JPH01315052A - Magneto-optical head device - Google Patents

Magneto-optical head device

Info

Publication number
JPH01315052A
JPH01315052A JP14622788A JP14622788A JPH01315052A JP H01315052 A JPH01315052 A JP H01315052A JP 14622788 A JP14622788 A JP 14622788A JP 14622788 A JP14622788 A JP 14622788A JP H01315052 A JPH01315052 A JP H01315052A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
reflected
magneto
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14622788A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takahashi
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14622788A priority Critical patent/JPH01315052A/en
Publication of JPH01315052A publication Critical patent/JPH01315052A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation

Abstract

PURPOSE:To eliminate the noises caused by the return light and to obtain a compact and light-weight magneto-optical head device by reflecting the linear polarized light received from a semiconductor laser by the light quantity higher than a specific ratio to obtain the rectangular reflected light and using this reflected light as the return light to the semiconductor laser. CONSTITUTION:An external resonance optical system 10 consists of a beam splitter 6 which reflects the incident parallel luminous flux 5 by the >=20% light quantity as the rectangular reflected light 5B and an external reflecting mirror 11. The outgoing linear polarized light 2 of a semiconductor laser 1 is turned into the parallel luminous flux 5. The flux 5 is partly (>=20%) reflected by the beam splitter 6 and turned into the rectangular reflected light 5B. The light 5B is reflected by the mirror 11 and fed back to the laser 1 as the return light 15A via a return optical path 15 consisting of the splitter 6, etc. Under such conditions, the laser 1 has the stable oscillation in a single mode. As a result, the back talk noises produced by the return light are eliminated. Thus it is possible to obtain a compact and light-weight magneto-optical magnetic head at the low cost without using a high frequency superposition circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の照射と外部磁界によって情報の消去と
記録が行われ、光を照射することによって情報の再生を
行なう光磁気ヘッド装置の光学系の構成に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a magneto-optical head device in which information is erased and recorded by light irradiation and an external magnetic field, and information is reproduced by light irradiation. Regarding the configuration of the optical system.

〔従来の技術〕[Conventional technology]

光磁気記録媒体としての光磁気ディスクでは、記録状W
bるいは消去状態における情報記録部の磁化方向が互い
に反対なので、それぞれの状態での磁化の方向に対応す
る方向の磁場を印加しつつ、直径1μm近傍の微小スポ
ットに集光された光を投射し、情報記録部の温度をキエ
リー温度近くまで上昇させ、磁場の方向に情報記録部を
磁化して情報の記録や消去を行う。
In a magneto-optical disk as a magneto-optical recording medium, the recording shape W
Since the magnetization directions of the information recording areas in the erasing state are opposite to each other, a magnetic field is applied in a direction corresponding to the magnetization direction in each state, and light focused on a minute spot with a diameter of approximately 1 μm is projected. Then, the temperature of the information recording section is raised to near the Chierly temperature, and the information recording section is magnetized in the direction of the magnetic field to record or erase information.

また、情報の再生の際には直線偏光光が磁性体で反射す
る時に反射光の偏光の向きが入射光の偏光の向きに対し
て回転するカー効果を利用し、反射光を検光子を通すこ
とによって偏光の向きの回転方向すなわち情報記録部の
磁化方向に対応する元の強弱信号を検出する。
In addition, when reproducing information, the Kerr effect is used, in which when linearly polarized light is reflected by a magnetic material, the polarization direction of the reflected light rotates with respect to the polarization direction of the incident light, and the reflected light is passed through an analyzer. By doing this, the original strength signal corresponding to the rotation direction of the polarization direction, that is, the magnetization direction of the information recording section, is detected.

第3図は従来の光磁気ヘッド装置の光学系の構成図であ
る。光源としての半導体レーザ1からは偏光の向きが紙
面に垂直で記号■で示した直線偏光光2が投射され、コ
リメートレンズ3によシ平行光束となる。半導体レーザ
1からの投射光は水平方向と垂直方向とで拡がシ角が異
なるので平行光束の断面は惰円である。この平行光束を
ビーム歪形プリズム4で円形断面の平行ビーム5に整形
する。この平行ビーム5はビームスプリッタ6゜反射ミ
ラー7を経て対物レンズ8により光磁気記録媒体として
の光磁気ディスク9の図示されていない磁気記録部上に
直径的1μmの微小スポット50に集光して投射される
FIG. 3 is a configuration diagram of an optical system of a conventional magneto-optical head device. A semiconductor laser 1 serving as a light source projects linearly polarized light 2 whose polarization direction is perpendicular to the plane of the paper and is indicated by the symbol ■, and is converted into a parallel light beam by a collimating lens 3. Since the projection light from the semiconductor laser 1 has different expansion angles in the horizontal direction and the vertical direction, the cross section of the parallel light beam is an inertia circle. This parallel light beam is shaped by a beam distortion prism 4 into a parallel beam 5 having a circular cross section. This parallel beam 5 passes through a beam splitter 6 and a reflection mirror 7, and is focused by an objective lens 8 onto a minute spot 50 with a diameter of 1 μm on a magnetic recording portion (not shown) of a magneto-optical disk 9 as a magneto-optical recording medium. Projected.

磁気記録部の設けられている情報トラックは紙面に平行
な方向に配置されており、投射された光の偏光の向きは
情報トラックの方向とほぼ垂直に交わる。投射された光
は図示されていない磁気記録部で反射し、この反射光5
1は磁気記録部の磁化の方向に応じて偏光の向きを変え
、ふたたび対物レンズ82反射ミラー7を通り、ビーム
スプリッタ6で反射して検出反射光51Aとなシ反射光
検出系41へ導かれる。反射光検出系41は、1/2波
長板42.偏光ビームスプリッタ46.光検出器44か
らなる光路46と、ビームスプリッタ43で反射された
光をカップリングレンズ48゜筒状レンズ49を介して
光検出器45に導く光路47とから、なシ、ノイズが除
去された情報を電気信号に変換して出力する。
The information track on which the magnetic recording section is provided is arranged in a direction parallel to the plane of the paper, and the direction of polarization of the projected light is approximately perpendicular to the direction of the information track. The projected light is reflected by a magnetic recording section (not shown), and this reflected light 5
The polarized light 1 changes its polarization direction according to the direction of magnetization of the magnetic recording section, passes through the objective lens 82 and reflection mirror 7 again, is reflected by the beam splitter 6, becomes detected reflected light 51A, and is guided to the reflected light detection system 41. . The reflected light detection system 41 includes a 1/2 wavelength plate 42. Polarizing beam splitter 46. Noise is removed from the optical path 46 consisting of the photodetector 44 and the optical path 47 which guides the light reflected by the beam splitter 43 to the photodetector 45 via the coupling lens 48 and the cylindrical lens 49. Converts information into electrical signals and outputs them.

〔発明が解決しようとす−る課題〕[Problem that the invention seeks to solve]

従来装置において、情報記録部で反射された反射光51
はビームスプリッタ6で反射光検出系41側にナベてが
反射されて検出反射光51Aとなるのではなく、その一
部はビームスプリッタ6を透過する戻り光51Bとなシ
、ビーム整形プリズム4およびコリメートレンズ6を通
って半導体レーザ1に戻る。このように、半導体レーザ
1からの出射光の一部が外部反射体から戻り光51Bと
して半導体レーザに帰還されると、これが数%以下の微
弱な光量であっても大きな雑音が発生することが知られ
テイル(通称Back Ta1k No1se略称BT
N)。戻り光51Bを防ぐためKは、ビームスプリッタ
6と反射ミラー7との間に1/4波長板を設けてアイソ
レータを構成する方法が知られている。ところが、光磁
気ディスクの材質が複屈折性を持っているために、この
アイソレータでは十分に戻り光51Bを抑制することは
できない。また、光磁気記録方式の様に光の偏光面の変
化を読み取る方式では、この様なアイソレータを使用す
ることも不可能である。
In the conventional device, reflected light 51 reflected by the information recording section
is not reflected by the beam splitter 6 toward the reflected light detection system 41 side to become the detected reflected light 51A, but a part of it becomes the return light 51B that passes through the beam splitter 6. The light passes through the collimating lens 6 and returns to the semiconductor laser 1 . In this way, when a part of the emitted light from the semiconductor laser 1 is returned from the external reflector to the semiconductor laser as the return light 51B, large noise may be generated even if this is a weak light amount of several percent or less. Known Tail (commonly known as Back Ta1k No1se, abbreviated as BT)
N). In order to prevent the return light 51B, a known method is to provide a 1/4 wavelength plate between the beam splitter 6 and the reflection mirror 7 to form an isolator. However, since the material of the magneto-optical disk has birefringence, this isolator cannot sufficiently suppress the returned light 51B. Further, in a method such as a magneto-optical recording method that reads changes in the polarization plane of light, it is impossible to use such an isolator.

第4図はBTNを防ぐための半導体レーザの駆動方法を
示す動作特性線図であシ、61は半導体レーザの出力光
−電流特性曲線であシ、半導体レーザの駆動電流である
直流バイアス電流62に数1QQMHz オーダの高周
波電流64を重畳さ吃駆動電流がしきい値63を切るよ
う変調させることによシ、半導体レーザを多モード発振
させるよう構成され、光出力波形60に対する戻り光5
1Bの影響が低減される。
FIG. 4 is an operating characteristic diagram showing a method of driving a semiconductor laser to prevent BTN, 61 is an output light-current characteristic curve of the semiconductor laser, and DC bias current 62 is the driving current of the semiconductor laser. By superimposing a high frequency current 64 on the order of several QQ MHz on the laser beam and modulating the drive current so that it falls below the threshold value 63, the semiconductor laser is configured to oscillate in multiple modes, and the return light 5 for the optical output waveform 60 is modulated.
The influence of 1B is reduced.

しかし、半導体レーザを数百MHz以上で変調させるK
は高周波重畳回路をできるだけ半導体レーザに近すけな
ければならず、高周波重畳回路を光磁気ヘッド装置内に
のせなければいけないために装置全体として大きな物に
なってしまう。また、高周波重畳回路は出力レベルのバ
ラツキが多くかつ個々の半導体レーザと相性の様なもの
があル、半導体レーザをしきい値を切るように変調させ
るには個々に接続して駆動し、所望の特性を有するもの
を選別しなければならないなどその調整作業が煩雑化す
るという問題がある。
However, K which modulates a semiconductor laser at a frequency of several hundred MHz or higher
In this case, the high frequency superimposing circuit must be placed as close to the semiconductor laser as possible, and the high frequency superimposing circuit must be mounted inside the magneto-optical head device, resulting in a large device as a whole. In addition, high-frequency superimposition circuits have many variations in output level and are not compatible with individual semiconductor lasers, so in order to modulate semiconductor lasers so as to cut the threshold, they must be connected and driven individually. There is a problem in that the adjustment work becomes complicated, such as having to select those having the following characteristics.

この発明の目的は、戻f:J元を逆に利用してBTNを
排除することによシ、高周波重畳回路を必要とせず、し
たがって小型@童かつ安価な光磁気ヘッド装置を得るこ
とKある。
The purpose of the present invention is to obtain a magneto-optical head device that does not require a high frequency superimposition circuit and is therefore small and inexpensive by using the return f:J element inversely and eliminating BTN. .

〔課題feM決するための手段〕[Means for resolving issues]

上記課題を解決するために、この発明によれば、半導体
レーザの出射直線偏光光を平行ビームに整えビームスプ
リッタ、反射ミラー、対物レンズを介して光磁気記録媒
体に微小スポットとして投射して外部磁界との兼合によ
シ情報の記録、消去を行うとともに、光磁気記録媒体か
ら反射され前記ビームスプリッタで分離された反射光を
検出して情報の再生を行うものにおいて、前記ビームス
プリッタがその入射平行ビームの光量の少くとも20%
以上ta角反射光として反射するものであシ、この直角
反射光を逆向きに反射させ前記ビームスプリッタを介し
て前記半導体レーザに向かう戻り光を発生する前記半導
体レーザの外部共振光学系を備えるものとする。
In order to solve the above problems, according to the present invention, linearly polarized light emitted from a semiconductor laser is formed into a parallel beam, and is projected as a minute spot onto a magneto-optical recording medium via a beam splitter, a reflecting mirror, and an objective lens, thereby generating an external magnetic field. The beam splitter records and erases information as well as detects reflected light that is reflected from a magneto-optical recording medium and is separated by the beam splitter to reproduce information. At least 20% of the light intensity of the parallel beam
The above-described light is reflected as ta-angle reflected light, and includes an external resonant optical system for the semiconductor laser that reflects the right-angle reflected light in the opposite direction and generates a return light directed toward the semiconductor laser via the beam splitter. shall be.

〔作用〕[Effect]

上記手段において、半導体レーザから出射されコリメー
トレンズ、ビーム整形プリズムによう平行光束に整形さ
れ、ビームスプリッタに入射する平行光束の光量の少く
とも20%以上をビームスプリッタの直角反射光として
分離し、この直角反射光を戻り光として半導体レーザに
戻す外部共振光学系を設けたことによシ、半導体レーザ
は強い光帰還によって外部高速変調され、安定に単一モ
ード発嶽を行うことになシ、光磁気ディスクからの戻9
光の影響(BTN)が排除され、低雑音化される。した
がって、BTNを排除するための高周波重畳回路を必要
とせず、光磁気ヘッド装置の小型化、@量化が可能にな
る。
In the above means, at least 20% or more of the light amount of the parallel light beam emitted from the semiconductor laser, shaped into a parallel light beam by the collimating lens and the beam shaping prism, and incident on the beam splitter, is separated as right-angled reflected light from the beam splitter. By providing an external resonant optical system that returns the orthogonally reflected light to the semiconductor laser as return light, the semiconductor laser is externally modulated at high speed by strong optical feedback, and stable single mode emission is achieved. Return from magnetic disk 9
Light effects (BTN) are eliminated and noise is reduced. Therefore, there is no need for a high frequency superimposition circuit for eliminating BTN, and the magneto-optical head device can be made smaller and more quantifiable.

〔実施例〕〔Example〕

以下この発uAを実施例に基づいて説明する。 This UA will be explained below based on an example.

第1図はこの発明の実施例装置の光学系を示す構成図で
あシ、従来装置と同じ構成2機能を有する部分には同一
参照符号を用いることにより詳細な説明を省略する。図
において、外部共振光学系10は、入射平行光束5の光
量の20%以上を直角反射光5Bとして反射するビーム
スプリッタ6と、直角反射光5Bを反射する外部反射ミ
ラー11とで構成される。
FIG. 1 is a configuration diagram showing an optical system of an apparatus according to an embodiment of the present invention, and detailed explanation will be omitted by using the same reference numerals for parts having the same configuration and two functions as the conventional apparatus. In the figure, an external resonant optical system 10 includes a beam splitter 6 that reflects 20% or more of the amount of incident parallel light beam 5 as orthogonally reflected light 5B, and an external reflection mirror 11 that reflects the orthogonally reflected light 5B.

実施例装置において、半導体レーザ1の出射直線偏光光
2はコリメートレンズ3およびピース整形プリズム4t
−通って円形断面を有する平行光束5となシ、その一部
(20%以上)が平行ビームスプリッタ6で反射されて
直角反射光5Bとなる。
In the embodiment device, the linearly polarized light 2 emitted from the semiconductor laser 1 is transmitted through a collimating lens 3 and a piece shaping prism 4t.
- A part (20% or more) of the parallel light beam 5 having a circular cross section is reflected by the parallel beam splitter 6 and becomes a right angle reflected light 5B.

直角反射光5Bは外部反射ミラー11で反射され、戻り
光15Aとなシビームスプリッタ6.ビーム整形プリズ
ム4.コリメートレンズ3からなる戻り光の光路15を
介して半導体レーザ1に帰還される。このとき、半導体
レーザ1と外部反射ミラー11との間の距離は一定であ
シ、出射光量の205Xに及ぶ強い戻り光15Aを前記
距離によって決まる周期で帰還させる外部共振器を形成
することにより、半導体レーザ1は外部高速変調されて
単一モードで安定に発倣する。したがって、光磁気記録
媒体としての光磁気ディスク9からの反射光(Mc3図
における反射光51)の一部である戻り光51Bにより
多モード発振していた半導体レーザ1は、これeこ比べ
て遥かに強い戻り光15による外部高速変調により単一
モード化され、戻り光51Bによって生ずるBTNが排
除される。
The right angle reflected light 5B is reflected by the external reflection mirror 11 and returns to the beam splitter 6. Beam shaping prism 4. The returned light is returned to the semiconductor laser 1 via an optical path 15 formed by the collimating lens 3 . At this time, the distance between the semiconductor laser 1 and the external reflection mirror 11 is constant, and by forming an external resonator that returns the strong return light 15A, which is 205 times the amount of emitted light, at a period determined by the distance, The semiconductor laser 1 is externally modulated at high speed and stably emits in a single mode. Therefore, the semiconductor laser 1, which was oscillating in multiple modes due to the return light 51B which is a part of the reflected light from the magneto-optical disk 9 as a magneto-optical recording medium (reflected light 51 in Figure Mc3), is far more The signal is converted into a single mode by external high-speed modulation using the strong return light 15, and the BTN caused by the return light 51B is eliminated.

第2図はこの発明の異なる実施例装置を示す構成図であ
り、外部共振光学系20が偏光ビームスプリッタ26.
1/4波長板24.および外部反射ミラー21で構成さ
れ九点が前述の実施例と異なる。偏光ビームスプリッタ
26はS偏光光(記号−)の反射率R8を約100%と
し、p偏光光(記号O)の反射率Rpを約50%としで
あるので、半導体レーザ1から投射された直線偏光光(
p偏光光)はビームスプリッタ26で約50%反射され
、1/4波長板24を通ることで円偏光光束となる。円
偏光光束は外部反射ミラー21で反射され再び1/4波
長板を通ることでS偏光の直線偏光光束となる。S偏光
光束は偏光ビームスプリッタ26で約100%反射され
て半導体レーザ1への戻夛光25Aとな勺、反射光検出
系41へは行かないので、反射ベラ−21からの反射光
による反射光検出系41への影響は排除される。また、
半導体レーザ1に戻る光量は半導体レーザ1から出射さ
れる直線偏光光2の光量のほぼ40%に相当するので、
半導体レーザ1は外部共振光学系20からのよシ強力な
戻り光25Aによシ外部高速変調され、よシ安定した単
一モードで発振することにより、情報記録媒体としての
光磁気ディスク9からの戻り光によるBTNの影響を排
除することができる。
FIG. 2 is a block diagram showing a different embodiment of the present invention, in which the external resonant optical system 20 is a polarizing beam splitter 26.
1/4 wavelength plate 24. and an external reflection mirror 21, which differs from the previous embodiment in nine points. Since the polarizing beam splitter 26 has a reflectance R8 of about 100% for S-polarized light (symbol -) and a reflectance Rp of about 50% for p-polarized light (symbol O), the straight line projected from the semiconductor laser 1 Polarized light (
About 50% of the p-polarized light is reflected by the beam splitter 26 and becomes a circularly polarized light beam by passing through the quarter-wave plate 24. The circularly polarized light beam is reflected by the external reflection mirror 21 and passes through the quarter-wave plate again, thereby becoming an S-polarized linearly polarized light beam. Approximately 100% of the S-polarized light flux is reflected by the polarization beam splitter 26 and returns to the semiconductor laser 1 as reflected light 25A.However, since it does not go to the reflected light detection system 41, it is reflected light from the reflection mirror 21. The influence on the detection system 41 is eliminated. Also,
Since the amount of light returning to the semiconductor laser 1 corresponds to approximately 40% of the amount of linearly polarized light 2 emitted from the semiconductor laser 1,
The semiconductor laser 1 is externally modulated at high speed by the strong return light 25A from the external resonant optical system 20, and oscillates in a stable single mode, thereby allowing the laser diode to emit light from the magneto-optical disk 9 as an information recording medium. The influence of BTN due to returned light can be eliminated.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、半導体レーザから出射された
直線偏光光を微小スポットに集束して光磁気記録媒体の
情報記録部に投射する投射光学系に配されたビームスプ
リッタにより、前記直線偏光光の20%以上の光量を反
射させて直角反射光とし、これを半導体レーザへの戻り
光に変換して出力する外部共振光学系を設けるよう構成
した。
As described above, the present invention focuses linearly polarized light emitted from a semiconductor laser into a minute spot and projects the linearly polarized light onto an information recording section of a magneto-optical recording medium by a beam splitter disposed in a projection optical system. An external resonant optical system is provided which reflects at least 20% of the amount of light into right angle reflected light, converts it into light returned to the semiconductor laser, and outputs it.

その結果、半導体レーザは強い戻り光によシ外部高速変
調されて単一モードで安定して発振するので、光磁気デ
ィスクからの戻り光によシ半導体レーザの出射光束中の
雑音が増加するBTNの影響が排除され、したがってB
TNの影響を排除するために従来用いられていた高周波
重畳回路が不要になシ、小型化、軽量化された光磁気ヘ
ッド装置を経済的に有利に提供することができる。
As a result, the semiconductor laser is externally high-speed modulated by the strong return light and stably oscillates in a single mode, so the return light from the magneto-optical disk increases the noise in the emitted light beam of the semiconductor laser.BTN is eliminated, and therefore B
The high frequency superimposing circuit conventionally used to eliminate the influence of TN is no longer necessary, and a magneto-optical head device that is smaller and lighter in weight can be economically advantageously provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例装置の光学系を示す構成図、
第2図は異なる実施例装置の光学系を示す構成図、第3
図は従来装置の光学系を示す構成図、第4図は高周波重
畳形の従来装置の動作を説明するための図である。 1・・・半導体レーザ、2・・・出射直線偏光光、3・
・・コリメートレンズ、4・・・ビーム整形プリズム、
6・・・ビームスプリッタ、7・・・反射ミラー、8・
・・対物レンズ、9・・・光磁気記録媒体(光磁気ディ
スク)、10 、20・・・外部共振光学系、11.2
1・・・外部反射ミラー、24・・・1/4波長板、2
6・・・偏光ビームスプリッタ、41・・・反射光検出
系、51・・・反射光、51B・・・戻勺光(BTN)
、5・・・入射平行光束、15A、25A・・・外部共
振光学系からの戻第2図
FIG. 1 is a configuration diagram showing an optical system of an embodiment of the present invention;
Fig. 2 is a configuration diagram showing the optical system of the apparatus of different embodiments;
This figure is a block diagram showing the optical system of a conventional device, and FIG. 4 is a diagram for explaining the operation of the conventional device of high frequency superposition type. 1... Semiconductor laser, 2... Outgoing linearly polarized light, 3...
... Collimating lens, 4... Beam shaping prism,
6...Beam splitter, 7...Reflection mirror, 8.
...Objective lens, 9...Magneto-optical recording medium (magneto-optical disk), 10, 20...External resonance optical system, 11.2
1... External reflection mirror, 24... 1/4 wavelength plate, 2
6... Polarizing beam splitter, 41... Reflected light detection system, 51... Reflected light, 51B... Return light (BTN)
, 5... Incoming parallel light flux, 15A, 25A... Return from external resonant optical system Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)半導体レーザの出射直線偏光光を平行ビームに整え
ビームスプリッタ、反射ミラー、対物レンズを介して光
磁気記録媒体に微小スポットとして投射して外部磁界と
の兼合により情報の記録、消去を行うとともに、光磁気
記録媒体から反射され前記ビームスプリッタで分離され
た反射光を検出して情報の再生を行うものにおいて、前
記ビームスプリッタがその入射平行ビームの光量の少く
とも20%以上を直角反射光として反射するものであり
、この直角反射光を逆向きに反射させ前記ビームスプリ
ッタを介して前記半導体レーザに向かう戻り光を発生す
る前記半導体レーザの外部共振光学系を備えたことを特
徴とする光磁気ヘッド装置。
1) Linearly polarized light emitted from a semiconductor laser is made into a parallel beam and projected as a minute spot onto a magneto-optical recording medium via a beam splitter, reflection mirror, and objective lens, and information is recorded and erased by combining with an external magnetic field. In addition, in a device that reproduces information by detecting reflected light reflected from a magneto-optical recording medium and separated by the beam splitter, the beam splitter converts at least 20% or more of the light amount of the incident parallel beam into orthogonally reflected light. The light is characterized by comprising an external resonant optical system for the semiconductor laser that reflects the orthogonally reflected light in the opposite direction and generates a return light directed toward the semiconductor laser via the beam splitter. magnetic head device.
JP14622788A 1988-06-14 1988-06-14 Magneto-optical head device Pending JPH01315052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14622788A JPH01315052A (en) 1988-06-14 1988-06-14 Magneto-optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622788A JPH01315052A (en) 1988-06-14 1988-06-14 Magneto-optical head device

Publications (1)

Publication Number Publication Date
JPH01315052A true JPH01315052A (en) 1989-12-20

Family

ID=15402985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622788A Pending JPH01315052A (en) 1988-06-14 1988-06-14 Magneto-optical head device

Country Status (1)

Country Link
JP (1) JPH01315052A (en)

Similar Documents

Publication Publication Date Title
US5313448A (en) Laser device driven by a periodic waveform optimized for reducing laser noise
US4819242A (en) Semiconductor laser driver circuit
JPS599086B2 (en) optical information reproducing device
US5067117A (en) Output stabilizing apparatus for an optical head
US5323373A (en) Optical pickup device
JPH0798895A (en) Magneto-optical recording device
JP2528821B2 (en) Optical information processing device
US5325348A (en) Wavelength converting element and system for recording and reproducing optical information
JPH01315052A (en) Magneto-optical head device
JPH07118084B2 (en) Optical information reproducing device
JPH0673191B2 (en) Semiconductor laser drive device
KR100207720B1 (en) Optical pickup apparatus for recording and reproducing
JPH01232543A (en) Optical information recording/reproducing device
JPH0466059B2 (en)
JP3085418B2 (en) Optical information recording device
JP2000011421A (en) Method of recording and reproducing optical disk and device therefor
JPS6139244A (en) Optical pickup device
JP2638465B2 (en) Optical information recording / reproducing method
JPS59129948A (en) Optical information processing device
JP2770706B2 (en) Laser drive circuit
JPH0713058Y2 (en) Optical pickup device
JPH06131732A (en) Edge recording/reproducing device for magneto-optical disk
JPH06131691A (en) Optical informaiton recording and reproducing device
JPH06318337A (en) Semiconductor laser driving device
JPH02223027A (en) Optical head device