JPH01316652A - Gas detector - Google Patents

Gas detector

Info

Publication number
JPH01316652A
JPH01316652A JP3155588A JP3155588A JPH01316652A JP H01316652 A JPH01316652 A JP H01316652A JP 3155588 A JP3155588 A JP 3155588A JP 3155588 A JP3155588 A JP 3155588A JP H01316652 A JPH01316652 A JP H01316652A
Authority
JP
Japan
Prior art keywords
heating
sensor
time constant
gas
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3155588A
Other languages
Japanese (ja)
Other versions
JP2791472B2 (en
Inventor
Takashi Yamaguchi
隆司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP63031555A priority Critical patent/JP2791472B2/en
Publication of JPH01316652A publication Critical patent/JPH01316652A/en
Application granted granted Critical
Publication of JP2791472B2 publication Critical patent/JP2791472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To reduce the power consumption of a gas sensor by using the gas sensor by intermittently heating the sensor by applying heating pulses having a width which is smaller than the thermal time constant of the heater of the sensor to the heater. CONSTITUTION:A semiconductor substance 6 of a metal oxide, the resistance value of which is changed by a gas, is heated by applying heating pulses to a heater 4 and the gas is detected based on the resistance value of the substance 6. By constituting a pulse power source of oscillation circuits Osc 1 and Osc 2, the circuit Osc 2 is actuated by the output of the circuit Osc 1 and the heater 4 is heated through a transistor Tr. The width of the heating pulses applied to the heater 4 is made shorter than the thermal time constant of the heater 4, for example, the 1/2 of the time constant and, at the same time, intervals of the pulses are made longer than the time constant, for example, desirably >=2 times as long as the time constant. In addition, the duty ratio of the heating pulses is set to <=1/20.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、金属酸化物半導体の抵抗値の変化を用いた
ガスの検出に関する。この発明は特に、用いるガスセン
サの消費電力の節減に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to gas detection using a change in the resistance value of a metal oxide semiconductor. This invention particularly relates to reducing the power consumption of the gas sensor used.

[従来技術] ガスセンサの消費電力の軽減は、ガスの検出の分野での
基本的課題の1つである。そして現在までの研究は、セ
ンサの小形化に向けられてきた。
[Prior Art] Reducing the power consumption of gas sensors is one of the fundamental challenges in the field of gas detection. Research to date has focused on miniaturizing sensors.

しかしセンサの小形化には限界が有ることら事実である
However, it is true that there is a limit to the miniaturization of sensors.

発明片は、ガスセンサを極く短時間だけ間欠的に加熱し
、センサを動作させることを検討した。
As for the invention, we considered operating the gas sensor by intermittently heating the gas sensor for a very short period of time.

モしてセンサの加熱時間を熱時定数以下として乙、ガス
を検出し得ることを見出した。そして加熱と加熱との間
隔はかなり長くても良いことを見出した。例えば熱時定
数100 m5ecのガスセンサに対して、にの明細書
では、加熱開始から定常加熱温度の90%までセンサが
昇温するのに必要な時間を熱時定数とする。)、毎秒1
回5 m5ecずつ加熱パルスを加えてらセンサは動作
した(第4図参照)。
We have discovered that it is possible to detect gas by setting the heating time of the sensor to less than the thermal time constant. It was also found that the interval between heating can be quite long. For example, for a gas sensor with a thermal time constant of 100 m5ec, in the specification of 2003, the time required for the sensor to rise in temperature from the start of heating to 90% of the steady heating temperature is defined as the thermal time constant. ), 1 per second
The sensor worked after applying heating pulses every 5 m5ec (see Figure 4).

この処置により、ガスセンサの消費電力は連続加熱の場
合に比べI / l OOa度に低下する。
This procedure reduces the power consumption of the gas sensor to I/l OOa degrees compared to continuous heating.

[発明の課題1 この発明の課題は、ガスセンサの消費電力を節減する点
に有る。
[Problem of the Invention 1 An object of the present invention is to reduce the power consumption of a gas sensor.

[発明の構成と作用] この発明では、ガスセンサのヒータにその熱時定数以下
の幅の加熱パルス、例えば熱時定数のl/2幅のパルス
を加え、センサを間欠的に加熱して使用する。パルスと
パルスとの間隔はセンサの熱時定数よりも長くし、好ま
しくは2倍以上、更に好ましくは5倍以」二とずろ。ま
た加熱パルスのデユーティ比は、I/10以下、好まし
くは1/20以下とする。
[Structure and operation of the invention] In the present invention, a heating pulse having a width equal to or less than the thermal time constant of the gas sensor is applied to the heater of the gas sensor, for example, a pulse having a width of 1/2 of the thermal time constant, and the sensor is intermittently heated for use. . The interval between pulses is longer than the thermal time constant of the sensor, preferably at least twice, more preferably at least 5 times longer than the thermal time constant of the sensor. Further, the duty ratio of the heating pulse is set to I/10 or less, preferably 1/20 or less.

このような条件でもガスセンサは動作し、ガスを検出で
きる。そしてセンサの消費電力は、加熱時の電力と加熱
パルスの幅やデユーティ比で定まる。そこで1回の加熱
時間を熱時定数以下とし、デユーティ比を小さくすれば
、消費電力を減少さ仕ることができる。
The gas sensor can operate and detect gas even under such conditions. The power consumption of the sensor is determined by the power during heating, the width of the heating pulse, and the duty ratio. Therefore, by making the heating time for one time less than or equal to the thermal time constant and reducing the duty ratio, power consumption can be reduced.

加熱パルスの幅は熱時定数以下であり、センサは加熱温
度の定常値に達しない。しかしパルスの幅が一定であれ
ば、センサが到達する温度も一定であり、問題は生じな
い。そして幅が一定のパルスを形成することは容易であ
る。
The width of the heating pulse is less than the thermal time constant and the sensor does not reach the steady-state value of the heating temperature. However, if the pulse width is constant, the temperature reached by the sensor will also be constant, and no problem will occur. And it is easy to form a pulse with a constant width.

[実施例] ガスセンサの槽造例 実施例では、呑田らの開発した省電力形ガスセンサ(特
願昭62−174,420号に記載)を利用した。この
ガスセンサの特徴は、Fe−Cr−A1合金線等の金属
発熱体の表面に、A l t O*等の耐熱絶縁性被覆
を施し、金属酸化物半導体の担体とする点に有る。即ち
金属発熱体をヒータとし、絶縁性被覆上にガスにより抵
抗値が変化する金属酸化物半導体とそのff114とを
設ける。ヒータと金属酸化物半導体とは絶縁性被覆で絶
縁される。
[Example] Gas sensor tank construction example In this example, a power-saving gas sensor developed by Nonda et al. (described in Japanese Patent Application No. 174,420/1982) was used. The feature of this gas sensor is that a heat-resistant insulating coating such as Al t O* is applied to the surface of a metal heating element such as a Fe-Cr-A1 alloy wire, and the metal oxide semiconductor is used as a carrier. That is, a metal heating element is used as a heater, and a metal oxide semiconductor whose resistance value changes depending on gas and its ff114 are provided on an insulating coating. The heater and the metal oxide semiconductor are insulated with an insulating coating.

実施例で用いたものでは、金属発熱体に線径20μmの
Fe−Cr−Al合金線を用い、金属酸化物半導体は単
味のSn0w層とし、耐熱絶縁性被覆は約1μm厚のA
 l t Oa膜とした。このセンサでは、300℃へ
の連続加熱時の消費電力は70 mWatt。
In the example used, a Fe-Cr-Al alloy wire with a wire diameter of 20 μm was used as the metal heating element, a single Sn0w layer was used as the metal oxide semiconductor, and an approximately 1 μm thick A
It was made into a l t Oa film. This sensor consumes 70 mWatt when continuously heated to 300°C.

印加電圧は約0.6V、発熱体の抵抗値は5Ωであった
。また熱時定数は1oOnsecである。ここで90%
応答の熱時定数り月00m5ecであるので、l/eま
での応答への熱時定数は約40m5ecとなる。ここに
eは自然対数の底を現す。
The applied voltage was about 0.6V, and the resistance value of the heating element was 5Ω. Further, the thermal time constant is 1oOnsec. 90% here
Since the thermal time constant of the response is 00 m5 ec, the thermal time constant for the response up to l/e is about 40 m5 ec. Here, e represents the base of the natural logarithm.

このガスセンサは消費電力の小さなセンサの例として用
いたもので、これ以外にも任意のセンサを用い得る。例
えば発明者が提案した、ガラス薄膜トに、ヒータと金属
酸化物半導体層と、電極とを設けたものでも良い(特願
昭62−5596号)。
This gas sensor is used as an example of a sensor with low power consumption, and any other sensor may be used. For example, a structure in which a heater, a metal oxide semiconductor layer, and an electrode are provided on a thin glass film proposed by the inventor may be used (Japanese Patent Application No. 5596/1982).

第6図〜第8図に、実施例に用いたガスセンサ2を示す
。第6図において、4は線径20μmのPe−Cr−A
l合金線(スエーデンのガブリウス社製のカンタル、カ
ンタルは商品名)からなる金属発熱体である。8は金属
発熱体4のほぼ全面に設けた耐熱絶縁性被覆で、アルミ
ナゾルの塗布と、800℃での熱分解を10回繰り返し
て厚さ約17zmのアルミナ被覆8とした。6は、5n
Otや、IntO3、ZnO等の金属酸化物半導体で、
ここではS n(OCH3)3(0(CHJPN Ht
)、のイソブタノール溶液を滴下し、500℃で熱分解
して、5nOtとした。
6 to 8 show the gas sensor 2 used in the example. In Fig. 6, 4 is Pe-Cr-A with a wire diameter of 20 μm.
It is a metal heating element made of L alloy wire (Kantal manufactured by Gabrius of Sweden, Kanthal is a trade name). Reference numeral 8 denotes a heat-resistant insulating coating provided on almost the entire surface of the metal heating element 4. Application of alumina sol and thermal decomposition at 800° C. were repeated 10 times to obtain an alumina coating 8 with a thickness of about 17 zm. 6 is 5n
Metal oxide semiconductors such as Ot, IntO3, ZnO, etc.
Here, S n(OCH3)3(0(CHJPN Ht
) was added dropwise and thermally decomposed at 500°C to give 5nOt.

10.12はAuを真空蒸着した電極で、14はアルミ
ナを用いた耐熱絶縁性基板である。また16は空洞で、
SnO,の熱分解時に、原料溶液が基板14にふれるの
を防止するためのものである。
Reference numeral 10 and 12 are electrodes on which Au is vacuum-deposited, and reference numeral 14 is a heat-resistant insulating substrate made of alumina. Also, 16 is hollow,
This is to prevent the raw material solution from touching the substrate 14 during thermal decomposition of SnO.

18.20.22は金の印刷電極で、電極18,22に
金属発熱体4の両端を溶接すると共に、電極lOを印刷
電極18に、検出電極12を印刷電極20に、金ペース
ト24で固定した。
18. 20. 22 are gold printed electrodes. Both ends of the metal heating element 4 are welded to the electrodes 18 and 22, and the electrode IO is fixed to the printed electrode 18 and the detection electrode 12 is fixed to the printed electrode 20 with gold paste 24. did.

第7図の拡大断面図や第8図の全体図において、30は
外部ピンを兼用したリードフレームで、各リードフレー
ム30と印刷電極+8.20.22とをリード線て接続
する。また26は金属発熱体4と印刷電極18.22と
の溶接部、28はリードフレーム30と基板14とのグ
イボンディング層である。さらに32は合成樹脂等のヘ
ース、3,1は合成樹脂等のカバーである。
In the enlarged sectional view of FIG. 7 and the overall view of FIG. 8, numeral 30 denotes a lead frame which also serves as an external pin, and each lead frame 30 and the printed electrodes +8, 20, and 22 are connected by lead wires. Further, 26 is a welded portion between the metal heating element 4 and the printed electrode 18.22, and 28 is a bonding layer between the lead frame 30 and the substrate 14. Furthermore, 32 is a heath made of synthetic resin or the like, and 3 and 1 are covers made of synthetic resin or the like.

ガスセンサの特性 第4図に、センサ2の加熱パルスの幅と抵抗値との関係
を示す。用いたセンサは前記のらのである。横軸は金属
発熱体4への印加電圧を、縦軸は加熱パルス終了直前の
金属酸化物半導体6の抵抗値を示す。なお雰囲気は20
℃、湿度65%、連続加熱時の温度は印加電圧0.6■
で約3006Cである。加熱は、毎秒1回5 m5ec
−100m5ec幅の加熱パルスにより行った。5 m
5ec(熱時定数の1/20)や15m5ec(熱時定
数の15%)の加熱でら、センサは動作している。次に
熱時定数あるいはそのl / 2 n度の加熱パルス(
100msecや50 m5ec)では、連続加熱の場
合と特性はほとんど変わらない。また熱時定数よりも加
熱時間を十分に短くすると(5m5ecや15m5ec
)、センサへの印加電圧を連続加熱の場合よりやや高く
するのが好ましい。
Characteristics of the Gas Sensor FIG. 4 shows the relationship between the width of the heating pulse and the resistance value of the sensor 2. The sensor used was the one mentioned above. The horizontal axis represents the voltage applied to the metal heating element 4, and the vertical axis represents the resistance value of the metal oxide semiconductor 6 immediately before the end of the heating pulse. The atmosphere is 20
℃, humidity 65%, temperature during continuous heating is applied voltage 0.6■
It is about 3006C. Heating is 5 m5ec once per second
The heating pulse was performed with a width of −100 m5 ec. 5 m
The sensor is operating even with heating of 5 ec (1/20 of the thermal time constant) or 15 m5 ec (15% of the thermal time constant). Then the thermal time constant or its l / 2 n degree heating pulse (
100 msec or 50 m5ec), the characteristics are almost the same as in the case of continuous heating. Also, if the heating time is sufficiently shorter than the thermal time constant (5 m5 ec or 15 m5 ec
), it is preferable to make the voltage applied to the sensor slightly higher than in the case of continuous heating.

第5図に、+ o o ppmのエタノールへの応答特
性を示す。なお加熱条件は、毎秒1回幅5 m5ecで
電圧0.7Vのパルスを加えたものである。この例では
センサ2にIOKΩの負荷抵抗と5Vの電源を接続して
、加熱パルス終了直後の負荷抵抗への両端間電圧をサン
プリングした。センサ2の応答は速く、実用に用いろこ
とができろ。
FIG. 5 shows the response characteristics to + o o ppm ethanol. The heating conditions were such that a pulse with a voltage of 0.7 V was applied once every second with a width of 5 m5 ec. In this example, a load resistor of IOKΩ and a power supply of 5 V were connected to the sensor 2, and the voltage across the load resistor was sampled immediately after the heating pulse ended. Sensor 2 has a fast response and can be used for practical purposes.

表目こ、6種の加熱条件と特性との関係を示す。The table below shows the relationship between six types of heating conditions and characteristics.

表−七* 連続加熱     250  6.5  5.0  3
.0100msec/sec   800 13   
7.0  3.550m5ec/see   600 
 8.0  8.0  4.015m5ec/see 
  350  6.0  5.0  3.55m5ec
/see   300  4.0  4.5  4.5
15m5ec/1Osec  300  4.5  5
.0  4.015m5ec/ll1in   400
  3.0  6.0  4.010 m5ec/mi
n*   cxs   I OMΩ IOMΩ IMΩ
* ガス濃度は各l 00 ppm、感度は空気中とガ
ス中との抵抗値の比を示す、また最後の例では毎分1回
10+n5eaのパルスで加熱し、次の加熱の直前の抵
抗値を測定、この例では空気中の抵抗値を測定できずガ
ス中での抵抗値を表示、 加熱電圧はいずれら0.7V、抵抗値はにΩ単位で表示
Table-7* Continuous heating 250 6.5 5.0 3
.. 0100msec/sec 800 13
7.0 3.550m5ec/see 600
8.0 8.0 4.015m5ec/see
350 6.0 5.0 3.55m5ec
/see 300 4.0 4.5 4.5
15m5ec/1Osec 300 4.5 5
.. 0 4.015m5ec/ll1in 400
3.0 6.0 4.010 m5ec/mi
n* cxs I OMΩ IOMΩ IMΩ
*The gas concentration is 100 ppm each, and the sensitivity is the ratio of the resistance value in air and gas.In the last example, heating is performed once every minute with a pulse of 10+n5ea, and the resistance value immediately before the next heating is In this example, the resistance value in air cannot be measured, so the resistance value in gas is displayed.The heating voltage is 0.7V in each case, and the resistance value is displayed in ohms.

これらのデータから以下のことが明らかである。The following is clear from these data:

1回の加熱時間を熱時定数の50%(50m5ec/5
ec)、15%(l 5 m5ec/ 5ee)、5%
(5m5ec/ 5ec)のいずれとしてら、ガスを検
出できる。そして加熱と加熱との間隔は、1秒(熱時定
数の10倍)から1分(熱時定数の600倍)としてら
全く問題は生じない。そして熱時定数以下の加熱パルス
を加え、加熱パルスと加熱パルスとの間隔を大きくすれ
ば、センサ2の消費電力は急激に減少する。更にセンサ
2の応答速度は、最も過酷な条件(5m5ec/sec
の加熱パルス)でも、問題はない。現在のところ全ての
データが満足な結果を示したので、加熱パルスの幅の下
限やパルス間隔の上限は明らかでない。推定と12では
、加熱パルスの幅の下限に制約は7j<、パルスの間隔
の上限はIO〜30分程度であろう。
One heating time is 50% of the thermal time constant (50m5ec/5
ec), 15% (l 5 m5ec/5ee), 5%
(5m5ec/5ec), gas can be detected. No problem will arise if the interval between heating is set from 1 second (10 times the thermal time constant) to 1 minute (600 times the thermal time constant). Then, by applying a heating pulse that is equal to or less than the thermal time constant and increasing the interval between heating pulses, the power consumption of the sensor 2 is rapidly reduced. Furthermore, the response speed of sensor 2 is under the harshest conditions (5m5ec/sec
heating pulse) without any problem. Since all data so far have shown satisfactory results, there is no clear lower limit on the width of the heating pulse or upper limit on the pulse interval. According to estimates and 12, the lower limit of the width of the heating pulse would be 7j<, and the upper limit of the pulse interval would be about IO~30 minutes.

第9図に、ヒータ4に3,2Vの電圧を毎秒1回0 、
2 m5ecずつ加えた際の特性を示す。0.21se
c/seeの加熱パルスでもガスを検出できる。またセ
ンサ出力Voutの応答には、加熱パルスに対する遅れ
が見られる。そして加熱パルスの終了後10m5ec程
度経過すると、センサ出力はパルス前の値に復帰する。
In Fig. 9, a voltage of 3.2 V is applied to the heater 4 once every second, and
The characteristics when adding 2 m5ec each are shown. 0.21se
Gas can also be detected with c/see heating pulses. Further, a delay with respect to the heating pulse is seen in the response of the sensor output Vout. Then, after approximately 10 m5 ec has passed after the end of the heating pulse, the sensor output returns to the value before the pulse.

この結果は次のことを示唆する。This result suggests the following.

加熱パルスの幅を極端に短くすると、ヒータ4から金属
酸化物半導体6への熱伝導に時間を要すること等のため
、センサ出力の応答はパルスから遅れる。そしてこの領
域では、パルスの幅や電力よりも1回のパルス当たりの
エネルギーが重要である。逆に言えば、パルス幅の下限
には特に位味はなく、回路的に可能てヒータ4の耐圧が
許す範囲であれば良いことになる。この下限はIμse
c程度であろう。
If the width of the heating pulse is extremely short, the response of the sensor output will be delayed from the pulse because it will take time for heat to be conducted from the heater 4 to the metal oxide semiconductor 6. In this region, the energy per pulse is more important than the pulse width or power. In other words, the lower limit of the pulse width has no particular value, and may be within a range that is possible in terms of the circuit and allowed by the withstand voltage of the heater 4. This lower limit is Iμse
It would be around c.

加熱パルスの幅を熱時定数(100m5ec)より短く
”4゛ると、センサ2の温度が安定する萌に加熱パルス
が終了することになる。しかし実際には、このことは特
に問題にならない。センサ2の温度変化のパターンは、
電源電圧や発振回路0scl、0sc2の発振条件で定
まる。そこでこれらのものが安定であれば、加熱のパタ
ーンは一定で問題は生じない。安定な’[iEbを得る
ことや、安定な発振回路0sclや0sc2を得ること
は極く容易である。
If the width of the heating pulse is set to 4 degrees shorter than the thermal time constant (100 m5ec), the heating pulse will end when the temperature of the sensor 2 becomes stable.However, in reality, this is not a particular problem. The pattern of temperature change of sensor 2 is
It is determined by the power supply voltage and the oscillation conditions of the oscillation circuits 0scl and 0sc2. Therefore, if these things are stable, the heating pattern will be constant and no problems will occur. It is extremely easy to obtain a stable iEb and a stable oscillation circuit 0scl or 0sc2.

更に表1の最後のデータから明らかなように、加熱パル
スをセンサ2のヒートクリーニングに使用し、センサ2
の冷却後に検出を行っても良い。
Furthermore, as is evident from the last data in Table 1, the heating pulse is used for heat cleaning of sensor 2;
Detection may be performed after cooling.

以下に発明背が検討した具体的な回路例を、数値定数と
共に示す。
A specific example of the circuit studied by the inventor is shown below along with numerical constants.

K道の回路例 第1図に、実施例の回路図を示す。図において、r>t
+は適宜の電源で、ここでは1.5VX2の3V7[i
源とする。これは装置の電池使用を企図したものである
。0sclは毎秒1回、幅10m5ecのパルスを発す
る発振回路、0sc2は500μ5ecfiに幅25μ
secのパルスを発する発振回路である。
Example of K-way circuit FIG. 1 shows a circuit diagram of the embodiment. In the figure, r>t
+ is an appropriate power supply, here 1.5VX2 3V7[i
source. This is intended for battery use of the device. 0scl is an oscillation circuit that emits a pulse with a width of 10m5ec once per second, and 0sc2 is an oscillation circuit that generates a pulse with a width of 25μ at 500μ5ecfi.
This is an oscillation circuit that emits pulses of sec.

そして発振回路0sclの出力パルスをストローブ信号
として、発振回路0sc2を発振させる。0sc1.0
sc2によりパルス電源を構成する。しかし付帯回路に
マイクロコンピュータ等の論理回路を用いる場合、パル
ス電源はマイクロコンピュータ等の論理回路に内蔵させ
てら良い。
Then, using the output pulse of the oscillation circuit 0scl as a strobe signal, the oscillation circuit 0sc2 is caused to oscillate. 0sc1.0
The sc2 constitutes a pulse power source. However, when a logic circuit such as a microcomputer is used as the auxiliary circuit, the pulse power supply may be built into the logic circuit such as the microcomputer.

2は11η記のガスセンサ、Trは金属発熱体4に接続
したトランジスタで、任きのスイッチに変更できろ。
2 is the gas sensor listed in 11η, Tr is a transistor connected to the metal heating element 4, and you can change it to any switch you like.

It Iはセンサ2の負荷抵抗で、その両端間電圧をセ
ンサ出力Voutとする。
It I is the load resistance of the sensor 2, and the voltage across it is the sensor output Vout.

A1.A2は演算増幅器、D1〜D3はダイオード、C
Iはコンデンサ、R2−R4は1氏抗で、これらにより
ピークホールド回路を構成ずろ。即ち、出力Voutの
ピークをコンデンサCIに蓄積し、これを演算増幅器A
2から取り出す。R5は演算増幅WA2の出力抵抗、M
は検出結果を表示するためのメータである。負荷抵抗R
IからメータMをガス検出手段とする。ここでピークホ
ールド回路を用いたのは、以下の理由による。センサ出
力VouLは加熱パルスに応じて変動する。そして通常
量も意味がある信号は、加熱パルス終了時付近のセンサ
温度が最も高い点での信号である。
A1. A2 is an operational amplifier, D1 to D3 are diodes, C
I is a capacitor, R2-R4 is a 1° resistor, and these will form a peak hold circuit. That is, the peak of the output Vout is accumulated in the capacitor CI, and this is transferred to the operational amplifier A.
Take it out from 2. R5 is the output resistance of operational amplifier WA2, M
is a meter for displaying detection results. Load resistance R
The meters from I to M are used as gas detection means. The reason for using the peak hold circuit here is as follows. The sensor output VouL varies depending on the heating pulse. The signal for which the normal amount is also significant is the signal at the point near the end of the heating pulse where the sensor temperature is the highest.

そしてこの時、センサの温度依存性のため、出力Vou
tはピークを示す。そこでこのピークをとらえ、これを
ガス検出手段で処理するのである。またVoutのピー
クの持続時間は一般に短く、ピークホールド回路でピー
クをボールドすることにより、信号処理を容易にするの
である。
At this time, due to the temperature dependence of the sensor, the output Vou
t indicates a peak. This peak is then captured and processed by gas detection means. Furthermore, the duration of the peak of Vout is generally short, and signal processing is facilitated by bolding the peak with a peak hold circuit.

第2図に、センサ出力Voutのサンプリング時期を特
定した回路を示す。この回路では、発振回路Osc l
のストローブ信号の終了時点で、A/D変換回路A/D
をエノノトリガーする。なおAl1)変換回路A/Dに
は、サンプル7に−ルド回路を内蔵したしのが好ましい
。サンプルホールド回路を内蔵させないと、V out
のサンプリング時間が短いため、高速A/D変換回路が
必要となる。このような回路は一般に高価である。そし
てA/D変換した出力を表示回路D isp!ayに表
示し、A/D変換回路の出力を制御出力Control
として外部に取り出4−0この回路では、加熱パルス終
了時の金属酸化物半導体6の抵抗値を基に、ガスを検出
する。しかし出力のサンプリング時期は任意であり、例
えば加熱パルスの終了直前、あるいはセンサ2の冷却後
等としても良い。
FIG. 2 shows a circuit that specifies the sampling timing of the sensor output Vout. In this circuit, the oscillation circuit Oscl
At the end of the strobe signal, the A/D conversion circuit A/D
Trigger Enono. Note that it is preferable that sample 7 has a built-in lead circuit in Al1) conversion circuit A/D. Without a built-in sample and hold circuit, V out
Since the sampling time is short, a high-speed A/D conversion circuit is required. Such circuits are generally expensive. Then, the A/D converted output is sent to the display circuit D isp! ay and displays the output of the A/D conversion circuit as control output Control.
This circuit detects the gas based on the resistance value of the metal oxide semiconductor 6 at the end of the heating pulse. However, the sampling timing of the output is arbitrary, and may be, for example, immediately before the end of the heating pulse, or after the sensor 2 has cooled down.

第3図に、第1図の回路の動作を示す。発振回路0sc
lの出力パルスで発振回路0sc2を動作さけ、トラン
ジスタTrを介して金属発熱体4を加熱する。発振回路
0sc2のデユーティ比は1/20、電源Ebの出力は
3■なので、これは発振回路0sclの出力パルス(幅
10m5ec)の間、0.7Vの電圧で金属発熱体4を
加熱することに等しい。
FIG. 3 shows the operation of the circuit of FIG. 1. Oscillation circuit 0sc
The oscillation circuit 0sc2 is operated by the output pulse 1, and the metal heating element 4 is heated via the transistor Tr. The duty ratio of the oscillation circuit 0sc2 is 1/20, and the output of the power source Eb is 3■, so this means that the metal heating element 4 is heated with a voltage of 0.7V during the output pulse (width 10m5ec) of the oscillation circuit 0scl. equal.

このようにするのは、0.7Vの電源よりら3Vや5■
等の電源の方か得やすいためである。発振回路0scl
の出力は毎秒1回幅10m5ecのパルスであり、セン
サ2の消費電力は連続加熱の場合に比べl/100程度
に減少する。
In this way, from a 0.7V power supply to a 3V or 5V power supply,
This is because it is easier to obtain power sources such as Oscillation circuit 0scl
The output is a pulse with a width of 10 m5ec once per second, and the power consumption of the sensor 2 is reduced to about 1/100 compared to the case of continuous heating.

そして出力Voutのピーク値(第1図の場合)、ある
いは特定のサンプリング時期(第2図の場合)での出力
VouLから、ガスを検出する。
Then, gas is detected from the peak value of the output Vout (in the case of FIG. 1) or the output VouL at a specific sampling period (in the case of FIG. 2).

[発明の効果] この発明では、ガスセンサの消費電力を減少さけろこと
ができる。
[Effects of the Invention] According to the present invention, it is possible to reduce the power consumption of the gas sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の回路図、第2図は変形例の回路図、第
3図は実施例の動作波形図で、第3図1)は金属完熟体
への加熱パルス波形を、第3図2)はセンサ温度の波形
を、第3図3)はセンサ出力の波形を示す。第4図、第
5図は実施例の特性図である。 第6図は実施例に用いたガスセンサの要部正面図、第7
図は実施例に用いたガスセンサの要部拡大断面、第8図
は実施例に用いたガスセンサの断面図である。 第9図は、実施例の特性図である。 図において、2 ガスセンサ、 ・1 金属完熟体、6 金属酸化物半導体。
Fig. 1 is a circuit diagram of the embodiment, Fig. 2 is a circuit diagram of a modified example, and Fig. 3 is an operation waveform diagram of the embodiment. FIG. 2) shows the waveform of the sensor temperature, and FIG. 3) shows the waveform of the sensor output. FIG. 4 and FIG. 5 are characteristic diagrams of the embodiment. Figure 6 is a front view of the main parts of the gas sensor used in the example, Figure 7
The figure is an enlarged sectional view of a main part of the gas sensor used in the example, and FIG. 8 is a sectional view of the gas sensor used in the example. FIG. 9 is a characteristic diagram of the example. In the figure, 2 gas sensor, 1 fully mature metal body, 6 metal oxide semiconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)ガスにより抵抗値が変化する金属酸化物半導体を
、ヒータにより加熱してガスを検出するようにしたガス
検出装置において、 前記ヒータに加熱パルスを加えてガスセンサを間欠的に
加熱するためのパルス電源を設け、かつ加熱パルスの幅
をガスセンサの熱時定数よりも短くすると共に、加熱パ
ルス間の間隔を熱時定数よりも長くし、更に加熱パルス
のデューティ比を1/10以下としたことを特徴とする
、ガス検出装置。
(1) In a gas detection device that detects gas by heating a metal oxide semiconductor whose resistance value changes depending on the gas using a heater, a heating pulse is applied to the heater to intermittently heat the gas sensor. A pulse power source is provided, the width of the heating pulse is made shorter than the thermal time constant of the gas sensor, the interval between heating pulses is made longer than the thermal time constant, and the duty ratio of the heating pulse is set to 1/10 or less. A gas detection device featuring:
(2)特許請求の範囲第1項記載のガス検出装置におい
て、 前記加熱パルスの幅を熱時定数の1/2以下とし、かつ
加熱パルスのデューティ比を1/20以下としたことを
特徴とする、ガス検出装置。
(2) The gas detection device according to claim 1, characterized in that the width of the heating pulse is 1/2 or less of a thermal time constant, and the duty ratio of the heating pulse is 1/20 or less. gas detection device.
JP63031555A 1988-02-02 1988-02-12 Gas detector Expired - Lifetime JP2791472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031555A JP2791472B2 (en) 1988-02-02 1988-02-12 Gas detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-22480 1988-02-02
JP2248088 1988-02-02
JP63031555A JP2791472B2 (en) 1988-02-02 1988-02-12 Gas detector

Publications (2)

Publication Number Publication Date
JPH01316652A true JPH01316652A (en) 1989-12-21
JP2791472B2 JP2791472B2 (en) 1998-08-27

Family

ID=26359708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031555A Expired - Lifetime JP2791472B2 (en) 1988-02-02 1988-02-12 Gas detector

Country Status (1)

Country Link
JP (1) JP2791472B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940679A2 (en) * 1998-03-02 1999-09-08 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG System for fire detection and method and sensor especially for this system
EP1189055A2 (en) * 2000-09-14 2002-03-20 Riken Keiki Co., Ltd. Gas detector-alarm employing hot-wire gas sensor
JP2002318215A (en) * 2001-02-16 2002-10-31 Figaro Eng Inc Gas detecting method and device therefor
JP2006017681A (en) * 2004-07-05 2006-01-19 Noritz Corp Humidity detector
JP2006504973A (en) * 2002-11-01 2006-02-09 ハネウェル・インターナショナル・インコーポレーテッド Gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618752A (en) * 1979-07-25 1981-02-21 Ricoh Co Ltd Driving method for sensor
JPS61209347A (en) * 1985-03-13 1986-09-17 Shinkosumosu Denki Kk Hot wire type semiconductive gas alarm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618752A (en) * 1979-07-25 1981-02-21 Ricoh Co Ltd Driving method for sensor
JPS61209347A (en) * 1985-03-13 1986-09-17 Shinkosumosu Denki Kk Hot wire type semiconductive gas alarm

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940679A2 (en) * 1998-03-02 1999-09-08 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG System for fire detection and method and sensor especially for this system
EP0940679A3 (en) * 1998-03-02 2001-06-13 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG System for fire detection and method and sensor especially for this system
EP1189055A2 (en) * 2000-09-14 2002-03-20 Riken Keiki Co., Ltd. Gas detector-alarm employing hot-wire gas sensor
EP1189055A3 (en) * 2000-09-14 2002-11-27 Riken Keiki Co., Ltd. Gas detector-alarm employing hot-wire gas sensor
JP2002318215A (en) * 2001-02-16 2002-10-31 Figaro Eng Inc Gas detecting method and device therefor
JP2006504973A (en) * 2002-11-01 2006-02-09 ハネウェル・インターナショナル・インコーポレーテッド Gas sensor
JP2006017681A (en) * 2004-07-05 2006-01-19 Noritz Corp Humidity detector

Also Published As

Publication number Publication date
JP2791472B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US4514722A (en) Domestic automatic continuously monitoring soil moisture monitor/indicator
JP2889909B2 (en) Atmosphere meter
JPH01316652A (en) Gas detector
JP2791473B2 (en) Gas detection method and device
GB2091882A (en) Electrical catalytic gas detection systems
Amamoto et al. Development of pulse-drive semiconductor gas sensor
JPS57184961A (en) Detecting device
JP3331070B2 (en) Atmosphere detector
JPH01316651A (en) Method and device for detecting gas
JPH03150454A (en) Ozone detecting device
JPH0710286Y2 (en) Gas detector
JPH01206249A (en) Method of detecting fire and apparatus therefor
CN1243949A (en) Humidity meter
JPS5818635B2 (en) Electronic watch with hygrometer
JPH0627719B2 (en) Odor detector
JP3999831B2 (en) Gas detection method and apparatus
JP2919873B2 (en) Underwater chlorine detector
GB2138573A (en) Catalytic Gas Detection Systems
JP4151596B2 (en) Gas detector
Keshari et al. Design and Development of Instrumentation for Remote Detection of Hydrogen Using Metal Oxide Sensor
JPS57120847A (en) Gas sensor
JPH0532761Y2 (en)
JPH02307050A (en) Gas detecting method
Larsen et al. Fast-response temperature sensors
JPH065635Y2 (en) Flow velocity sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10