JPH01314841A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01314841A
JPH01314841A JP63147372A JP14737288A JPH01314841A JP H01314841 A JPH01314841 A JP H01314841A JP 63147372 A JP63147372 A JP 63147372A JP 14737288 A JP14737288 A JP 14737288A JP H01314841 A JPH01314841 A JP H01314841A
Authority
JP
Japan
Prior art keywords
compressors
operating
compressor
switching
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63147372A
Other languages
Japanese (ja)
Inventor
Hidetoshi Narisei
成清 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63147372A priority Critical patent/JPH01314841A/en
Publication of JPH01314841A publication Critical patent/JPH01314841A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a compressor from hunting at the time of switching operation and to stabilize the operating state of the compressor by holding the operating frequencies of the compressors after the number of the compressors is switched at the time of switching the number of the operating compressors for a predetermined period of time. CONSTITUTION:A controller 6 calculates the difference DELTAt between the detected temperature of a diffusing temperature sensor 7 and a set value determined in an operation unit, and shifts the operation of one of first compressor 3a to the operation of two of first, second compressors 3a, 3b as the difference DELTAt increases. In this case, the operating frequences of the compressors 3a, 3b after the number of the operating compressors is shifted by the controller 6 is maintained for a predetermined period of time. As the temperature difference DELTAt decreases, the operation of two of the compressors 3a, 3b is shifted to the operation of one of the compressor 3a. In this case, the operating frequencies of the compressors 3a, 3b after the number of the operating compressors is shifted by the controller 6 are maintained for a predetermined period of time. Thus, the hunting at the time of switching the number of the operating compressors can be prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は共通の室内側熱交換器に互いに独立した2経
路の冷凍サイクルを連結させた空気調和機の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to an improvement in an air conditioner in which two mutually independent refrigeration cycles are connected to a common indoor heat exchanger.

(従来の技術) 一般に、空気調和機として共通の室内側熱交換器に互い
に独立した2経路の冷凍サイクルを連結させたものが開
発されている。この場合、各冷凍サイクル内にそれぞれ
能力可変圧縮機を介設させている。さらに、室内側熱交
換器を収容させた室内ユニットの吹出口には吹出し温度
センサを設け、この吹出し温度センサからの検出信号に
もとづいて各圧縮機の運転台数および運転周波数を制御
し、室内ユニットからの吹出し温度を一定に保持するよ
うにしている。
(Prior Art) Generally, air conditioners have been developed in which two mutually independent refrigeration cycles are connected to a common indoor heat exchanger. In this case, a variable capacity compressor is interposed in each refrigeration cycle. Furthermore, a blowout temperature sensor is installed at the blowout port of the indoor unit housing the indoor heat exchanger, and the number of operating compressors and the operating frequency of each compressor are controlled based on the detection signal from this blowout temperature sensor. The temperature of the air blowing from the tank is kept constant.

ところで、この種のものにあっては室内ユニットからの
吹出し温度に応じて各圧縮機の運転台数および運転周波
数を制御させており、例えば冷房運転時、室内ユニット
からの吹出し温度が設定値より高い場合には一方の冷凍
サイクルの第1の圧縮機の能力が増大し、さらにはこの
駆動中の第1の圧縮機に加えて他方の冷凍サイクルの第
2の圧縮機も起動することになる。この状態から室内ユ
ニットからの吹出し温度が設定値に近づくと、各圧縮機
の能力が低減したり、さらには第2の圧縮機の運転が停
止して第1の圧縮機のみの運転となる。
By the way, in this type of compressor, the number of operating compressors and the operating frequency of each compressor are controlled according to the temperature blown out from the indoor unit. For example, during cooling operation, the temperature blown out from the indoor unit is higher than the set value. In this case, the capacity of the first compressor of one refrigeration cycle is increased, and furthermore, the second compressor of the other refrigeration cycle is started in addition to the first compressor that is being driven. When the temperature of the air discharged from the indoor unit approaches the set value in this state, the capacity of each compressor is reduced, and furthermore, the operation of the second compressor is stopped and only the first compressor is operated.

しかしながら、上記構成のものにあっては各圧縮機の運
転台数の切換え操作時には室内ユニットからの吹出し温
度が過渡的に急激に変化する問題がある。例えば、1台
の圧縮機のみの単独運転状態から2台の圧縮機の同時運
転状態に切換える場合には室内ユニットからの吹出し温
度が設定値よりも急激に下がるので、吹出し温度センサ
がこの温度低下を検出して1台の圧縮機のみの単独運転
状態から2台の圧縮機の同時運転状態に切換えた直後に
、再び1台の圧縮機のみの単独運転状態に戻されるおそ
れがある。さらに、2台の圧縮機の同時運転状態から1
台の圧縮機のみの単独運転状態に切換える場合には室内
ユニットからの吹出し温度が設定値よりも急激に上昇す
るので、吹出し温度センサがこの温度上昇を検出して2
台の圧縮機の同時運転状態から1台の圧縮機のみの単独
運転状態に切換えた直後に、再び2台の圧縮機の同時運
転状態に戻されるおそれがある。そのため、各圧縮機の
運転台数の切換え操作時には短時間内で第2の圧縮機が
オン、オフを繰返す、いわゆるハンチング現象を起こす
おそれがあるので、圧縮機の運転状態が不安定になるお
それがあった。
However, with the above configuration, there is a problem in that the temperature of the air blown from the indoor unit suddenly changes transiently when the number of operating compressors is changed. For example, when switching from a single compressor operating state to a simultaneous operating state of two compressors, the air outlet temperature from the indoor unit will drop sharply below the set value, so the air outlet temperature sensor will detect this temperature drop. Immediately after detecting this and switching from the individual operating state of only one compressor to the simultaneous operating state of two compressors, there is a possibility that the state returns to the individual operating state of only one compressor. Furthermore, from the simultaneous operation of two compressors, one
When switching to standalone operation of only one compressor, the air outlet temperature from the indoor unit will rise sharply higher than the set value, so the air outlet temperature sensor will detect this temperature rise and
Immediately after switching from the simultaneous operation state of two compressors to the independent operation state of only one compressor, there is a possibility that the state returns to the simultaneous operation state of two compressors again. Therefore, when switching the number of operating compressors, there is a risk that the second compressor will repeatedly turn on and off within a short period of time, causing a so-called hunting phenomenon, which may cause the operating state of the compressors to become unstable. there were.

(発明が解決しようとする課題) 従来構成のものにあっては各圧縮機の運転台数の切換え
操作時には室内ユニットがらの吹出し温度が過渡的に急
激に変化するので、各圧縮機の運転台数の切換え操作時
には短時間内で第2の圧縮機がオン、オフを繰返す、い
わゆるハンチング現象を起こすおそれがあり、圧縮機の
運転状態が不安定になるおそれがあった。
(Problem to be Solved by the Invention) In the conventional configuration, when switching the number of operating compressors, the air outlet temperature of the indoor units changes suddenly and rapidly, so it is difficult to change the number of operating compressors. During the switching operation, there is a risk of causing the second compressor to turn on and off repeatedly within a short period of time, a so-called hunting phenomenon, and the operating state of the compressor may become unstable.

この発明は上記事情に着目してなされたもので、圧縮機
の運転台数の切換え操作時に圧縮機のハンチング現象を
防止することができ、圧縮機の運転状態を安定化させる
ことができる空気調和機を提供することを目的とするも
のである。
This invention was made in view of the above circumstances, and is an air conditioner that can prevent the hunting phenomenon of the compressor when switching the number of compressors in operation, and can stabilize the operating state of the compressor. The purpose is to provide the following.

[発明の構成] (課題を解決するための手段) 各圧縮機の運転台数の切換え操作時に各圧縮機の運転台
数の切換え後の各圧縮機の運転周波数を一定時間保持す
る運転台数の切換え制御手段を設けたものである。
[Structure of the Invention] (Means for Solving the Problem) Switching control of the number of operating compressors that maintains the operating frequency of each compressor for a certain period of time after switching the number of operating compressors. This means that a means has been established.

(作用) 吹出し温度センサからの検出信号にもとづいて各圧縮機
の運転台数を切換える切換え操作時には各圧縮機の運転
台数の切換え後の各圧縮機の運転周波数を一定時間保持
させることにより、各圧縮機の運転台数の切換え操作時
に室内ユニットからの吹出し温度が過渡的に急激に変化
した場合であっても、各圧縮機の運転台数の切換え操作
時に短時間内で圧縮機がオン、オフを繰返すハンチング
現象の発生を防止するようにしたものである。
(Function) When switching the number of operating compressors based on the detection signal from the outlet temperature sensor, the operating frequency of each compressor is held for a certain period of time after the number of operating compressors is switched, so that each compression Even if the blowout temperature from the indoor unit suddenly changes transiently when changing the number of compressors in operation, the compressor will repeatedly turn on and off within a short period of time when changing the number of compressors in operation. This is designed to prevent the hunting phenomenon from occurring.

(実施例) 以下、この発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は共通の室内側熱交換器1に互いに独立した2経
路の冷凍サイクル2a、2bを連結させた空気調和機全
体の概略構成を示すものである。
FIG. 1 schematically shows the overall configuration of an air conditioner in which two mutually independent refrigeration cycles 2a and 2b are connected to a common indoor heat exchanger 1.

この場合、第1の冷凍サイクル2aには第1の能力可変
圧縮機3 a s第1の凝縮器4a、第1の膨張弁5 
a s蒸発器として機能する室内側熱交換器1を冷媒管
を介して順次連結させている。さらに、第2の冷凍サイ
クル2bには第2の能力可変圧縮機3b、第2の凝縮器
4b、第2の膨張弁5b。
In this case, the first refrigeration cycle 2a includes a first variable capacity compressor 3a, a first condenser 4a, and a first expansion valve 5.
Indoor heat exchangers 1 functioning as an AS evaporator are sequentially connected via refrigerant pipes. Further, the second refrigeration cycle 2b includes a second variable capacity compressor 3b, a second condenser 4b, and a second expansion valve 5b.

蒸発器として機能する室内側熱交換器1を冷媒管を介し
て順次連結させている。この場合、室内側熱交換器1に
は例えば多数の共通のフィン内に第1の冷凍サイクル2
a側の冷媒管部および第2の冷凍サイクル2a側の冷媒
管部をそれぞれ配設させている。
Indoor heat exchangers 1 functioning as evaporators are successively connected via refrigerant pipes. In this case, the indoor heat exchanger 1 includes, for example, a first refrigeration cycle 2 within a large number of common fins.
A refrigerant pipe section on the a side and a refrigerant pipe section on the second refrigeration cycle 2a side are respectively disposed.

また、6はこの空気調和機の制御部である。この制御部
6は例えばマイクロコンピュータおよびその周辺回路な
どからなり、外部に吹出し温度センサ7および第1.、
第2のインバータ回路8a。
Further, 6 is a control section of this air conditioner. This control section 6 is composed of, for example, a microcomputer and its peripheral circuits, and includes a blowout temperature sensor 7 and a first... ,
Second inverter circuit 8a.

8b、図示しない操作部等をそれぞれ接続させていると
ともに、タイマ回路9を内蔵させている。
8b and an operation section (not shown) are connected thereto, and a timer circuit 9 is built in.

この場合、吹出し温度センサ7は室内側熱交換器1を収
容させた室内ユニットの吹出口に設けている。さらに、
インバータ回路8a、8bは交流電源の電圧を整流し、
それを制御部6の指令に応じたスイッチングによって所
定周波数の交流電圧に変換し、圧縮機3a、3bのモー
タにそれぞれ駆動電力として供給するものである。そし
て、制御部6では吹出し温度センサ7からの検出信号に
もとづいて吹出し温度と操作部によって予め設定された
設定値Tsとの差Δtを演算して各圧縮機3a、3bの
運転台数および運転周波数を制御し、室内ユニットから
の吹出し温度を一定に保持させるようにしている。また
、この制御部6では各圧縮機3a、3bの運転台数の切
換え操作時に各圧縮機3a、3bの運転台数の切換え後
の各圧縮機3a、3bの運転周波数をタイマ回路9によ
って一定時間t1保持させるようにしている。
In this case, the outlet temperature sensor 7 is provided at the outlet of the indoor unit housing the indoor heat exchanger 1. moreover,
Inverter circuits 8a and 8b rectify the voltage of the AC power supply,
The voltage is converted into an alternating current voltage of a predetermined frequency by switching according to a command from the control unit 6, and is supplied as driving power to the motors of the compressors 3a and 3b, respectively. Then, the control unit 6 calculates the difference Δt between the air outlet temperature and the set value Ts preset by the operation unit based on the detection signal from the air outlet temperature sensor 7, and calculates the number of operating units of each compressor 3a, 3b and the operating frequency. is controlled to keep the temperature of the air blown from the indoor unit constant. In addition, in this control section 6, when the number of operating compressors 3a, 3b is changed, the operating frequency of each compressor 3a, 3b after switching the number of operating compressors 3a, 3b is controlled by a timer circuit 9 for a certain period of time t1. I'm trying to keep it.

つぎに、上記構成の作用について第2図乃至第5図を参
照しながら説明する。
Next, the operation of the above configuration will be explained with reference to FIGS. 2 to 5.

まず、冷房運転中は吹出し温度センサ7によって室内ユ
ニットからの吹出し温度を常時検知させている。このと
き、制御部6は吹出し温度センサ7の検知温度と操作部
で定められた設定値(設定温度)との差Δtを演算し、
その温度差Δtに応じて圧縮機3a、3bの運転台数お
よび運転周波数(インバータ回路8a、8bの出力周波
数)fa、fbを制御する。この場合、制御部6では温
度差Δtが大きくなるに従い第1の圧縮機3aの1台運
転から第1.第2の圧縮機3a、3bの2台運転に移行
するようにしている。
First, during cooling operation, the air outlet temperature sensor 7 constantly detects the air outlet temperature from the indoor unit. At this time, the control unit 6 calculates the difference Δt between the temperature detected by the blowout temperature sensor 7 and the set value (set temperature) determined by the operation unit,
The number of operating compressors 3a, 3b and operating frequencies (output frequencies of inverter circuits 8a, 8b) fa, fb are controlled according to the temperature difference Δt. In this case, in the control section 6, as the temperature difference Δt increases, the first compressor 3a is operated from one to the first compressor 3a. He is trying to shift to operation of two second compressors 3a and 3b.

例えば、吹出し温度センサ7の検知温度と操作部で定め
られた設定値(設定温度)との差Δtが大きい場合には
まず、第2図に示すように第1の圧縮機3aのみを1台
運転させ、この第1の圧縮機3aの運転周波数faを最
小運転周波数(30Hz)から徐々に増加させて最大運
転周波数(60Hz )に上昇させた時点で、第1.第
2の圧縮機3a、3bの2台運転に移行する。この圧縮
機運転台数の切換え時には第1の圧縮機3aの運転周波
数faは第2図中に実線矢印で示すように最大運転周波
数(60Hz)から最小運転周波数(30Hz)に変更
させるとともに、第2の圧縮機3bの運転周波数fbは
同図中に点線矢印で示すように最小運転周波数(30H
z>で運転させる。この場合、圧縮機運転台数の切換え
操作時には制御部6によって圧縮機運転台数の切換え後
の各圧縮機3a、3bの運転周波数fa  (30Hz
) 、  fb(30Hz)を一定時間t1保持させる
。そのため、圧縮機運転台数の切換え操作にともない室
内ユニットからの吹出し温度が第3図に示すように過渡
的に急激に低下しても従来のように各圧縮機3a。
For example, if the difference Δt between the temperature detected by the outlet temperature sensor 7 and the set value (set temperature) determined by the operation section is large, first, as shown in FIG. When the operating frequency fa of the first compressor 3a is gradually increased from the minimum operating frequency (30 Hz) to the maximum operating frequency (60 Hz), the first compressor 3a is operated. The operation shifts to two second compressors 3a and 3b. When changing the number of operating compressors, the operating frequency fa of the first compressor 3a is changed from the maximum operating frequency (60 Hz) to the minimum operating frequency (30 Hz) as shown by the solid line arrow in FIG. The operating frequency fb of the compressor 3b is lower than the minimum operating frequency (30H) as shown by the dotted arrow in the figure.
Operate with z>. In this case, when switching the number of operating compressors, the control unit 6 sets the operating frequency fa (30Hz) of each compressor 3a, 3b after switching the number of operating compressors.
), fb (30Hz) is held for a certain period of time t1. Therefore, even if the temperature of the air discharged from the indoor unit suddenly decreases transiently as shown in FIG. 3 as the number of operating compressors is changed, each compressor 3a remains unchanged as in the conventional case.

3bの運転台数の切換え操作時に短時間内で圧縮機3b
がオン、オフを繰返すハンチング現象の発生を防止する
ことができる。
When switching the number of compressors 3b in operation, the compressor 3b
It is possible to prevent the hunting phenomenon in which the power is turned on and off repeatedly.

さらに、この第1.第2の圧縮機3a、3bの2台運転
状態に切換えた後は2台の圧縮機3a。
Furthermore, this first. After switching to the operating state of the second compressors 3a and 3b, there are only two compressors 3a.

3bの運転周波数fa、fbを最小運転周波数(30H
z)から徐々に増加させ、吹出し温度センサ7の検知温
度と設定値との温度差Δtと対応する運転周波数fa、
fbで2台の圧縮機3a。
The operating frequencies fa and fb of 3b are the minimum operating frequency (30H
z), and the operating frequency fa corresponding to the temperature difference Δt between the detected temperature of the blowout temperature sensor 7 and the set value,
Two compressors 3a in fb.

3bをそれぞれ運転させる。3b respectively.

また、制御部6では吹出し温度センサ7の検知温度と設
定値との温度差Δtが低下するに従い第1、第2の圧縮
機3 a r  3 bの2台運転から第1の圧縮機3
aの1台運転に移行する。
In addition, in the control unit 6, as the temperature difference Δt between the temperature detected by the blowout temperature sensor 7 and the set value decreases, the operation of the first and second compressors 3 a r 3 b is changed to the first compressor 3 .
Shift to single unit operation in a.

例えば、2台の圧縮機3a、3bを適宜の運転周波数f
a、  fb  (fa >3CN1z、  fb >
30Hz)で運転している状態から運転周波数fa、f
bを徐々に低下させ、2台の圧縮機3a、3bの運転周
波数fa、fbが最小運転周波数(30Hz)に達した
時点で、第1の圧縮機3aの1台運転に移行する。この
圧縮機運転台数の切換え時には第4図中に点線矢印で示
すように第2の圧縮機3bの運転を停止させる(運転周
波数fbは0Hz)とともに、同図中に実線矢印で示す
ように第1の圧縮機3aの運転周波数faを最小運転周
波数(30Hz)から最大運転周波数(60Hz)に変
更させる。
For example, the two compressors 3a and 3b are operated at an appropriate operating frequency f.
a, fb (fa >3CN1z, fb >
30Hz) to the operating frequency fa, f.
b is gradually lowered, and when the operating frequencies fa and fb of the two compressors 3a and 3b reach the minimum operating frequency (30 Hz), the operation shifts to one unit of the first compressor 3a. When switching the number of operating compressors, the operation of the second compressor 3b is stopped as shown by the dotted line arrow in FIG. 4 (the operating frequency fb is 0 Hz), and the The operating frequency fa of the No. 1 compressor 3a is changed from the minimum operating frequency (30 Hz) to the maximum operating frequency (60 Hz).

この場合も圧縮機運転台数の切換え操作時には制御部6
によって圧縮機運転台数の切換え後の各圧縮機3a、3
bの運転周波数fa(60Hz)。
In this case as well, when switching the number of operating compressors, the control unit 6
Each compressor 3a, 3 after switching the number of operating compressors by
Operating frequency fa (60Hz) of b.

fb(O)Iz)を一定時間1.保持させる。そのため
、圧縮機運転台数の切換え操作にともない室内ユニット
からの吹出し温度が第5図に示すように過渡的に急激に
上昇しても従来のように各圧縮機3a、3bの運転台数
の切換え操作時に短時間内で圧縮機3bがオン、オフを
繰返すハンチング現象の発生を防止することができる。
fb(O)Iz) for a certain period of time 1. let it hold. Therefore, even if the temperature of the air discharged from the indoor unit suddenly rises transiently as shown in Fig. 5 due to the switching operation of the number of operating compressors, the operation of switching the number of operating compressors 3a and 3b can be performed as usual. This can prevent the occurrence of a hunting phenomenon in which the compressor 3b is repeatedly turned on and off within a short period of time.

さらに、この第1の圧縮機3aの1台運転状態に切換え
た後はこの圧縮機3aの運転周波数faを最大運転周波
数(60H2)から徐々に低下させる。
Further, after switching to the single operating state of the first compressor 3a, the operating frequency fa of this compressor 3a is gradually lowered from the maximum operating frequency (60H2).

そこで、上記構成のものにあっては吹出し温度センサ7
からの検出信号にもとづいて各圧縮機3a、3bの運転
台数を切換える切換え操作時には各圧縮機3a、3bの
運転台数の切換え後の各圧縮機3a、3bの運転周波数
fa、fbを一定時間保持させることにより、各圧縮機
3a、3bの運転台数の切換え操作時に室内ユニットか
らの吹出し温度が過渡的に急激に変化した場合であって
も、各圧縮機3a、3bの運転台数の切換え操作時に短
時間内で圧縮機3bがオン、オフを繰返すハンチング現
象の発生を防止することができ、圧縮機3a、3bの運
転状態を安定化させることができる。
Therefore, in the case of the above configuration, the blowout temperature sensor 7
During a switching operation in which the number of operating compressors 3a, 3b is switched based on a detection signal from By doing so, even if the blowout temperature from the indoor unit suddenly changes transiently when changing the number of operating compressors 3a and 3b, the It is possible to prevent the occurrence of a hunting phenomenon in which the compressor 3b repeatedly turns on and off within a short period of time, and the operating state of the compressors 3a and 3b can be stabilized.

なお、この発明は上記実施例に限定されるものではなく
、この発明の要旨を逸脱しない範囲で種々変形実施でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

[発明の効果〕 この発明によれば各圧縮機の運転台数の切換え操作時に
各圧縮機の運転台数の切換え後の各圧縮機の運転周波数
を一定時間保持する運転台数の切換え制御手段を設けた
ので、圧縮機の運転台数の切換え操作時に圧縮機のノー
ンチング現象を防止することができ、圧縮機の運転状態
を安定化させることができる。
[Effects of the Invention] According to the present invention, there is provided a control means for switching the number of operating compressors that maintains the operating frequency of each compressor for a certain period of time after switching the number of operating compressors. Therefore, it is possible to prevent the nonching phenomenon of the compressor when changing the number of operating compressors, and it is possible to stabilize the operating state of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示すもので、第1図は空気
調和機内の冷凍サイクルおよび制御回路を示す要部の概
略構成図、第2図は1台運転状態から2台運転状態に切
換える場合の2台の圧縮機の運転周波数とΔt(設定値
と吹出し温度との差)との関係を示す特性図、第3図は
1台運転状態から2台運転状態に切換える場合の吹出し
温度の変化状態を示す特性図、第4図は2台運転状態か
ら1台運転状態に切換える場合の2台の圧縮機の運転周
波数とΔt(設定値と吹出し温度との差)との関係を示
す特性図、第5図は2台運転状態から1台運転状態に切
換える場合の吹出し温度の変化状態を示す特性図である
。 1・・・室内側熱交換器、2a・・・第1の冷凍サイク
ル、2b・・・第2の冷凍サイクル、3a・・・第1の
能力可変圧縮機、3b・・・第2の能力可変圧縮機、6
・・・制御部、7・・・吹出し温度センサ。 出願人代理人 弁理士 鈴江武彦 第1図 第4図
The drawings show one embodiment of the present invention, and Fig. 1 is a schematic configuration diagram of the main parts showing the refrigeration cycle and control circuit in the air conditioner, and Fig. 2 shows switching from one unit operating state to two unit operating state. Figure 3 shows the relationship between the operating frequency of two compressors and Δt (the difference between the set value and the blowout temperature). A characteristic diagram showing the changing state. Figure 4 shows the relationship between the operating frequency of the two compressors and Δt (difference between the set value and the blowing temperature) when switching from a two-unit operating state to a one-unit operating state. FIG. 5 is a characteristic diagram showing how the blowing temperature changes when switching from a two-unit operating state to a one-unit operating state. DESCRIPTION OF SYMBOLS 1... Indoor heat exchanger, 2a... First refrigeration cycle, 2b... Second refrigeration cycle, 3a... First capacity variable compressor, 3b... Second capacity Variable compressor, 6
...Control unit, 7...Blowout temperature sensor. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 共通の室内側熱交換器に互いに独立した2経路の冷凍サ
イクルを連結させ、各冷凍サイクル内にそれぞれ能力可
変圧縮機を介設させるとともに、前記室内側熱交換器を
収容させた室内ユニットの吹出口に吹出し温度センサを
設け、この吹出し温度センサからの検出信号にもとづい
て前記各圧縮機の運転台数および運転周波数を制御し、
前記室内ユニットからの吹出し温度を一定に保持する空
気調和機において、前記各圧縮機の運転台数の切換え操
作時に前記各圧縮機の運転台数の切換え後の前記各圧縮
機の運転周波数を一定時間保持する運転台数の切換え制
御手段を設けたことを特徴とする空気調和機。
Two mutually independent refrigeration cycles are connected to a common indoor heat exchanger, a variable capacity compressor is interposed in each refrigeration cycle, and the indoor unit housing the indoor heat exchanger is A blowout temperature sensor is provided at the outlet, and the number of operating units and the operating frequency of each compressor are controlled based on the detection signal from the blowout temperature sensor,
In the air conditioner that maintains the blowing temperature from the indoor unit constant, when the number of operating compressors is switched, the operating frequency of each compressor is maintained for a certain period of time after switching the number of operating compressors. An air conditioner characterized by being provided with a control means for switching the number of operating units.
JP63147372A 1988-06-15 1988-06-15 Air conditioner Pending JPH01314841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147372A JPH01314841A (en) 1988-06-15 1988-06-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147372A JPH01314841A (en) 1988-06-15 1988-06-15 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01314841A true JPH01314841A (en) 1989-12-20

Family

ID=15428743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147372A Pending JPH01314841A (en) 1988-06-15 1988-06-15 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01314841A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217761A (en) * 1990-01-24 1991-09-25 Hitachi Ltd Water cooler
WO1998012486A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Air conditioner and medium storing an operation control program therefor
KR20040042165A (en) * 2002-11-13 2004-05-20 주식회사 대우일렉트로닉스 Air conditioner
WO2010021321A1 (en) * 2008-08-22 2010-02-25 ダイキン工業株式会社 Freezing device
JP2011094903A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Refrigerating device
JP2011179782A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217761A (en) * 1990-01-24 1991-09-25 Hitachi Ltd Water cooler
WO1998012486A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Air conditioner and medium storing an operation control program therefor
KR20040042165A (en) * 2002-11-13 2004-05-20 주식회사 대우일렉트로닉스 Air conditioner
WO2010021321A1 (en) * 2008-08-22 2010-02-25 ダイキン工業株式会社 Freezing device
JP2010071639A (en) * 2008-08-22 2010-04-02 Daikin Ind Ltd Refrigerating device
JP4626714B2 (en) * 2008-08-22 2011-02-09 ダイキン工業株式会社 Refrigeration equipment
US8984904B2 (en) 2008-08-22 2015-03-24 Daikin Industries, Ltd. Refrigerating device
JP2011094903A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Refrigerating device
JP2011179782A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Refrigerating cycle device

Similar Documents

Publication Publication Date Title
JP2557903B2 (en) Air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
US6807817B2 (en) Method for operating compressors of air conditioner
JPH01314841A (en) Air conditioner
JPH0814672A (en) Freezer device
KR100347899B1 (en) Control method of inverter compressor of air conditioner
US5182915A (en) Portable type air conditioning apparatus
JP2598080B2 (en) Air conditioner
JPH0875274A (en) Refrigerating equipment
JP3286817B2 (en) Multi-room air conditioner
JPH0618103A (en) Air conditioner
JPH062918A (en) Controller for air conditioner
JPS5927145A (en) Air conditioner
JP2557656B2 (en) Refrigerator capacity control method
JPH11281172A (en) Chiller
JPS6358051A (en) Air conditioner
KR100300581B1 (en) Cold and heat cycle controll method
JPH085164A (en) Refrigerating device
JP2000249408A (en) Refrigeration unit
JPH02150664A (en) Air conditioner
JPH03211363A (en) Air conditioner
KR100237930B1 (en) Control method of compressor for inverter type air conditioner
JP2930467B2 (en) Operation method of heat pump
JPH0828970A (en) Controlling method of refrigerating machine having plurality of compressors
JPH0460360A (en) Apparatus for air conditioning