JPH06273794A - Liquid crystal spatial optical modulator and its driving method - Google Patents

Liquid crystal spatial optical modulator and its driving method

Info

Publication number
JPH06273794A
JPH06273794A JP5915893A JP5915893A JPH06273794A JP H06273794 A JPH06273794 A JP H06273794A JP 5915893 A JP5915893 A JP 5915893A JP 5915893 A JP5915893 A JP 5915893A JP H06273794 A JPH06273794 A JP H06273794A
Authority
JP
Japan
Prior art keywords
liquid crystal
spatial light
light modulator
thickness
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5915893A
Other languages
Japanese (ja)
Inventor
Rieko Sekura
利江子 瀬倉
Naoki Kato
直樹 加藤
Teruo Ebihara
照夫 海老原
Shuhei Yamamoto
修平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP5915893A priority Critical patent/JPH06273794A/en
Publication of JPH06273794A publication Critical patent/JPH06273794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To express gradations even in a memory state by forming a liquid crystal compsn. to be used as a modulating material of a ferroelectric liquid crystal compsn. exhibiting the intrinsic pitch smaller than the thickness of a liquid crystal layer and a chiral smectic phase at ordinary temp. having specified or higher spontaneous polarization. CONSTITUTION:A pair of glass substrates 11a, 11b constituted by forming liquid crystal oriented films 13a, 13b on the respective opposite surfaces of a glass substrate 11a having a photoconductive film 15 formed on it on a transparent electrode 12a and a glass substrate 11b having a transparent electrode 12b formed on it are arranged to face each other and the liquid crystal compsn. 14 is sealed in the spacing therebetween. The photoconductive film 15 is a hydrogenated amorphous silicon having 0.5 to 3.5mum thickness. The liquid crystal layer has 0.5 to 3mum thickness. The liquid crystal compsn. 14 is a ferroelectric liquid crystal compsn. having the intrinsic pitch smaller than the thickness of the liquid crystal layer and >=30nc/cm<2> spontaneous polarization and exhibiting the chiral smectic phase at ordinary temp. The control of the gradation characteristic even in the memory state is enabled by controlling the intensity of the bias light to be projected from the writing side or reading-out side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像処理装置、光情報処
理用空間光変調器等に応用される光書き込み型液晶空間
光変調器及びその駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical writing type liquid crystal spatial light modulator applied to an image processing device, a spatial light modulator for optical information processing and the like, and a driving method thereof.

【0002】[0002]

【従来の技術】従来、液晶を用いた空間光変調器は入力
された画像情報を、リアルタイムで強度変調出力する素
子として用いられている。一般には表面安定化強誘電性
液晶を変調材料として用いた二値化デバイスが知られて
いる。また、筆者らは、特願平02−239594によ
って、上記素子に於て連続階調を有する出力を得る駆動
方法をも示した。
2. Description of the Related Art Conventionally, a spatial light modulator using a liquid crystal has been used as an element for intensity-modulating and outputting input image information in real time. Generally, a binarization device using a surface-stabilized ferroelectric liquid crystal as a modulation material is known. The authors have also shown, in Japanese Patent Application No. 02-239594, a driving method for obtaining an output having continuous gradation in the above device.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の表面安
定化強誘電性液晶を用いた空間光変調器及びその駆動方
法によっては、上記特願平02−239594に於いて
示したような方法を用いて連続駆動状態では階調表現が
可能となるものの、メモリ状態で階調を表現する事は不
可能であった。
However, depending on the conventional spatial light modulator using the surface-stabilized ferroelectric liquid crystal and its driving method, the method as disclosed in Japanese Patent Application No. 02-239594 is used. Although it is possible to express gradation in the continuous driving state by using it, it is impossible to express gradation in the memory state.

【0004】[0004]

【課題を解決するための手段】そこで、この発明は上記
問題を解決するために、従来のこのような課題を解決す
るため、液晶を用いた空間光変調器及びその駆動方法に
於いて、変調材料として用いる液晶組成物を、液晶層厚
よりも小さい固有ピッチと30nc/cm2以上の自発
分極を有する常温でカイラルスメクティック相を示す強
誘電性液晶組成物とする事により、メモリ状態に於いて
も階調を表現する事を可能とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems by using a spatial light modulator using a liquid crystal and a method of driving the same. Even in the memory state, the liquid crystal composition used as a material is a ferroelectric liquid crystal composition that exhibits a chiral smectic phase at room temperature and has an intrinsic pitch smaller than the liquid crystal layer thickness and a spontaneous polarization of 30 nc / cm 2 or more. It is possible to express gradation.

【0005】[0005]

【作用】従来の表面安定化強誘電性液晶を用いた空間光
変調器と本発明による空間光変調器の書き込み光強度に
対する読み出し光強度の変化を図3に示す。(a)に従
来の表面安定化強誘電性液晶を用いた空間光変調器を、
(b)に本発明による空間光変調器を示している。
(a)、(b)を比較して明らかなように、(b)は書
き込み光強度の増加に対して読み出し光強度の変化がな
だらかになっている部分がある。この部分を階調があら
わせる範囲31として矢印で示してある。この範囲では、
書き込み光強度が強くなるにつれて面内に小さな反転ド
メインが生成され次第にその数が増加していき、最終的
に面内全てが反転していく様子が観察される。しかもこ
の小さな反転ドメイン一つ一つがその状態で安定してお
りメモリー性を有している。このような特性を利用して
階調があらわせる範囲31内でメモリー期間においても階
調性を維持できる空間光変調器を実現することができ、
よって強誘電性液晶空間光変調器の応用範囲を飛躍的に
増大させる事ができる。
FIG. 3 shows changes in the read light intensity with respect to the write light intensity in the conventional spatial light modulator using the surface-stabilized ferroelectric liquid crystal and the spatial light modulator according to the present invention. In (a), a spatial light modulator using a conventional surface-stabilized ferroelectric liquid crystal,
(B) shows a spatial light modulator according to the present invention.
As is clear from comparison between (a) and (b), in (b), there is a portion where the change of the reading light intensity is gentle with respect to the increase of the writing light intensity. This portion is indicated by an arrow as a range 31 in which gradation is displayed. In this range,
It is observed that as the writing light intensity increases, the number of small inversion domains is generated in the plane and gradually increases, and finally, all the planes are inverted. Moreover, each of these small inversion domains is stable in that state and has a memory property. By utilizing such characteristics, it is possible to realize a spatial light modulator that can maintain gradation even in the memory period within the range 31 in which gradation is represented,
Therefore, the application range of the ferroelectric liquid crystal spatial light modulator can be dramatically increased.

【0006】[0006]

【実施例】以下に図面を用いて本発明を詳細に説明す
る。図1は、本発明による空間光変調器の構造を示す模
式図である。液晶分子を挟持するためのガラス基板11a、
11bとして、両面をHe-Neレーザー波長に於て平行平面度
λ/5以下に研磨した厚さ5mmの透明ガラス基板を用い
た。両基板の表面にはITO透明電極層12a、12bを設け
た。光による書き込み側の透明電極層12a上には2.5
μmの厚さの水素化アモルファスシリコン(a-Si:H)光
導電膜15を形成した。光分離用誘電体ミラーは、この光
導電膜15上に形成される。さらに両基板の表面にナイロ
ンを塗布しラビング処理を施し、且つ組み合わせた状態
で書き込み側及び読み出し側の基板上のラビング方向が
一致するように配向膜層13a、13bを設けた。この配向膜
はポリイミド膜でもよく、ラビングは片側処理だけでも
差し支えない。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing the structure of a spatial light modulator according to the present invention. A glass substrate 11a for sandwiching liquid crystal molecules,
As 11b, a transparent glass substrate having a thickness of 5 mm, whose both surfaces were polished to a parallel flatness of λ / 5 or less at a He-Ne laser wavelength, was used. ITO transparent electrode layers 12a and 12b were provided on the surfaces of both substrates. 2.5 on the transparent electrode layer 12a on the writing side by light
A hydrogenated amorphous silicon (a-Si: H) photoconductive film 15 having a thickness of μm was formed. The light separating dielectric mirror is formed on the photoconductive film 15. Further, nylon was applied to the surfaces of both substrates and subjected to rubbing treatment, and in the combined state, alignment film layers 13a and 13b were provided so that the rubbing directions on the writing side and reading side substrates were aligned. The alignment film may be a polyimide film, and rubbing may be performed on one side only.

【0007】なお光導電膜15は、硫化カドミウム等の他
の材料を用いても問題なく、また膜厚は誘電体ミラー及
び液晶層の厚みによって最適値が変動するものであっ
て、0.5〜3.5μmの範囲内で上記各膜の電気的特
性及び膜厚を勘案して設定される。
The photoconductive film 15 can be made of other materials such as cadmium sulfide without any problem, and the optimum film thickness varies depending on the thickness of the dielectric mirror and the liquid crystal layer. The thickness is set within the range of up to 3.5 μm in consideration of the electrical characteristics and film thickness of each film.

【0008】次に、1.8 μmの平均粒径を持つシリカ球
を外周シール材に混合分散し、凸版印刷法を用いて前記
シール材を印刷塗布した後2枚の基板を接着し、強誘電
性液晶層14を狭持する間隙を形成した。強誘電性液晶組
成物としては、固有ピッチ0.3μm、自発分極100
nc/cm2の組成物を用い、アイソトロピック相迄昇
温したのち、真空注入しスメクチックC相迄徐冷して均
一な配向を得た。
Next, silica spheres having an average particle diameter of 1.8 μm are mixed and dispersed in the outer peripheral sealing material, the sealing material is applied by printing using a letterpress printing method, and then two substrates are adhered to each other to obtain a ferroelectric property. A gap for holding the liquid crystal layer 14 was formed. The ferroelectric liquid crystal composition has an intrinsic pitch of 0.3 μm and a spontaneous polarization of 100.
Using a composition of nc / cm2, the temperature was raised to the isotropic phase, vacuum injection was performed, and the smectic C phase was gradually cooled to obtain a uniform orientation.

【0009】図2に本発明よる空間光変調器の駆動方法
の波形を示す。波形は、有効面の消去を行う第一のパル
ス21と、書き込みを行う第一のパルスと逆の極性を有す
る第二のパルス22、及びメモリー期間23が連続したもの
で、読み出しはメモリー期間23に行われる。ここで書き
込み側または読み出し側から照射されるバイアス光の強
度を変化させると、それにともなって強誘電性液晶層に
分圧される電圧が変化する。この時変調材料として従来
技術の表面安定化強誘電性液晶を用いると、分圧された
電圧があるしきい値に達すると有効面全面の液晶分子が
反転してしまうため階調を表すことができなかったが、
本発明の空間光変調器の強誘電性液晶を変調材料とした
場合、電圧に対して急峻なしきい値を持たず部分的なド
メインを生成しながら反転していくので、全面反転する
までの間に階調性が現れている。このような特性を利用
することにより書き込み側または読み出し側から照射す
るバイアス光の強度を制御することで階調性を制御する
ことも可能としている。
FIG. 2 shows the waveform of the method for driving the spatial light modulator according to the present invention. The waveform is a series of a first pulse 21 for erasing the effective surface, a second pulse 22 having a polarity opposite to that of the first pulse for writing, and a memory period 23. To be done. When the intensity of the bias light emitted from the writing side or the reading side is changed, the voltage divided in the ferroelectric liquid crystal layer changes accordingly. At this time, when the conventional surface-stabilized ferroelectric liquid crystal is used as the modulation material, when the divided voltage reaches a certain threshold value, the liquid crystal molecules on the entire effective surface are inverted, so that a gradation may be displayed. I couldn't
When the ferroelectric liquid crystal of the spatial light modulator of the present invention is used as a modulation material, it inverts while not generating a steep threshold value with respect to voltage and generating partial domains, so that until the entire inversion, The gradation is shown in. By utilizing such characteristics, it is possible to control the gradation by controlling the intensity of bias light emitted from the writing side or the reading side.

【0010】ここで、本実施例においては1.8μmの
間隙に対して、固有ピッチ0.3μmの液晶組成物を用
いたが、固有ピッチは間隙より小さければ問題なく他の
特性を考慮して値を設定すればよい。なお、固有ピッチ
が間隙より大きいと表面安定化状態が生じ、中間調の生
じる配向状態は得られない。また、自発分極の値は、本
実施例においては100nc/cm2であるが、中間調
のとれる範囲が実用的な広さをもつためには、30nc
/cm2以上であることが望ましく、これ以上の値で任
意に設定されればよい。
In this embodiment, a liquid crystal composition having a characteristic pitch of 0.3 μm was used for a gap of 1.8 μm. However, if the characteristic pitch is smaller than the gap, other characteristics will be considered without any problem. You can set the value. If the specific pitch is larger than the gap, a surface-stabilized state occurs, and an alignment state in which halftone is generated cannot be obtained. Further, the value of spontaneous polarization is 100 nc / cm 2 in this embodiment, but 30 nc in order to have a practically wide range in which halftone can be obtained.
/ Cm 2 or more, and may be arbitrarily set at a value higher than this.

【0011】図4は本発明による空間光変調器の読み出
し光学系の例である。読み出し光41は、レンズ42、干渉
フィルター(中心波長633nm)43、偏光子44を通
り、ビームスプリッター45で反射された後結像レンズ46
を通って空間光変調器47の読み出し面側に照射され、書
き込み光48がレンズ49、干渉フィルター(中心波長53
0nm)50、フィルム51を通って結像レンズ52によって
空間光変調器47の書き込み面に結像された情報を、この
読み出し光により水素化アモルファスシリコン表面で反
射し、検光子53、レンズ54を通して受光素子55にとり込
まれる。この時読み出し光を直線偏光とする偏光子44
と、強誘電性液晶層で変調された反射光を検光する検光
子53をクロスニコル状態に設定し読み出し光として白色
光を用いた場合、図2に示されている駆動方法の第一の
パルス電圧により決定される液晶分子の配列方向が、ク
ロスニコル下において暗視野となるように空間光変調器
47は配置されている。またフォトディテクター56を設置
して光学応答を測定した。
FIG. 4 shows an example of a reading optical system of the spatial light modulator according to the present invention. The readout light 41 passes through the lens 42, the interference filter (center wavelength 633 nm) 43, the polarizer 44, and is reflected by the beam splitter 45, and then the imaging lens 46.
The read light side of the spatial light modulator 47 is irradiated therethrough, and the writing light 48 emits the writing light 48 through the lens 49 and the interference filter (center wavelength 53
(0 nm) 50, film 51, and the information formed by the imaging lens 52 on the writing surface of the spatial light modulator 47 is reflected on the hydrogenated amorphous silicon surface by this read light, and passes through the analyzer 53 and the lens 54. It is taken into the light receiving element 55. At this time, the polarizer 44 that makes the readout light linearly polarized light
When the analyzer 53 for detecting the reflected light modulated by the ferroelectric liquid crystal layer is set to the crossed Nicol state and the white light is used as the reading light, the first driving method shown in FIG. Spatial light modulator so that the alignment direction of liquid crystal molecules determined by the pulse voltage is a dark field under crossed Nicols
47 are located. A photo detector 56 was installed to measure the optical response.

【0012】図5は書き込み、読み出し実験を行った光
学系のシステム図である。書き込み光源61から出射され
た光束はNDフィルター62で光量を調整した後ビームエ
キスパンダ63で所定の径に広げられ、入力像フィルム6
4、レンズ65を通って空間光変調器66の書き込み面上に
入力像が結像される。また読み出し光源67から出射さ
れ、液晶シャッター68を通ってビームエキスパンダ69で
所定の径に広げられた平行光束は、ビームスプリッター
70を通って空間光変調器66の読み出し面を照射し、強誘
電性液晶層で変調されつつ強誘電性液晶層と水素化アモ
ルファスシリコン光導電層の界面で反射され、再びビー
ムスプリッター70に入射する。ここでビームスプリッタ
ー70面で反射された光が検光子71で検光され、レンズ72
を通って、受光素子73に取り込まれる。この読み出し光
学系は、書き込み光が照射されていない場合の強誘電性
液晶層の安定状態に対して偏波面が変調を受けない方向
に設定され、検光子71は上記の状態での反射光に対して
クロスに配置されている。即ち、書き込み光の無い状態
では読み出しは暗状態となる。また、空間光変調器66の
書き込み側全面にバイアス光74を照射し、このバイアス
光の強度を制御する事によって階調性を制御する事も可
能である。バイアス光は、空間光変調器の読み出し面全
面への照射でも差し支えない。この実施例で用いている
空間光変調器には光分離用誘電体ミラーが備えられてい
ないが、誘電体ミラー付き空間光変調器の場合について
も照射された読み出し光が強誘電性液晶層と光分離用誘
電体ミラーの界面で反射されるだけで、同様の事が実現
できる。
FIG. 5 is a system diagram of an optical system in which writing and reading experiments were conducted. The light flux emitted from the writing light source 61 is adjusted to have a predetermined amount by the ND filter 62 and then expanded to a predetermined diameter by the beam expander 63.
4. The input image is formed on the writing surface of the spatial light modulator 66 through the lens 65. Further, the parallel light flux emitted from the readout light source 67, passed through the liquid crystal shutter 68, and expanded to a predetermined diameter by the beam expander 69, is a beam splitter.
Irradiates the reading surface of the spatial light modulator 66 through 70, is reflected by the interface between the ferroelectric liquid crystal layer and the hydrogenated amorphous silicon photoconductive layer while being modulated by the ferroelectric liquid crystal layer, and enters the beam splitter 70 again. To do. Here, the light reflected by the surface of the beam splitter 70 is analyzed by the analyzer 71, and the lens 72
And is taken into the light receiving element 73. This reading optical system is set so that the polarization plane is not modulated with respect to the stable state of the ferroelectric liquid crystal layer when the writing light is not irradiated, and the analyzer 71 changes the reflected light in the above state. In contrast, they are arranged in a cross. That is, the reading is in the dark state in the absence of the writing light. Further, it is possible to control the gradation by irradiating the entire surface of the spatial light modulator 66 on the writing side with the bias light 74 and controlling the intensity of the bias light. The bias light may be applied to the entire reading surface of the spatial light modulator. The spatial light modulator used in this embodiment is not provided with a dielectric mirror for light separation, but even in the case of the spatial light modulator with a dielectric mirror, the read-out light irradiated is the ferroelectric liquid crystal layer. The same thing can be achieved only by being reflected at the interface of the light separating dielectric mirror.

【0013】[0013]

【発明の効果】以上述べてきたように本発明の方法に依
れば、強誘電性液晶を用いた光書き込み型液晶空間光変
調器及びその駆動方法に於て、メモリ状態においても階
調を表現する事を可能とし、よって強誘電性液晶空間光
変調器の応用範囲を飛躍的に増大する効果がある。
As described above, according to the method of the present invention, in the photo-writing type liquid crystal spatial light modulator using the ferroelectric liquid crystal and the driving method thereof, the gray scale can be set even in the memory state. This has the effect of enabling expression and thus dramatically increasing the range of applications of ferroelectric liquid crystal spatial light modulators.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明による液晶空間光変調器の構造
を示す模式図である。
FIG. 1 is a schematic diagram showing the structure of a liquid crystal spatial light modulator according to the present invention.

【図2】図2は、本発明による液晶空間光変調器の駆動
方法を示す波形である。
FIG. 2 is a waveform showing a driving method of a liquid crystal spatial light modulator according to the present invention.

【図3】図3は、書き込み光強度に対する読み出し光強
度の変化を示す図である。
FIG. 3 is a diagram showing a change in read light intensity with respect to write light intensity.

【図4】図4は、本発明による液晶空間光変調器の読み
出し光学系の例を示す図である。
FIG. 4 is a diagram showing an example of a readout optical system of a liquid crystal spatial light modulator according to the present invention.

【図5】図5は、書き込み、読み出し実験を行った光学
系のシステム図である。
FIG. 5 is a system diagram of an optical system in which writing and reading experiments are performed.

【符号の説明】[Explanation of symbols]

11a、11b ガラス基板 12a、12b 透明電極層 13a、13b 配向膜層 14 強誘電性液晶層 15 光導電膜 16 書き込み光 17 読み出し光 21 第一のパルス 22 第二のパルス 23 メモリー期間 31 諧調があらわせる範囲 41 読み出し光 42 レンズ 43 干渉フィルター(中心波長633nm) 44 偏光子 45、57 ビームスプリッター 46 結像レンズ 47 空間光変調器 48 書き込み光 49 レンズ 50 干渉フィルター(中心波長530nm) 51 フィルム 52 結像レンズ 53 検光子 54 レンズ 55 受光素子 56 フォトディテクター 58 ドライバー 61 書き込み光源 62 NDフィルター 63、69 ビームエキスパンダ 64 入力像フィルム 65 レンズ 66 空間光変調器 67 読み出し光源 68 液晶シャッター 70 ビームスプリッター 71 検光子 72 レンズ 73 受光素子 74 バイアス光 75 モニター 76 ドライバー 11a, 11b Glass substrate 12a, 12b Transparent electrode layer 13a, 13b Alignment film layer 14 Ferroelectric liquid crystal layer 15 Photoconductive film 16 Writing light 17 Reading light 21 First pulse 22 Second pulse 23 Memory period 31 Gradation Range 41 Read light 42 Lens 43 Interference filter (center wavelength 633 nm) 44 Polarizer 45, 57 Beam splitter 46 Imaging lens 47 Spatial light modulator 48 Writing light 49 Lens 50 Interference filter (center wavelength 530 nm) 51 Film 52 Imaging Lens 53 Analyzer 54 Lens 55 Light receiving element 56 Photodetector 58 Driver 61 Writing light source 62 ND filter 63, 69 Beam expander 64 Input image film 65 Lens 66 Spatial light modulator 67 Readout light source 68 Liquid Shutter 70 beam splitter 71 analyzer 72 lens 73 light-receiving elements 74 bias light 75 monitor 76 Driver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 修平 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuhei Yamamoto 6-31-1, Kameido, Koto-ku, Tokyo Seiko Denshi Kogyo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光による書き込み手段、光による読み出
し手段及び電圧印加手段を具備し、透明電極上に光導電
膜が形成されたガラス基板と、透明電極の形成されたガ
ラス基板のそれぞれの対向する表面に液晶配向膜が形成
された一組のガラス基板が対向配置され、その間隙に液
晶組成物が封入されてなる液晶空間光変調器において、
該光導電膜は0.5〜3.5μmの厚みを有する水素化
アモルファスシリコンであり、該液晶層は0.5〜3μ
mの厚みを有し、該液晶組成物は液晶層厚よりも小さい
固有ピッチと30nc/cm2以上の自発分極を有する
常温でカイラルスメクティック相を示す強誘電性液晶組
成物である事を特徴とする液晶空間光変調器。
1. A glass substrate on which a photoconductive film is formed on a transparent electrode and a glass substrate on which a transparent electrode is formed, each of which is provided with a light writing device, a light reading device, and a voltage applying device. In a liquid crystal spatial light modulator in which a pair of glass substrates having a liquid crystal alignment film formed on the surface thereof are arranged to face each other, and a liquid crystal composition is sealed in the gap,
The photoconductive film is hydrogenated amorphous silicon having a thickness of 0.5 to 3.5 μm, and the liquid crystal layer is 0.5 to 3 μm.
The liquid crystal composition has a thickness of m and is a ferroelectric liquid crystal composition exhibiting a chiral smectic phase at room temperature having an intrinsic pitch smaller than the thickness of the liquid crystal layer and a spontaneous polarization of 30 nc / cm 2 or more. Liquid crystal spatial light modulator.
【請求項2】 印加される駆動電圧は、消去を行なう第
一のパルス電圧と、書き込みを行なう第一のパルス電圧
と逆の極性を有する第二のパルス電圧、及びメモリー期
間からなることを特徴とする請求項1記載の液晶空間光
変調器の駆動方法。
2. The applied drive voltage comprises a first pulse voltage for erasing, a second pulse voltage having a polarity opposite to that of the first pulse voltage for writing, and a memory period. The method for driving a liquid crystal spatial light modulator according to claim 1.
【請求項3】 光導電膜と液晶配向層の間に、光分離用
誘電体ミラーが形成されている事を特徴とする請求項1
記載の液晶空間光変調器。
3. A light separation dielectric mirror is formed between the photoconductive film and the liquid crystal alignment layer.
The liquid crystal spatial light modulator described.
【請求項4】 クロスニコルに設定された読み出し光学
系に配置され、且つ第一のパルス電圧により決定される
液晶分子の配列方向が、クロスニコル下において暗視野
状態となるように配置されることを特徴とする請求項2
記載の液晶空間光変調器の駆動方法。
4. The liquid crystal molecules are arranged in a reading optical system set in crossed Nicols and arranged so that the alignment direction of liquid crystal molecules determined by the first pulse voltage is in a dark field state under crossed Nicols. 3. The method according to claim 2,
A method for driving the described liquid crystal spatial light modulator.
【請求項5】 用いられる読み出し光学系は系中にシャ
ッターを有し、書き込み時には読み出し光が照射されな
いことを特徴とする請求項1記載の液晶空間光変調器の
駆動方法。
5. The method of driving a liquid crystal spatial light modulator according to claim 1, wherein the reading optical system used has a shutter in the system, and the reading light is not irradiated at the time of writing.
JP5915893A 1993-03-18 1993-03-18 Liquid crystal spatial optical modulator and its driving method Pending JPH06273794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5915893A JPH06273794A (en) 1993-03-18 1993-03-18 Liquid crystal spatial optical modulator and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5915893A JPH06273794A (en) 1993-03-18 1993-03-18 Liquid crystal spatial optical modulator and its driving method

Publications (1)

Publication Number Publication Date
JPH06273794A true JPH06273794A (en) 1994-09-30

Family

ID=13105285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5915893A Pending JPH06273794A (en) 1993-03-18 1993-03-18 Liquid crystal spatial optical modulator and its driving method

Country Status (1)

Country Link
JP (1) JPH06273794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568299A (en) * 1995-03-10 1996-10-22 Fujitsu Limited Ferroelectric liquid crystal with pitch 1-2 times layer thickness and graduation by bistable/monostable ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568299A (en) * 1995-03-10 1996-10-22 Fujitsu Limited Ferroelectric liquid crystal with pitch 1-2 times layer thickness and graduation by bistable/monostable ratio

Similar Documents

Publication Publication Date Title
US5617203A (en) Optical detector employing an optically-addressed spatial light modulator
JP3010392B2 (en) Spatial light modulator and driving method thereof
JP2990297B2 (en) Liquid crystal light valve device and liquid crystal light valve driving method
US5555115A (en) Optically addressed spatial light modulating system bias light source and method for driving the system
JP2705308B2 (en) Recording method
JP2796596B2 (en) Driving method of spatial light modulator and spatial light modulator
JPH06273794A (en) Liquid crystal spatial optical modulator and its driving method
NL9000757A (en) ELECTRO-OPTICAL MEMORY CRYSTAL MEMORY.
JPH01315723A (en) Optical writing type liquid crystal light valve
JPH05196960A (en) Space optical modulator and driving method thereof
JP2967019B2 (en) Driving method of liquid crystal spatial light modulator
JP3066457B2 (en) Optical pattern recognition device
JPH0255337A (en) Liquid crystal light bulb
Kato et al. Characteristics of a ferroelectric liquid crystal spatial light modulator with a dielectric mirror
JPH0736055A (en) Spatial optical modulator
EP0425321A2 (en) Liquid crystal cells and their use for recording information or for projecting an image
JP3289641B2 (en) Video display device and driving method thereof
Kato et al. Threshold characteristics of an OSALM using a a-Si: H photoconductor and a SSFLC modulator
JP3086927B2 (en) Compact optical pattern recognition device and its driving method
JPH03209434A (en) Driving method for optical write type liquid crystal light valve
JPH07114038A (en) Method for driving spatial light modulator
JPH08234195A (en) Spatial optical modulation element
JPH03107818A (en) Optical writing type liquid crystal light valve
JPH0792486A (en) Spatial optical modulator and driving method therefor
Haemmerli et al. Compact, one-lens JTC using a transmissive amorphous silicon FLC-SLM (LAPS-SLM)