscillation frequency of ±15 C over a temperature range of -20 to +80°C. This 30-
In order to compensate for the change in the oscillation frequency with a 7-pit switched capacitor circuit, since 30, -2 = 0.23, the compensation amount for the smallest bit may be set to about 0.25 pIII.

従って、各ビットの補償量は1ビツト目が0、25 p
IIXI、2ビツト目が0.5−13ビツト目が1兜、
4ビツト目が2 ppm、5ビツト目が41)P、6ビ
ツF目が3ppm、7ビツト目が16−となる。
Therefore, the amount of compensation for each bit is 0 for the 1st bit, 25 p
IIXI, 2nd bit is 0.5-13th bit is 1 helmet,
The 4th bit is 2 ppm, the 5th bit is 41)P, the 6th bit F is 3 ppm, and the 7th bit is 16-.

ゲート側およびドレーン側のコンデンサ104.105
の容量値がともに14pFであり、12.8M Flz
の安定発振時におけるインバータ101の電圧増幅率と
出力インピーダンスがそれぞれ2.0および1.OkΩ
である場合、各ビットの補償量を達成するための容量変
化は1ビツト目が0.021)F。
Capacitors 104.105 on the gate and drain sides
The capacitance value of both is 14pF, and 12.8M Flz
The voltage amplification factor and output impedance of the inverter 101 during stable oscillation are 2.0 and 1.0, respectively. OkΩ
In this case, the capacitance change to achieve the compensation amount for each bit is 0.021)F for the first bit.

2ビツト目が0.049F、3ビツト目が0.099F
、4ビツト目が0.18pF、5ビツト目が0.369
F、6ビツト目が0.72pF、7ビツト目が1.50
pFである必要がある。
2nd bit is 0.049F, 3rd bit is 0.099F
, 4th bit is 0.18pF, 5th bit is 0.369
F, 6th bit is 0.72pF, 7th bit is 1.50
It needs to be pF.

前述のようにスイッチや配線の浮遊容量が大きいため、
コンデンサとスイッチのみで実現できるのは5ビツト目
の0.36pF以降であり、1〜4ビツト目は従来技術
では実現できないか、もしくは誤差が大きくて実用的で
ない。
As mentioned above, the stray capacitance of switches and wiring is large,
Only capacitors and switches can realize the value after the 5th bit of 0.36 pF, and the 1st to 4th bits cannot be realized by conventional technology or have a large error and are not practical.

本発明では1ビツト目のコンデンサ121と抵抗161
をそれぞれ1.4pF+40にΩとし、2ビツト目のコ
ンデンサ122と抵抗132をそれぞれ1.1pF+4
0kflとし、3ビツト目のコンデンサ126と抵抗1
36をそれぞれ1.2pF。
In the present invention, the first bit capacitor 121 and resistor 161
are each 1.4 pF + 40Ω, and the second bit capacitor 122 and resistor 132 are each 1.1 pF + 4
0kfl, 3rd bit capacitor 126 and resistor 1
36 to 1.2 pF each.

30にΩとし、4ビツト目のコンデンサ124と抵抗1
34をそれぞれ1.3pFt20にΩとすることで、実
効的に0.02pF、0.04pF。
30Ω, 4th bit capacitor 124 and resistor 1
By setting 34 to 1.3pFt20 and Ω, the effective values are 0.02pF and 0.04pF.

0.09pF、0.18pF%を実現しているのである
This achieves 0.09 pF and 0.18 pF%.

上記の実施例においては1〜4ピツトにしか抵抗を用い
ていないが、全ビットに抵抗を用いることはもちろん差
し支えない。またコンデンサと抵抗とスイッチは直列接
続であればよく、接続の順序は問わない。発振インバー
タの構造や周波数などが変われば必要とされる微小容量
の値も変わるが、いかなる場合でも本発明により必要と
されるスイッチトキャパシタ回路が実現できる。
In the above embodiment, resistors are used only for the 1st to 4th pits, but it is of course possible to use resistors for all bits. Furthermore, the capacitor, resistor, and switch only need to be connected in series, and the order of connection does not matter. If the structure, frequency, etc. of the oscillation inverter change, the value of the required minute capacitance will also change, but in any case, the required switched capacitor circuit can be realized by the present invention.

また、本発明のスイッテトキャパシタ回路は水晶発振回
路1000入力側あるいは出力側、あるいは入力側と出
力側の両方のどちらに接続されていてもよい。
Further, the switched capacitor circuit of the present invention may be connected to either the input side or the output side of the crystal oscillation circuit 1000, or both the input side and the output side.

第2図は本発明によるスイッチトキャパシタ回路を同調
回路に応用した一実施例を示す回路図である。第2図に
おいてアンテナ201と接地との間にコイル202とコ
ンデンサ206から成る並列共娠回路が接続され、コン
デンサ206と並列に5ピツトのスイッチトキャパシタ
回路が接続されている。各スイッチ211〜215は温
度情報を含むデジタル信号によって開閉されるが、その
部分は省略しである。
FIG. 2 is a circuit diagram showing an embodiment in which the switched capacitor circuit according to the present invention is applied to a tuning circuit. In FIG. 2, a parallel condensed circuit consisting of a coil 202 and a capacitor 206 is connected between an antenna 201 and the ground, and a 5-pit switched capacitor circuit is connected in parallel with the capacitor 206. Each of the switches 211 to 215 is opened and closed by a digital signal including temperature information, but that part is omitted.

本実施例においては、抵抗が接続されていない4ビツト
目と5ビツト目を用いて大まかな周波数選択を行い、抵
抗261〜236が接続されている1〜3ビツト目の切
り換えによって選択度を向上させるという方法で、同調
周波数の高精度化を果たしているのである。このように
、本発明のスイッチトキャパシタ回路は、微小容量の切
替を必要とする回路において、その高精度化を可能とす
るものである。
In this example, the 4th and 5th bits to which no resistors are connected are used to roughly select the frequency, and the selectivity is improved by switching the 1st to 3rd bits to which resistors 261 to 236 are connected. This method achieves high precision in the tuning frequency. In this manner, the switched capacitor circuit of the present invention enables higher precision in circuits that require switching of minute capacitances.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、スイッ
チや配線の浮遊容量以下の微小な容量値であっても切り
換え可能なスイッチトキャパシタ回路を実現することが
可能となり、その効果は非常に大きい。特に高精度が要
求される温度補償水晶発揚器などに応用すれば、その効
果は甚大である。
As is clear from the above explanation, according to the present invention, it is possible to realize a switched capacitor circuit that can switch even a small capacitance value that is less than the stray capacitance of a switch or wiring, and the effect is very large. big. The effect is particularly great when applied to temperature-compensated crystal pumps that require high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるスイッチトキャパシタ回路を用い
た温度補償水晶発振回路の一実施例を示す回路図であり
、第2図は本発明によるスイッチトキャバシタ回路を用
いた同調回路の一実施例を示す回路図、第 %、発明の
作用原理を説明するための回路図及び特性図であり、第
4図は従来技術によるデジタル温度補償水晶発振回路の
回路図である。 103・・・・・・水晶振動子、 111〜117・・・・・・スイッチ。 121〜127・−・・・コンデンサ、131〜164
・・・・・・抵抗、 140・・・・・・温度情報作成部、 201・・・・・・アンテナ、 211〜215・・・・・・スイッチ。 221〜225・・・・・・コンデンサ、231〜23
3・・・・・・抵抗。 第1日 ′5″ 周液数
FIG. 1 is a circuit diagram showing an embodiment of a temperature compensated crystal oscillation circuit using a switched capacitor circuit according to the present invention, and FIG. 2 is a circuit diagram showing an embodiment of a tuning circuit using a switched capacitor circuit according to the present invention. FIG. 4 is a circuit diagram and characteristic diagram for explaining the working principle of the invention, and FIG. 4 is a circuit diagram of a digital temperature-compensated crystal oscillation circuit according to the prior art. 103...Crystal oscillator, 111-117...Switch. 121-127 --- Capacitor, 131-164
...Resistor, 140...Temperature information creation section, 201...Antenna, 211-215...Switch. 221-225...Capacitor, 231-23
3...Resistance. Day 1 '5'' Liquid count

Claims (2)

【特許請求の範囲】[Claims] (1)容量とスイッチとの直列回路の複数個と、容量と
抵抗とスイッチとの直列回路の少なくとも一個とを並列
接続して構成されるスイッチトキャパシタ回路。
(1) A switched capacitor circuit configured by connecting in parallel a plurality of series circuits of a capacitor and a switch and at least one series circuit of a capacitor, a resistor, and a switch.
(2)少なくともディジタル温度情報を作成する温度情
報作成部と、請求項1記載のスイッチトキャパシタ回路
と、水晶発振回路とで構成されるディジタル温度補償水
晶発振回路。
(2) A digital temperature-compensated crystal oscillation circuit comprising at least a temperature information creation section that creates digital temperature information, the switched capacitor circuit according to claim 1, and a crystal oscillation circuit.
JP14966488A 1988-06-17 1988-06-17 Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit Pending JPH01317004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14966488A JPH01317004A (en) 1988-06-17 1988-06-17 Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14966488A JPH01317004A (en) 1988-06-17 1988-06-17 Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit

Publications (1)

Publication Number Publication Date
JPH01317004A true JPH01317004A (en) 1989-12-21

Family

ID=15480150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14966488A Pending JPH01317004A (en) 1988-06-17 1988-06-17 Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit

Country Status (1)

Country Link
JP (1) JPH01317004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505901A (en) * 1999-07-19 2003-02-12 ケンブリッジ シリコン ラジオ リミテッド Adjustable filters
WO2003063335A1 (en) * 2002-01-21 2003-07-31 Citizen Watch Co., Ltd. Temperature compensation type oscillator
JP2007151196A (en) * 2007-03-12 2007-06-14 Citizen Holdings Co Ltd Temperature compensation type oscillator
US9281781B2 (en) 2013-04-24 2016-03-08 Renesas Electronics Corporation Semiconductor apparatus, oscillation circuit, and signal processing system
US10574181B2 (en) * 2018-05-17 2020-02-25 Microsoft Technology Licensing, Llc Circuit with shunt path

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505901A (en) * 1999-07-19 2003-02-12 ケンブリッジ シリコン ラジオ リミテッド Adjustable filters
WO2003063335A1 (en) * 2002-01-21 2003-07-31 Citizen Watch Co., Ltd. Temperature compensation type oscillator
JP2007151196A (en) * 2007-03-12 2007-06-14 Citizen Holdings Co Ltd Temperature compensation type oscillator
JP4545769B2 (en) * 2007-03-12 2010-09-15 シチズンホールディングス株式会社 Temperature compensated oscillator
US9281781B2 (en) 2013-04-24 2016-03-08 Renesas Electronics Corporation Semiconductor apparatus, oscillation circuit, and signal processing system
US10574181B2 (en) * 2018-05-17 2020-02-25 Microsoft Technology Licensing, Llc Circuit with shunt path

Similar Documents

Publication Publication Date Title
US4353044A (en) Switched-capacitor filter circuit having at least one simulated inductor and having a resonance frequency which is one-sixth of the sampling frequency
EP0244020B1 (en) Electrical filter
CN105359409A (en) High linearity variable capacitor array
US20150326231A1 (en) Tunable frequency-to-voltage controlled oscillation
US4626808A (en) Electrical filter circuit for processing analog sampling signals
CN102938644B (en) Numerically-controlled oscillator
Jerabek et al. Reconnection-less electronically reconfigurable filter with adjustable gain using voltage differencing current conveyor
JPH01317004A (en) Switched capacitor circuit and digital temperature compensated crystal oscillation circuit using said circuit
US20080211593A1 (en) Oscillation circuit
US20070126485A1 (en) Voltage-controlled oscillator
EP0996995B1 (en) Integrated circuit comprising an oscillator
US7863993B1 (en) Oscillator for providing oscillation signal with controllable frequency
US20090224843A1 (en) Programmable Crystal Oscillator
CA1238954A (en) Frequency comparator circuits
Moschytz Active RC filter building blocks using frequency emphasizing networks
KR100226594B1 (en) Electronic circuit and filter device using same
US7135915B2 (en) Tuning filters having transconductor cells
Kumar et al. Novel Electronic/Resistance Adjustable Capacitance Multiplier Circuit with VDCCs and Grounded Resistances
Dumawipata et al. Cascadable current-mode multifunction filter with two inputs and three outputs using CDTAs
JPH09294070A (en) Fast pll circuit
Inoue et al. A new switched‐capacitor transformer and its analysis
Haseeb et al. A Revolution Towards Current-Mode Circuits And Realization Of A Novel Lossless Floating Inductor Using MCDCC
Candelier et al. Low profile high stability digital tcxo: ultra low power consumption tcxo
Kumar et al. Active realization of series inductor and shunt capacitor and their applications in electronically tunable wave active filters
M'harzi et al. High-q and high-frequency current-mode bandpass active-filter based on simplified CCCIIs