JPH01315723A - Optical writing type liquid crystal light valve - Google Patents

Optical writing type liquid crystal light valve

Info

Publication number
JPH01315723A
JPH01315723A JP6984489A JP6984489A JPH01315723A JP H01315723 A JPH01315723 A JP H01315723A JP 6984489 A JP6984489 A JP 6984489A JP 6984489 A JP6984489 A JP 6984489A JP H01315723 A JPH01315723 A JP H01315723A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
optical writing
image
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6984489A
Other languages
Japanese (ja)
Inventor
Shuhei Yamamoto
修平 山本
Naoki Kato
直樹 加藤
Teruo Ebihara
照夫 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP6984489A priority Critical patent/JPH01315723A/en
Publication of JPH01315723A publication Critical patent/JPH01315723A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To obtain a liquid crystal light value with high resolution by employing, as a liquid crystal layer, a ferroelectric liquid crystal having a threshold characteristic and a bistable memory between light reflectance and an impressed voltage. CONSTITUTION:A transparent electrode 3a, photoconductive film 4, light-shielding film 5, light reflecting film 6, and liquid crystal orientation film 7a are formed inside a transparent substrate 2a on the side where an image is written by using an optical writing means 1 such as laser beam, LED, CRT, etc.. In such an optical writing liquid crystal value, a photoconductive layer is sensitive to the light having 700-850nm wavelength; therefore an image is written by using the optical writing means 1, for example, a semiconductor laser having 780nm central wavelength, after a first processing where d.c. bias voltage far higher than a threshold value voltage is impressed in order to obtain one direction stability. Then, by irradiating the light of a 500W halogen lamp from the projecting side and then projecting the image onto a screen 12 through a polarizer and analyser, a projected image with a high contrast can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高精細な画像表示装置、プリンタ等に用いら
れる光書込型液晶ライトバルブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical writing type liquid crystal light valve used in high-definition image display devices, printers, and the like.

〔発明の概要〕[Summary of the invention]

本発明は、光書込型液晶ライトバルブにおいて、液晶層
に、閾値特性と双安定メモリ性を有する強誘電性液晶を
用い、液晶ライトバルブの閾値電圧よりも十分に大きい
直流バイアス電圧を印加する事により液晶分子のダイレ
クタを全面均一に配列保持させる第!の工程を経た後、
第1の工程とは逆極性で且つ暗時には閾値電圧以下であ
り、光照射時には閾値電圧以下となる直流電圧を印加し
ながらレーザビームやLED等の光照射による画像書込
みを行う第2の工程を採用する事により、1回の高速な
ビーム走査によって画像情報を書き込み且つ保持できる
極めて高速、高精細な光書込型液晶ライトバルブを提供
するものである。
The present invention provides an optically writable liquid crystal light valve in which a ferroelectric liquid crystal having threshold characteristics and bistable memory properties is used in the liquid crystal layer, and a DC bias voltage sufficiently larger than the threshold voltage of the liquid crystal light valve is applied. By keeping the directors of liquid crystal molecules uniformly aligned on the entire surface! After going through the process of
The second step is to write an image using light irradiation from a laser beam or LED while applying a DC voltage that is opposite in polarity to the first step and is below the threshold voltage when it is dark and below the threshold voltage when irradiated with light. By adopting this method, it is possible to provide an extremely high-speed, high-definition optical writing type liquid crystal light valve that can write and hold image information with one high-speed beam scan.

本発明によるライトバルブを用いる事により、高精細な
画像表示が可能であり、書込み速度も速く動画表示可能
な光書込型画像投射装置を提供する事ができる。又、I
?−G−83色分の画像を書込む液晶ライトバルブを用
意し、書込み後3色の画像をスクリーン上に投射合成す
る事により、フルカラーの画像投射装置を実現する事も
可能となる。
By using the light valve according to the present invention, it is possible to provide an optical writing type image projection device that can display high-definition images, has a fast writing speed, and can display moving images. Also, I
? -G- It is also possible to realize a full-color image projection device by preparing a liquid crystal light valve for writing images of 83 colors and projecting and combining the three-color images onto a screen after writing.

〔従来の技術〕[Conventional technology]

従来から、光書込型液晶ライトバルブには、アドレッシ
ング方法や使用する液晶の表示モードに様々な方式が用
いられている。アドレッシング方法としては、液晶と光
導電膜を組み合わせた光書込み型、レーザ光による熱書
込み型等があり、液晶の表示モードとしては、SmA相
転移、Ne −ch相転移、DSM、TN、STN等が
用いられている。特に、光の込み型の場合は熱書込み型
に比べで凹込み速度が速く動画表示等への応用が期待さ
れている。
Conventionally, optical writing type liquid crystal light valves have used various addressing methods and display modes of the liquid crystal used. Addressing methods include an optical writing type that combines liquid crystal and a photoconductive film, a thermal writing type using laser light, etc. Display modes of liquid crystal include SmA phase transition, Ne -ch phase transition, DSM, TN, STN, etc. is used. In particular, the optical writing type has a faster recessing speed than the thermal writing type, and is expected to be applied to video displays and the like.

〔発明が解決しようとするLl’a) しかしながら、上記のような従来の技術では液晶層が電
気光学効果を生じているのは光照射時だけであり、光照
射が終了すると形成された画像は液晶の時定数C1?に
よって僅かばかりの間保持されるだけで消滅してしまう
事になる。−船釣な90゜ツイストネマティンク型液晶
を用いた光書込型液晶ライトバルブでは、吉込み光源と
して主に蛍光体の残光効果を有するCr?T等が用いら
れていたが、この場合ライトバルブの解像度は、はぼC
I?Tによって決定されてしまう事になり、コスト的に
も高く、装置が大型化する等という欠点を有していた。
[Ll'a to be solved by the invention] However, in the conventional technology as described above, the liquid crystal layer produces an electro-optic effect only when irradiated with light, and when the irradiation of light ends, the formed image disappears. Liquid crystal time constant C1? Therefore, it will be retained for only a short time and then disappear. - In an optical writing type liquid crystal light bulb using a 90° twisted nematic type liquid crystal, the light source mainly uses Cr, which has the afterglow effect of the phosphor. T, etc. were used, but in this case the resolution of the light valve was approximately C.
I? This has disadvantages such as high cost and an increase in the size of the device.

これに対して、レーザービーム走査による書込みも考案
されているが、この場合は、画像を保持できる時間が短
い為、解像度を上げる事ができず、高解像度の大画面デ
イスプレィを得ようとすると、全く同じ箇所で高速に何
度も重ねGきする必要があり、さらに、そのために超高
速、超高請度なレーザースキャナ及び超高感度の光導電
膜の開発が不可欠となり、実現する為には数多くの問題
が山積みしていた。
In contrast, writing by laser beam scanning has been devised, but in this case, the image can be retained for a short time, so the resolution cannot be increased, and when trying to obtain a high resolution large screen display, It is necessary to repeat multiple Gs at the same exact location at high speed, and this requires the development of an ultra-high-speed, ultra-reliable laser scanner and an ultra-sensitive photoconductive film. Many problems were piling up.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光書込型液晶ライトバルブとして、光透過率
又は光反射率と印加電圧の間に閾値特性を存する双安定
メモリ性強誘電性液晶を用いた。
The present invention uses a bistable memory ferroelectric liquid crystal that has a threshold characteristic between light transmittance or light reflectance and applied voltage as an optically writable liquid crystal light valve.

〔作用〕[Effect]

本発明によれば、−度ライトバルブ全面を光照射し、明
時の閾値電圧よりも十分に高い直流バイアス電圧を印加
して強誘電性液晶を一方向の安定状態迄揃えその状態を
メモリさせる、もしくは光照射無しで、09時の閾値電
圧よりも十分に高い直流バイアス電圧を印加して強誘電
性液晶を一方向の安定状態迄揃えその状態をメモリさせ
る。このような第1の工程を経た後に、光照射無しで、
暗時には閾値電圧以下であり、光照射には閾値電圧以」
二となる逆極性の直流バイアス電圧を印加しながら、レ
ーザー光等によって光書込みをする第2の工程を行う、
これにより光照射を受けた領域の光感電層にはキャリア
が発生し、発生したキャリアは直流バイアス電圧により
電界方向にドリフトし、その結果、光導電層の抵抗が下
がり、光照射が行われた領域には閾値電圧以上の逆極性
のバイアス電圧が印加され、自発分極の反転に伴う分子
の反転が起こり、もう一方の安定状態にメモリされる事
になる。このようにして形成された画像は、第1の工程
によって揃えられたCダイレクタの方向(又はそれと直
角方向)に偏光軸を合わせた直線偏光の投影光の照射及
び反射層による反射光の偏光方向に対し、偏光軸が直行
(又は平行)するように配置された検光子を通した投影
により、スクリーン上に読み出す事ができる。
According to the present invention, the entire surface of the light valve is irradiated with light, and a DC bias voltage that is sufficiently higher than the threshold voltage in the bright state is applied to align the ferroelectric liquid crystal to a stable state in one direction and to memorize that state. Alternatively, without light irradiation, a DC bias voltage sufficiently higher than the threshold voltage at 09:00 is applied to align the ferroelectric liquid crystal to a stable state in one direction, and the state is memorized. After such a first step, without light irradiation,
It is below the threshold voltage in the dark, and below the threshold voltage for light irradiation.
A second step of optical writing using a laser beam or the like is performed while applying a DC bias voltage of opposite polarity.
As a result, carriers are generated in the photosensitive layer in the area exposed to light irradiation, and the generated carriers drift in the direction of the electric field due to the DC bias voltage.As a result, the resistance of the photoconductive layer decreases, and light irradiation is performed. A bias voltage of opposite polarity equal to or higher than the threshold voltage is applied to the region, and the molecules are inverted as the spontaneous polarization is reversed, and the region is memorized in the other stable state. The image formed in this way is based on the irradiation of linearly polarized projection light whose polarization axis is aligned with the direction of the C director aligned in the first step (or in the direction perpendicular to it), and the polarization direction of the light reflected by the reflective layer. On the other hand, it can be read out on a screen by projection through an analyzer arranged so that the polarization axes are perpendicular (or parallel).

又、前記第2の工程終了後、再び梅性を反転させ、暗時
の閾値電圧以下であり明時の閾値電圧以上の直流バイア
ス電圧を印加しながら光照射を行う事により、部分消去
(部分四速み)も行える。
In addition, after the second step is completed, partial erasure (partial erasure) is achieved by inverting the plum color again and performing light irradiation while applying a DC bias voltage that is less than the threshold voltage in the dark and more than the threshold voltage in the light. 4 speed) can also be performed.

〔実施例〕 第1図は、本発明による液晶ライトバルブの構造を示す
断面図である。ライl−パルプの構造において従来例と
異なるのは、液晶層として光i3過率または光反射率と
印加電圧の間に明瞭な閾値特性を有する双安定メモリ性
強誘電性液晶を使用している事にある。以下、図を用い
て本発明の説明を行う。
[Example] FIG. 1 is a sectional view showing the structure of a liquid crystal light valve according to the present invention. The structure of Ly-Pulp is different from conventional examples in that the liquid crystal layer uses a bistable memory ferroelectric liquid crystal that has clear threshold characteristics between the optical I3 pass rate or optical reflectance and the applied voltage. It's true. The present invention will be explained below using figures.

レーザー光やLED、CRT等の光書込み手段1による
画像書込みが行われる側の透明基板2aの内側には、透
明電極3a+光導電膜4.遮光M45゜光反射膜6.液
晶配向膜7aが形成されており、投射光8によって反射
投影される側の透明基板2bの内側には対向透明電極3
b、液晶配向膜7bが形成されている。これら一対の透
明基板は、グラスファイバ等のスペーサ剤を含む外周シ
ール9によって重ね合わされ、その間隙には強誘電性液
晶10が封入ささている。このようにして形成された液
晶ライトバルブの2つの透明電極3a、 3b間に適当
なバイアス電圧を与えておき、レーザビームやLED等
の光書込み手段を用いて投射表示したい画像情報を光で
古込む、光照射を受けた光導電膜4はキャリアを発生し
て低抵抗状態となり、印加されていたバイアス電圧は抵
抗分割された形で液晶層に印加され液晶分子を励起する
。光照射を受けない領域は高抵抗を保持したままであり
、従うで液晶分子には殆んど電圧が印加されず、液晶分
子は励起されない、双安定性及びメモリ性を持たないT
N型、DSM型等の液晶表示モードでは、液晶分子は直
接液晶分子に印加された電圧によって反射光間が変調さ
れる事になるが、その画像保持時間は極めて短い。
A transparent electrode 3a + a photoconductive film 4. Light-shielding M45° light-reflecting film 6. A liquid crystal alignment film 7a is formed, and a counter transparent electrode 3 is provided inside the transparent substrate 2b on the side reflected and projected by the projection light 8.
b, a liquid crystal alignment film 7b is formed. These pair of transparent substrates are overlapped by a peripheral seal 9 containing a spacer material such as glass fiber, and a ferroelectric liquid crystal 10 is sealed in the gap between them. By applying an appropriate bias voltage between the two transparent electrodes 3a and 3b of the liquid crystal light valve formed in this manner, the image information to be projected and displayed can be oldened with light using an optical writing means such as a laser beam or LED. The photoconductive film 4 that has been irradiated with light generates carriers and enters a low resistance state, and the applied bias voltage is applied to the liquid crystal layer in a resistance-divided form to excite liquid crystal molecules. The region that is not irradiated with light retains a high resistance, so almost no voltage is applied to the liquid crystal molecules, and the liquid crystal molecules are not excited, making T a non-bistable and non-memory T.
In liquid crystal display modes such as N type and DSM type, the amount of reflected light between liquid crystal molecules is modulated by a voltage directly applied to the liquid crystal molecules, but the image retention time is extremely short.

一方、本発明によれば光反射率は、その閾値特性、双安
定メモリ性から中間調をとり得ず1が0となるが、書込
まれた画像は、外部からの閾値電圧以上の電圧印加或い
は強い圧力等を受けぬ限り、半永久的に保持される事に
なる。こうして書込まれた画像に投射光8を照射すると
、反射膜6で反射された画像は、スクリーン12上に投
射表示される事になる。
On the other hand, according to the present invention, the light reflectance cannot take halftones due to its threshold characteristic and bistable memory property, and 1 becomes 0. Otherwise, unless strong pressure is applied, it will be maintained semi-permanently. When the image written in this way is irradiated with the projection light 8, the image reflected by the reflective film 6 will be projected and displayed on the screen 12.

上記の構成の本発明において、透明ガラス基板2’a、
 2bとして、例えば、コーニング社!IJ7059ガ
ラスを用意し、透明電極3a、 3bとして表面に■T
Oi3明電極を形電極た。レーザー光lによる書込み側
のITO透明電極3a上には、光導電膜4゜誘電体ミラ
ー6を積層形成した。前記光導電層4は、電荷発生層と
電荷移動層を有する機能分1(((型有機光導電体を用
いた。先ずITOi3明?It極3a上に、東洋インキ
社製 C−銅フタロシアニン0.5ffifilt部と
飽和ポリエステル樹脂(東洋紡バイロン200) 0.
4重■部をテトラヒドロフランとともにボールミルで6
時間混練したのら、アプリケータ(東洋装機社製)で乾
燥後lI!2厚1趨の厚さで塗工し、電荷発生層を作製
した0次いで、亜南香料社製のP−ジメチルアミノベン
ズアルデヒド−1゜1° ジフェニルヒドラゾン0.1
5gをポリカーボネイト(奇人パンライト) 0.3g
に加え、ジクロルメタン3■、1.2ジクロルエタンl
■の混合溶媒に混合した後、20分間超音波分散を行い
、アプリケータを用いて電荷発生層上に、乾燥後膜r¥
5jImの厚さで塗工し、電荷移動層を作成した。電荷
移動層の上には、MgF、とZnSの薄膜を交互に27
NN着積層して光反射膜6を形成した後、ガラス基板の
法線方向に対して80°の角度で一酸化珪素を膜厚計で
2000人の厚さに蒸着して液晶配向[7!1を形成し
た。もう一方の透明電極2bのITO33明電極3b上
にも同様に一酸化珪素の液晶配向1127bを形成し、
これら2枚の基板を液晶配向膜7a、 7bを対向する
ように配置し、1.5 pmのシリカ球スペーサを介し
て強誘電性液晶10を外周シール9により挟持させた0
本実施例において用いた強誘電性液晶組成物は、エステ
ル系SmC液晶混合物に、光学活性物質を添加して強誘
電性液晶組成物としたものであり、4−((4°−オク
チル)フェニル)安息香酸(3”−フルオロ、4m−オ
クチルオキシ)フエ二と、4−((4’−オクチルオキ
シ)フェニル)安息香# (3”−フルオ0.4”−オ
クチルオキシ)フをtaXに混合し、これに光学活性物
質として、5−オクチルオキシナフクレンカルボンM、
1’−又、投影側のガラス基板2bの投射光照射側には
、MgF、の蒸着により無反射コーティング[11を形
成してもよい。
In the present invention having the above configuration, the transparent glass substrate 2'a,
As 2b, for example, Corning! Prepare IJ7059 glass and place ■T on the surface as transparent electrodes 3a and 3b.
The Oi3 bright electrode was used as a shaped electrode. A photoconductive film 4° dielectric mirror 6 was laminated on the ITO transparent electrode 3a on the writing side by the laser beam 1. The photoconductive layer 4 is a functional component 1 ((() type organic photoconductor having a charge generation layer and a charge transfer layer. .5ffifilt part and saturated polyester resin (Toyobo Vylon 200) 0.
The 4-layer ■ part was mixed with tetrahydrofuran in a ball mill for 6 minutes.
After kneading for a while, dry it with an applicator (manufactured by Toyo Soki Co., Ltd.) and then use it! A charge generation layer was prepared by coating in a thickness of 2 and 1. Next, P-dimethylaminobenzaldehyde-1゜1゜diphenylhydrazone 0.1 manufactured by Anan Perfumery Co., Ltd.
5g to polycarbonate (Kijin Panlite) 0.3g
In addition, 3 ■ dichloromethane, 1.2 l dichloroethane
After mixing with the mixed solvent of (2), perform ultrasonic dispersion for 20 minutes, and use an applicator to apply the dried film onto the charge generation layer.
A charge transfer layer was prepared by coating to a thickness of 5jIm. On the charge transport layer, thin films of MgF and ZnS are deposited alternately.
After forming the light reflecting film 6 by depositing and laminating the NN, silicon monoxide was deposited at an angle of 80° to the normal direction of the glass substrate to a thickness of 2000 mm using a film thickness meter to align the liquid crystal [7! 1 was formed. Similarly, a silicon monoxide liquid crystal orientation 1127b is formed on the ITO33 bright electrode 3b of the other transparent electrode 2b,
These two substrates were arranged so that the liquid crystal alignment films 7a and 7b faced each other, and the ferroelectric liquid crystal 10 was sandwiched between the outer peripheral seal 9 and the 1.5 pm silica ball spacer.
The ferroelectric liquid crystal composition used in this example is a ferroelectric liquid crystal composition obtained by adding an optically active substance to an ester-based SmC liquid crystal mixture. ) Benzoic acid (3”-fluoro, 4m-octyloxy)phenyl and 4-((4'-octyloxy)phenyl)benzoic acid # (3”-fluoro, 4m-octyloxy) were mixed in taX. and 5-octyloxynafcrenecarvone M, as an optically active substance.
1'-Also, an anti-reflection coating [11] may be formed on the projection light irradiation side of the glass substrate 2b on the projection side by vapor deposition of MgF.

前記のようにして作成した光書込型液晶ライトバルブは
、光導電層が、700〜850nmの波長の光に感度を
有するので、閾値電圧より十分大きい直流バイアス電圧
を印加して一方向の安定状態に揃える第1の工程を経た
後、例えば780n−を中心波長とする半導体レーザを
用いて書込み光1で画像占き込みを行う、この後、投影
側から500ワ−/ トのハロゲンランプを照射し、偏
光子、検光子を通してスクリーン12上に投影した所、
高コントラストな投影画像が得られた。
Since the photoconductive layer of the optically writable liquid crystal light valve produced as described above is sensitive to light with a wavelength of 700 to 850 nm, it can be stabilized in one direction by applying a DC bias voltage that is sufficiently larger than the threshold voltage. After going through the first step of adjusting the state, image reading is performed with writing light 1 using, for example, a semiconductor laser with a center wavelength of 780 nm. After this, a 500 W/W halogen lamp is turned on from the projection side. irradiated and projected onto the screen 12 through a polarizer and an analyzer,
A high contrast projection image was obtained.

また、光導電膜4として、ITO透明電極3a上にSi
F4を主体とするガスを放電分解して1μIのa−s+
−Hjfflを形成した後、そのa −S+ −II 
層の上に、SiF4ガスにPll、を11000PP混
入して放電分解を行い1000人のnplJを形成した
ものを用い、同様の亡き込み、投影を行ったところ、極
めて鮮明で高コントラストな投影画像を得ることができ
た。
Further, as the photoconductive film 4, Si is coated on the ITO transparent electrode 3a.
Discharge decomposition of gas mainly consisting of F4 to produce 1μI of a-s+
After forming -Hjffl, its a -S+ -II
When 11,000 PP of Pll was mixed with SiF4 gas and subjected to discharge decomposition to form 1,000 nplJ on the layer, similar decomposition and projection were performed, and an extremely clear and high contrast projected image was obtained. I was able to get it.

更に、ITO透明電極3aとS i F 4を主体とす
るガスを放電分解して形成した1頗のa −Si : 
H光1fflW!J4との間ニS i F aガ、1:
13!+14を11000pp混入して放電分解を行い
1000人のpPJを形成したものを用いても同様の投
影画像が得られた。
Furthermore, a piece of a-Si formed by discharging and decomposing the ITO transparent electrode 3a and a gas mainly composed of SiF4:
H light 1fflW! Between J4 and S i Fa, 1:
13! A similar projection image was obtained by mixing 11,000 pp of +14 and performing discharge decomposition to form 1,000 pPJs.

本発明に用いる液晶配向膜としては、SiO斜方蒸着膜
の他に、垂直配向処理剤である塩基性クロム鎖体と、水
平配向処理剤であるポリイミドの混合溶液を塗布焼成し
た後、ラビング処理を施して、20°〜40”の高プレ
ティルト角を与える配向膜であっても何ら差し障りはな
い、又、封入する液晶として、ピリミジン系のカイラル
スメクチーツタン昆合液晶組成物や、エステル系カイラ
ルスメクチック液晶組成物とピリミジン系カイラルスメ
クチック液晶組成物による液晶混合物を用いても、全く
同様の効果が得られている。
In addition to the SiO oblique vapor deposition film, the liquid crystal alignment film used in the present invention is coated with a mixed solution of basic chromium chains as a vertical alignment agent and polyimide as a horizontal alignment agent, and then subjected to rubbing treatment. There is no problem even if the alignment film is applied to give a high pretilt angle of 20° to 40''.Also, the liquid crystal to be encapsulated may be a pyrimidine-based chiral smectane liquid crystal composition or an ester-based chiral liquid crystal composition. Exactly the same effect has been obtained using a liquid crystal mixture of a smectic liquid crystal composition and a pyrimidine-based chiral smectic liquid crystal composition.

第2図は実施例による液晶ライトバルブを用い、古き込
み側から全面光照射を行いながら電極間に電圧を印加し
た場合の電圧−光反射率特性を示したものである。この
場合、光感電層は全面にわたり導通状態(低抵抗状a)
となっており、印加電圧は殆んどロスされる事なく強誘
電性液晶層に印加される。電圧波形は0.111z、 
20Vp−pの三角波を用いた8図から明らかなように
、本発明による液晶ライトバルブは、明瞭な閾値特性と
、大きな双安定性を示している。
FIG. 2 shows voltage-light reflectance characteristics when the liquid crystal light valve according to the example was used and a voltage was applied between the electrodes while irradiating the entire surface with light from the aged side. In this case, the photosensitive layer is in a conductive state (low resistance state a) over the entire surface.
Therefore, the applied voltage is applied to the ferroelectric liquid crystal layer with almost no loss. The voltage waveform is 0.111z,
As is clear from FIG. 8 using a 20 Vp-p triangular wave, the liquid crystal light valve according to the present invention exhibits clear threshold characteristics and large bistability.

又、偏光子、検光子に偏光度99.9%、単体透過率3
8%の王立製偏光板を用いて、双安定状態間でのコント
ラスト比を測定した所、400: 1以上であり、また
、電圧をオーモノ状!環にして3日後に再度測定した所
、殆んどコントラスト比が変化せず、掻めて優れたメモ
リ性を有している事もTl1I P!された。
In addition, the polarizer and analyzer have a polarization degree of 99.9% and a single transmittance of 3.
When we measured the contrast ratio between the bistable states using an 8% Royal polarizing plate, it was over 400:1, and the voltage was almost the same! When the contrast ratio was measured again after 3 days, it was found that there was almost no change in the contrast ratio and that it had excellent memory properties. It was done.

次に、本発明に係る光書込型液晶ライトバルブの応用を
、例を上げて説明する。
Next, the application of the optical writing type liquid crystal light valve according to the present invention will be explained using an example.

第3図は、本発明に係る光書込型液晶ライトバルブを応
用したデジタルカラーレーザプリンタの概念図である0
図中、本発明に係る光書込型液晶ライトバルブ31a、
31b、31cはそれぞれレーザスキャナ32により、
R,G、Bに対応する像が書き込まれた後、投影光学系
33によりそれぞれの色に対応するフィルタを用いて波
長を限定した光でメディア上34に、それぞれの色の像
を形成する。
FIG. 3 is a conceptual diagram of a digital color laser printer to which the optical writing type liquid crystal light valve according to the present invention is applied.
In the figure, an optical writing type liquid crystal light valve 31a according to the present invention,
31b and 31c are each scanned by a laser scanner 32,
After the images corresponding to R, G, and B are written, images of the respective colors are formed on the medium 34 by the projection optical system 33 using light whose wavelengths are limited using filters corresponding to the respective colors.

前記メディア34は、第4図に示すようにそれぞれ異な
った波長の光に反応して硬化するマイクロカプセル40
 a 、 40 b 、 40 cに、ロイコ染料を封
入したものをベース41に分散塗布したもので、発色剤
を塗布したレシーバ−シート35に圧接する事により、
レシーバ−シート上にカラー画像を形成するものである
。前記のようなシステムに、本発明に係る光書込型液晶
ライトバルブを応用する事により、高品位の画像を短時
間で出力できる優れたデジタルカラーブリンクを実現す
る事ができた。
The medium 34 includes microcapsules 40 that harden in response to light of different wavelengths, as shown in FIG.
a, 40b, and 40c, leuco dye encapsulated therein is dispersed and coated on the base 41, and by pressing it against the receiver sheet 35 coated with a coloring agent,
A color image is formed on a receiver sheet. By applying the optical writing type liquid crystal light valve according to the present invention to the above-mentioned system, it was possible to realize an excellent digital color blink that can output high-quality images in a short time.

又、前記デジタルカラーレーザープリンタのメディア3
4の位置にスクリーンを置き、3色を同時に投影する事
により、高品位で高速応答可能なカラープロジェクタを
実現する事ができた。
Moreover, the media 3 of the digital color laser printer
By placing the screen at position 4 and projecting three colors simultaneously, we were able to create a color projector with high quality and high speed response.

次に、本発明の液晶光学素子をインコヒーレント・コヒ
ーレント変換器とする場合について説明する。
Next, a case where the liquid crystal optical element of the present invention is used as an incoherent-coherent converter will be described.

セル外面からのインコヒーレントな書込み光20によっ
て強誘電性液晶層14に像形成が行われ、占込みにより
形成された像は、あらかじめ書込み時の印加方向と逆の
電界印加により揃えられたCダイレクタの方向(または
それに直角方向)に偏光軸を合わせた偏光子を通したコ
ヒーレントな投影光21の照射、及び、全消去時の反射
光の偏光方向に直角(または平行)な方向の検光子を通
した投影により読み出すことができる。
An image is formed on the ferroelectric liquid crystal layer 14 by incoherent writing light 20 from the outer surface of the cell, and the image formed by interpolation is aligned with the C director by applying an electric field in the opposite direction to the direction of application during writing. Irradiation of coherent projection light 21 through a polarizer with its polarization axis aligned in the direction of It can be read out by projection through.

以下、本発明の液晶光学素子をインコヒーレント・コヒ
ーレント変換器として応用する場合の例を説明する。
An example of applying the liquid crystal optical element of the present invention as an incoherent-coherent converter will be described below.

第5図は、本発明に係わる液晶光学素子を用いた可干渉
光相関システムの概念図である。測定対象物50からの
反射光は、レンズ42により本発明に係わる液晶光学素
子43上に結像される。ここで、本発明に係わる液晶光
学素子は、非線形光学結晶を用いたものに較べて大面積
であるため、測定対象物が大きくても対応でき、また、
TN、DSM等のモードの液晶を用いたものに較べて応
答速度が速いため、リアルタイムに近い高速処理が可能
である。液晶光学素子43に生じた像には、偏光ビーム
スプリンター44により直線偏光に分けられ、その偏光
軸方向が全消去時の強誘電性液晶分子のダイレクタ方向
に合ったコヒーレント光45が照射される。照射光は、
書込みによってダイレクタの反転が起こった部分でのみ
、複屈折による偏光状態の変換を受けて反射される。前
記反射光は、再び偏光ビームスプリッタ−44を通り、
複屈折による偏光状態の変換を受けた部分の強度が必然
的に低くなって、入射光45のうち、偏光ビームスプリ
ッタ−44により液晶光学素子43へ入射しなかった成
分と合成され、レンズ46、マツチドフィルタ47、レ
ンズ48を通って相関座標面49上に結像させることに
より、光情報処理を行うものである0本応用例に於いて
、本発明の液晶光学素子によるインコヒーレント・コヒ
ーレント変換器を用いたことにより、大きな物体にも用
いることができ、かつ、リアルタイムに近い高速処理が
可能な可干渉光相関システムが実現される。
FIG. 5 is a conceptual diagram of a coherent optical correlation system using a liquid crystal optical element according to the present invention. The reflected light from the measurement object 50 is imaged by the lens 42 onto the liquid crystal optical element 43 according to the present invention. Here, since the liquid crystal optical element according to the present invention has a larger area than one using a nonlinear optical crystal, it can be used even if the object to be measured is large, and
Since the response speed is faster than that using liquid crystal in modes such as TN and DSM, high-speed processing close to real time is possible. The image formed on the liquid crystal optical element 43 is irradiated with coherent light 45 that is split into linearly polarized light by a polarizing beam splinter 44 and whose polarization axis direction matches the director direction of the ferroelectric liquid crystal molecules at the time of complete erasure. The irradiation light is
Only in the portion where the director is reversed due to writing, the polarization state is changed due to birefringence and the light is reflected. The reflected light passes through the polarizing beam splitter 44 again,
The intensity of the portion whose polarization state has been changed due to birefringence is inevitably lowered, and it is combined with the component of the incident light 45 that did not enter the liquid crystal optical element 43 by the polarizing beam splitter 44, and is combined with the component of the incident light 45 that did not enter the liquid crystal optical element 43. In this application example, in which optical information processing is performed by forming an image on a correlation coordinate plane 49 through a matched filter 47 and a lens 48, incoherent-coherent conversion by the liquid crystal optical element of the present invention is performed. By using this device, we can realize a coherent optical correlation system that can be used for large objects and can perform high-speed processing close to real time.

その他、本発明に係る光書込型液晶ライトバルブは様々
な画像表示装置、画像処理装置、光情報処理装置への応
用が可能である。
In addition, the optical writing type liquid crystal light valve according to the present invention can be applied to various image display devices, image processing devices, and optical information processing devices.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によればコントラスト比が大きい
上、応答速度が速くレーザ光などによる高速書込みが可
能で、解像度の高い液晶ライトバルブが実現できるもの
であり、もって光プリンタの中間記録媒体、画像表示装
置、光シャンター、その他の画像処理装置、光情報シス
テム等の性能・応用範囲を飛躍的に増大せしめるもので
ある。
As described above, according to the present invention, it is possible to realize a liquid crystal light valve with a high contrast ratio, a fast response speed, high-speed writing with laser light, etc., and a high resolution, which can be used as an intermediate recording medium for optical printers. , the performance and range of applications of image display devices, optical shunters, other image processing devices, optical information systems, etc. will be dramatically increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光書込型液晶ライトバルブの断面(2
)、第2図は本発明の光ロ込型液晶うイトパルプ電圧−
光反射率特性図、第3図は本発明の光書込型液晶ライト
バルブを応用したデジタルレーザカラープリンタの概念
図、第4図はデジタルレーザカラープリンタに用いたメ
ディアの1既念図、第5図は本発明の液晶光学素子を用
いた可干渉相関システムの概念図である。 l・・・・・・古込み光 2a、 2b・・・・透明基板 3a、 3b・ ・ ・ ・透明型、極4・・・・・・
光導電層 5・・・・・・遮光層 6・・・・・・誘電体ミラー 7a、 7b・・・・液晶配向層 8・・・・・・投射光 9・・・・・・接着剤 スペーサ lO・・・・・・強誘電性液晶 11・・・・・・反射防止膜 12・・・・・・スクリーン 31a、31b、31c・・・液晶ライトバルブ32・
・・・・・レーザスキャナ 33・・・・・・投影光学系 34・・・・・・書き込みメディア 35・・・・・・レシーバーシ一ト
Figure 1 shows a cross section (2
), FIG.
3 is a conceptual diagram of a digital laser color printer to which the optical writing type liquid crystal light valve of the present invention is applied; FIG. 4 is a conceptual diagram of the media used in the digital laser color printer; FIG. 5 is a conceptual diagram of a coherent correlation system using the liquid crystal optical element of the present invention. l...Old light 2a, 2b...Transparent substrate 3a, 3b...Transparent type, pole 4...
Photoconductive layer 5... Light shielding layer 6... Dielectric mirrors 7a, 7b... Liquid crystal alignment layer 8... Projection light 9... Adhesive Spacer lO... Ferroelectric liquid crystal 11... Anti-reflection film 12... Screens 31a, 31b, 31c... Liquid crystal light valve 32...
... Laser scanner 33 ... Projection optical system 34 ... Writing medium 35 ... Receiver sheet

Claims (2)

【特許請求の範囲】[Claims] (1)光による書込み手段と、光導電層、光反射層、液
晶配向層、液晶層、電圧印加手段が形成された光書込型
液晶ライトバルブにおいて、該液晶層は、光反射率と印
加電圧の間に閾値特性及び双安定メモリ性を有する強誘
電性液晶である事を特徴とする光書込型液晶ライトバル
ブ。
(1) In an optical writing type liquid crystal light valve in which a writing means by light, a photoconductive layer, a light reflection layer, a liquid crystal alignment layer, a liquid crystal layer, and a voltage application means are formed, the liquid crystal layer has a light reflectance and an application voltage. An optically writable liquid crystal light valve characterized by being a ferroelectric liquid crystal having threshold characteristics and bistable memory properties between voltages.
(2)特許請求の範囲第1項記載の前記液晶ライトバル
ブは、閾値電圧より十分大きい直流バイアス電圧を印加
して液晶分子を配列保持させる第1の工程と、第1の工
程とは逆極性で且つ、暗時には閾値電圧以下であり、光
照射時には閾値電圧以上となる直流バイアス電圧を印加
しながら、レーザビームやLED等の光照射を行なう事
によって画像を形成する第2の工程によって駆動する事
を特徴とする光書込型液晶ライトバルブの駆動方法。
(2) In the liquid crystal light valve according to claim 1, the first step of applying a DC bias voltage sufficiently larger than a threshold voltage to maintain alignment of liquid crystal molecules and the first step have opposite polarity. In addition, it is driven by a second step in which an image is formed by irradiating light from a laser beam, LED, etc. while applying a DC bias voltage that is below the threshold voltage when it is dark and above the threshold voltage when irradiated with light. A method for driving an optical writing type liquid crystal light valve, which is characterized by:
JP6984489A 1988-03-23 1989-03-22 Optical writing type liquid crystal light valve Pending JPH01315723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6984489A JPH01315723A (en) 1988-03-23 1989-03-22 Optical writing type liquid crystal light valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-68970 1988-03-23
JP6984489A JPH01315723A (en) 1988-03-23 1989-03-22 Optical writing type liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPH01315723A true JPH01315723A (en) 1989-12-20

Family

ID=13414521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6984489A Pending JPH01315723A (en) 1988-03-23 1989-03-22 Optical writing type liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPH01315723A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475249A2 (en) * 1990-09-10 1992-03-18 Seiko Instruments Inc. Method for driving liquid crystal light valve of light writing type
JPH04134323A (en) * 1990-09-26 1992-05-08 Sharp Corp Optical writing type liquid crystal display element
JPH086014A (en) * 1994-06-22 1996-01-12 Nec Corp Liquid crystal display device
EP1136874A1 (en) * 2000-03-22 2001-09-26 Hewlett-Packard Company, A Delaware Corporation Projection screen
EP1139158A2 (en) * 2000-03-22 2001-10-04 Hewlett-Packard Company Projection screen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216126A (en) * 1983-05-24 1984-12-06 Canon Inc Optical recording element and its recording method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216126A (en) * 1983-05-24 1984-12-06 Canon Inc Optical recording element and its recording method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475249A2 (en) * 1990-09-10 1992-03-18 Seiko Instruments Inc. Method for driving liquid crystal light valve of light writing type
US5221980A (en) * 1990-09-10 1993-06-22 Seiko Instruments Inc. Method for driving ferroelectric liquid crystal light valve of light writing type
JPH04134323A (en) * 1990-09-26 1992-05-08 Sharp Corp Optical writing type liquid crystal display element
JPH086014A (en) * 1994-06-22 1996-01-12 Nec Corp Liquid crystal display device
EP1136874A1 (en) * 2000-03-22 2001-09-26 Hewlett-Packard Company, A Delaware Corporation Projection screen
EP1139158A2 (en) * 2000-03-22 2001-10-04 Hewlett-Packard Company Projection screen
US6538814B2 (en) 2000-03-22 2003-03-25 Hewlett-Packard Company Projection screen having electric field responsive reflectance layer and a photosensitive material
EP1139158A3 (en) * 2000-03-22 2003-11-05 Hewlett-Packard Company Projection screen

Similar Documents

Publication Publication Date Title
JP2851906B2 (en) Optical modulation element and display device
US5085498A (en) Optically switching ferroelectric liquid crystal light valve
EP0898196A2 (en) Liquid crystal projector
JP2990297B2 (en) Liquid crystal light valve device and liquid crystal light valve driving method
JP3010392B2 (en) Spatial light modulator and driving method thereof
JP2564626B2 (en) Optical writing type spatial light modulator
JPH01315723A (en) Optical writing type liquid crystal light valve
JP3041402B2 (en) Optical writing liquid crystal light valve
JP2540359B2 (en) Liquid crystal optical element
JP2816576B2 (en) Optical writing type liquid crystal light valve
JPH01319734A (en) Transmission type optical writing liquid crystal light valve
JPH0317618A (en) Optical write driving method for optical write type liquid crystal light valve
EP0395113A2 (en) Laser writing type liquid crystal light valve
JPH03279925A (en) Multicolor projecting display device
JPH0792487A (en) Optical modulation element
JPH08234195A (en) Spatial optical modulation element
JPH0255337A (en) Liquid crystal light bulb
JP2828156B2 (en) Light modulation element
JPH02125228A (en) Optical write liquid crystal light valve and image output device using the same
JPH03209434A (en) Driving method for optical write type liquid crystal light valve
JPH01113724A (en) Liquid crystal light valve
JPS63314519A (en) Display device
JPH06250205A (en) Spatial optical modulator
JPH0534715A (en) Projection display element and projection display device
JPH06273794A (en) Liquid crystal spatial optical modulator and its driving method