JPH01314721A - Polyester yarn and production thereof - Google Patents

Polyester yarn and production thereof

Info

Publication number
JPH01314721A
JPH01314721A JP63138398A JP13839888A JPH01314721A JP H01314721 A JPH01314721 A JP H01314721A JP 63138398 A JP63138398 A JP 63138398A JP 13839888 A JP13839888 A JP 13839888A JP H01314721 A JPH01314721 A JP H01314721A
Authority
JP
Japan
Prior art keywords
yarn
spinning
polyester
birefringence
spinneret
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63138398A
Other languages
Japanese (ja)
Inventor
Tadashi Koyanagi
正 小柳
Hiroisa Hamada
濱田 裕功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63138398A priority Critical patent/JPH01314721A/en
Publication of JPH01314721A publication Critical patent/JPH01314721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject high-melting yarn, excellent in heat resistance and elongation recovery properties and suitable for napped fabrics by heating polyethylene terephthalate in a heating zone at a specific temperature or above provided just under a spinneret and spinning a yarn while keeping the neck deformation ratio of the resultant yarn within a specified range. CONSTITUTION:A polyester substantially consisting of polyethylene terephthalate is spun at >=9000m/min, preferably 10000-12000m/min speed. In the process, a heating zone at >=250 deg.C is provided just under a spinneret and the neck deformation ratio of the yarn formed in the spinning process is kept within the range expressed by the formula 3X10<-3>S-0.5<=N<=15X10<-3>S-5.5, provided that N>=2 (N is the neck deformation ratio; S is the specific surface area (cm<2>/g) of the single filament) to carry out spinning and afford the objective yarn having >=275 deg.C melting peak temperature measured by using a differential scanning calorimeter(DSC) and <=0.03 ( na) birefringence ratio of an amorphous part and <=0.04 birefringence difference (delta n) in the filament cross section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性と力学的特性に優れたポリエステル糸
条及びその製造法に関する。更に詳しくは、高融点で且
つ伸張回復性に優れ、立毛布帛に好適なポリエステル糸
条及びそれを安定に得る製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polyester yarn with excellent heat resistance and mechanical properties, and a method for producing the same. More specifically, the present invention relates to a polyester yarn having a high melting point and excellent stretch recovery properties and suitable for use in raised fabrics, and a method for stably producing the same.

〔従来の技術と発明が解決しようとする課題〕近年、ポ
リエステル糸条を高い生産性をもって得る目的で高速紡
糸法が提案され、実用化が検討されている。特開昭57
−121613号公報、特公昭60−47928号公報
には紡糸速度が5,000〜6,000m/分以上で得
られるポリエステル糸条は、延伸工程を必要とせず編織
などの実用に供し得ることが示されている。紡糸速度が
7,000m/分以上になれば更に高い生産性が期待さ
れる。しかしながら、実質的にポリエチレンテレフタレ
ートからなるポリエステル糸条をかかる高速で紡糸する
場合、紡糸中の糸切れが紡糸速度の増加と共に増大し、
工集的生産が困難となる問題が発生する。特公昭60−
47928号公報などに例示されるポリエステル糸条も
、紡糸速度は9,000m/分までである。繊維学会誌
VOL、37. Ik 4 (1981) T−136
ニは、9.000m/分までの紡糸速度によって得られ
るポリエステル糸条の繊維微細構造が示されているが、
9,000m/分以上に関しては何ら示されていない。
[Prior art and problems to be solved by the invention] In recent years, high-speed spinning methods have been proposed for the purpose of obtaining polyester yarns with high productivity, and their practical application is being considered. Japanese Unexamined Patent Publication No. 1983
It is stated in Japanese Patent Publication No. 121613 and Japanese Patent Publication No. 60-47928 that polyester yarn obtained at a spinning speed of 5,000 to 6,000 m/min or higher can be used for practical purposes such as knitting and weaving without the need for a drawing process. It is shown. Even higher productivity is expected if the spinning speed is 7,000 m/min or higher. However, when spinning a polyester yarn consisting essentially of polyethylene terephthalate at such a high speed, yarn breakage during spinning increases as the spinning speed increases.
Problems arise that make intensive production difficult. Special Public Service 1986-
The spinning speed of the polyester yarn exemplified in Japanese Patent No. 47928 is also up to 9,000 m/min. Textile Society Journal VOL, 37. Ik 4 (1981) T-136
D shows the fiber microstructure of polyester yarn obtained by spinning speeds up to 9.000 m/min;
Nothing is indicated regarding speeds of 9,000 m/min or more.

ディートリソチらは、r chemiefasern/
Textili−ndustrieJ誌1982年9月
号P−612−625に於て、実質的にポリエチレンテ
レフタレートからなるポリエステル糸条を10,000
m/分を越える紡糸速度で工業的水準で糸切れなく安定
に製造することの困難性を述べている。
Dietrich et al., r chemiefasern/
In Textili-ndustrie J magazine September 1982 issue P-612-625, 10,000 polyester yarns consisting essentially of polyethylene terephthalate were
It describes the difficulty of stably producing fibers at an industrial level without yarn breakage at spinning speeds exceeding m/min.

最近に至って、特開昭63−59412号公報によって
10.000m/分を越える紡糸速度で紡糸する方法が
提案されたが、これらは変性されたポリエステルの紡糸
方法に関するものであり、実質的にポリエチレンテレフ
タレートからなるポリエステル糸条の有する耐熱性など
の特長が損なわれた糸条しか得られていない。また、特
開昭62−263S09号公報、特開昭62−263S
15号公報には、実質的にポリエチレンテレフタレート
を13,000m/分に至る紡糸速度で紡糸する方法及
び糸条が提案されている。しかし、この方法で得られた
繊維は、その微細構造が極めて非晶質であるため、耐熱
性に乏しく、破断伸度も高い為繰り返しの伸長歪に対す
る回復性が乏しく力学的性質が劣り、そのまま編織物に
供することが出来ない欠点がある。
Recently, a method of spinning at a spinning speed exceeding 10,000 m/min has been proposed in Japanese Patent Application Laid-Open No. 63-59412, but these are related to methods for spinning modified polyester, and essentially polyethylene Only yarns that lack the heat resistance and other features of polyester yarns made of terephthalate have been obtained. Also, JP-A-62-263S09, JP-A-62-263S
No. 15 proposes a method and yarn for spinning polyethylene terephthalate at a spinning speed of up to 13,000 m/min. However, the fibers obtained by this method have extremely amorphous microstructures, so they have poor heat resistance, high elongation at break, poor recovery from repeated elongation strain, and poor mechanical properties. There is a drawback that it cannot be used for knitted fabrics.

本発明は、ポリエステル糸条が実質的にポリエチレンテ
レフタレートの特長を損なわず、9,000m/分を越
える高速紡糸において工業的水準で安定に紡糸する方法
及びそれによって得られる新規なポリエステル糸条を提
供することを目的とする。
The present invention provides a method for stably spinning polyester yarn at an industrial level at high speed spinning of over 9,000 m/min without substantially impairing the characteristics of polyethylene terephthalate, and a novel polyester yarn obtained thereby. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、9,000m/分以上の紡糸速度におい
て、紡糸中の紡糸安定性と得られる糸条の微細構造との
関連を鋭意検討した結果、本発明に特定する範囲で製造
することにより、極めて安定な紡糸が達成され、その結
果、耐熱性と力学的特性の優れたポリエステル糸条が得
られることを見出し本発明を完成するに至った。
The present inventors have intensively investigated the relationship between the spinning stability during spinning and the fine structure of the resulting yarn at a spinning speed of 9,000 m/min or more, and as a result, the inventors have found that manufacturing within the range specified in the present invention is possible. The present inventors have discovered that extremely stable spinning can be achieved, and as a result, a polyester yarn with excellent heat resistance and mechanical properties can be obtained, leading to the completion of the present invention.

すなわち本発明の目的は、示差走査熱量計DSC融解ピ
ーク温度が275℃以上、非晶部複屈折率(Δna)が
0.03以下で、且つフィラメント断面内の複屈折率差
(δΔn)が0.04以下であることを特徴とするポリ
エステル糸条によって達成され、かかるポリエステル糸
条を得る好ましい方法は、実質的にポリエチレンテレフ
タレートからなるポリエステルを9,000m/分以上
で紡糸するに際し、紡口直下に250℃以上の加熱域を
設けて、紡糸過程で生じる糸条のネック変形倍率を次式
で示される範囲として紡糸することを特徴とするポリエ
ステル糸条の超高速紡糸法である。
That is, the object of the present invention is to have a differential scanning calorimeter DSC melting peak temperature of 275°C or higher, an amorphous birefringence index (Δna) of 0.03 or lower, and a birefringence difference (δΔn) within the filament cross section of 0. A preferred method for obtaining such a polyester yarn is to spin a polyester consisting essentially of polyethylene terephthalate at a speed of 9,000 m/min or more, by spinning a polyester yarn immediately below the spinneret. This is an ultra-high speed spinning method for polyester yarn, which is characterized in that a heating region of 250° C. or higher is provided in the spinning process, and the neck deformation ratio of the yarn generated during the spinning process is set in the range shown by the following formula.

3X10−S−0,5≦N≦15X10−’S−5.5
レフタレートの繰返し単位を95モル%以上含有する実
質的にポリエチレンテレフタレートからなるポリエステ
ルであるが、耐熱性、耐候性などを損なわない範囲で少
量のつや消し剤、制電剤、安定剤などを含んでいても良
い。
3X10-S-0,5≦N≦15X10-'S-5.5
A polyester consisting essentially of polyethylene terephthalate containing 95 mol% or more of phthalate repeating units, but containing small amounts of matting agents, antistatic agents, stabilizers, etc. within the range that does not impair heat resistance, weather resistance, etc. Also good.

本発明のポリエステル糸条の耐熱性は、後述する測定法
で示されるDSC融点によって代表的に示される。DS
C融点が高い程耐熱性が優れていると言える。本発明の
ポリエステル糸条は、DSC融点のピーク温度(DSC
融点ピーク)が275℃以上を有する。従来の低速紡糸
−延伸糸のDSC融点ピークが255℃〜260℃であ
るのに比較すると極めて高融点であり、耐熱性に優れて
いる。
The heat resistance of the polyester yarn of the present invention is typically indicated by the DSC melting point, which is determined by the measurement method described below. DS
It can be said that the higher the C melting point, the better the heat resistance. The polyester yarn of the present invention has a DSC melting point peak temperature (DSC
melting point peak) is 275°C or higher. Compared to the DSC melting point peak of 255°C to 260°C of conventional low-speed spinning/drawn yarn, this has an extremely high melting point and excellent heat resistance.

本発明のポリエステル糸条で得られる融点は最高283
℃に達する。ポリエチレンテレフタレートの平衡融点が
286℃であることと対比すれば、本発明のポリエステ
ル糸条は、結晶部の完全性が高いことを裏付けている。
The melting point obtained with the polyester yarn of the present invention is up to 283
reach ℃. Comparison with the fact that the equilibrium melting point of polyethylene terephthalate is 286° C. confirms that the polyester yarn of the present invention has high crystalline integrity.

高融点を有する本発明のポリエステル糸条は、糸条を用
いて得られる編織物、殊に立毛布帛に使用した際、その
加工工程で採用される180℃〜220℃での熱セツト
加工工程に於ても立毛状態のへクリなどが発生せず、深
みのある表面状態の立毛布帛が得られる。
When the polyester yarn of the present invention having a high melting point is used for knitted fabrics obtained using the yarn, particularly for pleated fabrics, it can be used in the heat setting process at 180°C to 220°C employed in the processing process. Even in this case, a napped fabric with a deep surface condition can be obtained without any occurrence of heckling due to the napping state.

本発明のポリエステル糸条は、非晶部複屈折率(Δn2
)が0.03以下であることが必要である。
The polyester yarn of the present invention has an amorphous birefringence (Δn2
) is required to be 0.03 or less.

高速紡糸に於ては、Δnaは紡糸速度約6,000m/
分を頂点として速度の増加と共に低下し易い傾向である
ことが予想されているが(前出、繊維学会誌VOL、:
37. It4(1981) T −136)、9,0
00 m7分を越える領域では、糸条の採取自体が不可
能であった為にΔn3は未知であった。一方、該報文に
よれば、Δn3の低下に伴なって糸条の強度、伸度など
に代表される力学的性質が低下することが予測され、実
用的には好ましくない傾向と考えられていた。これに対
し、本発明では、フィラメント断面内の複屈折率分布(
δΔn)が0.04以下であれば、Δn3がむしろ小さ
い方が力学的性質が向上することが判った。
In high-speed spinning, Δna is a spinning speed of approximately 6,000 m/
It is expected that the tendency will be that it will tend to decrease as the speed increases, with the peak at 100 min.
37. It4 (1981) T-136), 9,0
In the area exceeding 00 m7 minutes, Δn3 was unknown because it was impossible to collect the yarn itself. On the other hand, according to the report, it is predicted that mechanical properties such as yarn strength and elongation will decrease as Δn3 decreases, which is considered to be an unfavorable trend from a practical standpoint. Ta. In contrast, in the present invention, the birefringence distribution within the filament cross section (
It was found that when δΔn) is 0.04 or less, the mechanical properties are improved as Δn3 is smaller.

即ち、本発明のポリエステル糸条は、Δn1が0.03
以下であることと、δΔnが0.04以下であることの
組合せに特徴がある。本発明のポリエステル糸条の力学
的性質は、糸条の繰り返し伸張に対する回復特性の飛躍
的向上として発揮される。
That is, the polyester yarn of the present invention has Δn1 of 0.03.
It is characterized by the combination of δΔn being 0.04 or less and δΔn being 0.04 or less. The mechanical properties of the polyester yarn of the present invention are exhibited as a dramatic improvement in the recovery characteristics of the yarn against repeated stretching.

糸条を編織物として実用に供する場合に、加工工程や仕
上工程に於て糸条に対して1〜2%の伸張を起こすよう
な力学的作用が加えられる。例えば立毛布帛の製造に於
ては、布帛の表面性を良くする目的で布帛上の糸条を機
械的に数回の繰り返し起毛加工を施す。この際に、糸条
の伸張回復性が悪いと糸条自身が寸法変化を生じ、布帛
の表面性が著しく損なわれる。このような表面性の損傷
を起こさないためには、後述する方法で測定される伸長
回復率が90%以上を有することが必要である。伸長回
復率が95%以上であれば、更に優れた表面性の起毛布
が得られる。
When the yarn is put to practical use as a knitted fabric, a mechanical action that causes the yarn to stretch by 1 to 2% is applied during processing and finishing steps. For example, in the production of raised fabric, the threads on the fabric are mechanically subjected to a raised process several times in order to improve the surface properties of the fabric. At this time, if the stretch recovery property of the yarn is poor, the yarn itself will undergo dimensional changes, and the surface properties of the fabric will be significantly impaired. In order to prevent such surface damage, it is necessary that the elongation recovery rate measured by the method described below be 90% or more. If the elongation recovery rate is 95% or more, a raised fabric with even better surface properties can be obtained.

本発明のポリエステル糸条は、伸長回復率が90%以上
を有し、このような加工工程での伸張  7に対しても
糸長が変化することなく、表面性の優れた起毛布帛が得
られる。このような力学的性質の向上は、Δn3が小さ
い程、またδΔnが小さい程優れている。殊に、Δn、
lが0.02以下、δΔnが0.03以下であれば、従
来の低速紡糸−延伸糸を越える優れた伸張回復性を有す
る。
The polyester yarn of the present invention has an elongation recovery rate of 90% or more, and the yarn length does not change even after elongation 7 in such a processing step, and a raised fabric with excellent surface properties can be obtained. . Such improvement in mechanical properties is better as Δn3 is smaller and as δΔn is smaller. In particular, Δn,
When l is 0.02 or less and δΔn is 0.03 or less, the yarn has excellent stretch recovery properties that exceed that of conventional low speed spun and drawn yarns.

本発明のポリエステル糸条の単糸デニールは、特に限定
されないが、単糸1デニール乃至5デニールであること
が立毛布帛とした際の表面性を良くする効果に優れてお
り好ましい。
Although the single yarn denier of the polyester yarn of the present invention is not particularly limited, it is preferable that the single yarn has a denier of 1 to 5 denier because it is effective in improving the surface properties when made into a raised fabric.

本発明の製造法について以下説明する。The manufacturing method of the present invention will be explained below.

本発明では、9,000m/分以上の紡糸速度が必要で
ある。9,000m/分未満の紡糸速度では、紡糸条件
をいかに選択しても本発明の目的とするポリエステル糸
条は得られない。紡糸速度の好ましい範囲は、10,0
00m/分〜12,000m/分である。
The present invention requires a spinning speed of 9,000 m/min or more. At a spinning speed of less than 9,000 m/min, the polyester yarn targeted by the present invention cannot be obtained no matter how the spinning conditions are selected. The preferred range of spinning speed is 10,0
00 m/min to 12,000 m/min.

13.000m/分を越える速度では巻取設備が複雑と
なり実用上困難である。
At speeds exceeding 13,000 m/min, the winding equipment becomes complicated and is difficult in practice.

本発明に於ては、紡糸口金から吐出された糸条を紡糸口
金直下に設けられた250℃以上の加熱域によって加熱
し、糸条に請求範囲に特定するネック変形倍率でネック
変形を生じせしめた後、延伸することなく巻取ることが
必要である。ここで、ネック変形倍率とは、後述するよ
うに、ポリエステル糸条を約6,000m/分を越える
高速紡糸をした際に、各単糸の直径が紡糸線上で急激に
細化して“くびれ”状に変形する場合の細化の程度を面
積比率で示す値である。
In the present invention, the yarn discharged from the spinneret is heated in a heating area of 250° C. or higher provided directly below the spinneret, and neck deformation is caused in the yarn at a neck deformation ratio specified in the claimed range. After that, it is necessary to wind it up without stretching it. Here, the neck deformation ratio refers to, as will be described later, when polyester yarn is spun at a high speed exceeding approximately 6,000 m/min, the diameter of each single yarn rapidly becomes thinner on the spinning line, resulting in a "necking". This is a value that indicates the degree of thinning when deformed into a shape, expressed as an area ratio.

本発明者らは、このネック変形倍率について検討を重ね
たところ、変形倍率は紡糸速度によって画一的に定まる
ものではなく、紡糸条件によって変化させ得るものであ
ることを見出した。具体的には、紡糸口金直下の加熱域
の温度によって変化することが判った。また、一定の紡
糸速度、温度にあっては、紡糸する単糸の比表面積に比
例することを見出した。更に、このネック変形倍率が紡
糸安定と得られるポリエステル糸条の微細構造とも密接
に係っており、この検討から、本発明のポリエステル糸
条を紡糸安定性良くなし得るネック変形倍率の特定に至
った。
The present inventors have repeatedly studied the neck deformation magnification and found that the deformation magnification is not uniformly determined by the spinning speed, but can be changed depending on the spinning conditions. Specifically, it was found that the temperature changes depending on the temperature of the heating area directly under the spinneret. It has also been found that at a constant spinning speed and temperature, the specific surface area of the single fiber being spun is proportional to the specific surface area. Furthermore, this neck deformation ratio is closely related to the spinning stability and the fine structure of the obtained polyester yarn, and from this study, it was possible to specify the neck deformation ratio that can make the polyester yarn of the present invention have good spinning stability. Ta.

第1図に、本発明で特定するネック変形倍率を示す。第
1図に於て、横軸は単糸の比表面積である。比表面積は
、単糸デニール、断面形状、密度から算出される単位重
量当りの表面積(cm2/g)である。縦軸は紡糸中の
単糸の糸径変化の実測によって求められるネック変形倍
率である。
FIG. 1 shows the neck deformation magnification specified by the present invention. In FIG. 1, the horizontal axis is the specific surface area of the single yarn. The specific surface area is the surface area per unit weight (cm2/g) calculated from the single yarn denier, cross-sectional shape, and density. The vertical axis is the neck deformation magnification obtained by actually measuring the change in yarn diameter of a single yarn during spinning.

第1図に於て、直線AとBに囲まれた範囲が本発明の範
囲である。直線Aより上方では、紡糸中の糸切れが頻発
し、安定した紡糸が困難である。
In FIG. 1, the range surrounded by straight lines A and B is the range of the present invention. Above straight line A, thread breakage occurs frequently during spinning, making stable spinning difficult.

直線Bより下方では、DSC融点が低くなり本発明ポリ
エステル糸条が得られない。
Below straight line B, the DSC melting point becomes low and the polyester yarn of the present invention cannot be obtained.

本発明のネック変形倍率は、紡糸口金から吐出した糸条
を紡糸口金直下に設けた250℃以上の加熱域を設ける
ことによって達成される。加熱域の温度が250℃未満
では、ネック変形倍率が第1図直線へより上方となり、
本発明が達成されない。
The neck deformation ratio of the present invention is achieved by providing a heating region of 250° C. or more directly below the spinneret for the yarn discharged from the spinneret. When the temperature of the heating area is less than 250℃, the neck deformation magnification becomes higher than the straight line in Figure 1,
The invention is not achieved.

加熱域の具体的な設置は、紡糸口金直下に加熱源を有し
た筒を接続することで達成される。加熱源としては、ア
ルミ鋳込ヒーター、遠赤外線ヒー・  ター、熱風など
があるがこれらを併用しても良い。
The specific installation of the heating zone is achieved by connecting a tube with a heating source directly below the spinneret. Heat sources include cast aluminum heaters, far-infrared heaters, and hot air, but these may also be used in combination.

筒の長さは紡糸条件に応じて設定されるが、通常20〜
100cmが採用される。
The length of the tube is set depending on the spinning conditions, but it is usually 20~
100cm is adopted.

加熱域の温度は、該筒内部で、紡糸口金面から下方約5
cm、糸条から約2cm離れた位置に設レノられた温度
計によって検出される温度である。
The temperature of the heating zone is approximately 5.5 mm below the spinneret surface inside the cylinder.
cm, which is the temperature detected by a thermometer placed approximately 2 cm away from the yarn.

加熱域を出た糸条は、その後通常の横吹き型チャンバー
又は、縦吹き型冷却筒、又は糸条に平行冷却風によって
室温まで冷却されるが、この過程に於てネック状変形を
生じる。ネック状変形が完了し、室温まで冷却された糸
条は、集束され、給油された後、延伸することなく巻取
機に巻取られる。
The yarn that has left the heating area is then cooled to room temperature by a normal cross-blown chamber, a vertically-blown cooling tube, or cooling air parallel to the yarn, but neck-shaped deformation occurs during this process. After the neck-shaped deformation has been completed and the yarn has been cooled to room temperature, the yarn is bundled, oiled, and then wound on a winder without being stretched.

〔実施例〕〔Example〕

以下、実施例によって本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

尚、実施例に於いて、用いられる各特性値は以下の方法
によって測定した。
In addition, in the examples, each characteristic value used was measured by the following method.

(イ)示差走査熱量計DSCSC融解ビークバーキンエ
ルマ社製 DSC−n型 示差熱量計を用い、20℃/
分の加熱速度で昇温し、DSC曲線の融点曲線のピーク
温度をもって、融点ビ−多温度とした。
(a) Differential scanning calorimeter DSCSC melting beak Using a DSC-n type differential calorimeter manufactured by Birkin Elma, 20℃/
The temperature was raised at a heating rate of 10 minutes, and the peak temperature of the melting point curve of the DSC curve was determined as the melting point temperature.

(ロ)フィラメント断面内複屈折率差 δΔnカールツ
アイス社製干渉顕微鏡により、繊維軸に平行な屈折率(
n、、)と垂直な屈折率(nよ)から複屈折率Δn =
n tt  nよを求め、これを単糸の断面に於て、繊
維の中心ΔnrOから外周Δn。
(b) Difference in birefringence within the filament cross section δΔnThe refractive index parallel to the fiber axis (
From the refractive index perpendicular to n, , ), the birefringence Δn =
Find n tt n, and calculate this from the fiber center ΔnrO to the outer circumference Δn in the cross section of the single yarn.

まで求めた。フィラメント断面内の複屈折率差δΔnは
次式によって求めた。
I asked for it. The birefringence difference δΔn in the cross section of the filament was determined by the following equation.

δΔn−Δ11rxb、δ1.−Δnr0(ハ)非晶部
複屈折率 Δn3 理学電機社製 広角X線回折装置を用い、2θ=約26
°のビークに於ける方位角方向の回折白変曲線から常法
により、結晶配向関数fcを求めた。     1 非晶部複屈折率 Δn8は次式により求めた。
δΔn−Δ11rxb, δ1. -Δnr0 (c) Amorphous birefringence Δn3 2θ=approximately 26 using a wide-angle X-ray diffraction device manufactured by Rigaku Denki Co., Ltd.
The crystal orientation function fc was determined by a conventional method from the diffraction whitening curve in the azimuthal direction at the peak of °. 1 Amorphous birefringence Δn8 was determined by the following formula.

Δn=X・ΔnC+ (1−x)、Δn3Δnc−fc
 ・Δnc1 ここで、 Δnは、干渉顕微鏡より求められる平均複屈折率 X は、密度法により次式で求められる結晶化度 ρC−ρa Δn、は結晶部複屈折率 Δnc1はPETの極限複屈折率0.212とした。
Δn=X・ΔnC+ (1-x), Δn3Δnc-fc
・Δnc1 Here, Δn is the average birefringence X determined by an interference microscope. The crystallinity ρC-ρa is determined by the density method using the following formula. Δn is the crystal part birefringence Δnc1 is the ultimate birefringence of PET. It was set to 0.212.

(ニ)伸張回復率 東洋ボールドウィン社製テンシロン引張試験機を用い、
初長2Qcm、引張速度2 cm 7分で、原長に対し
2%の伸張を5回繰り返し、原長に回復した場合を回復
率100%として算出した。この測定に於て、回復率が
90%以上であれば、良好と言える。
(d) Elongation recovery rate Using a Tensilon tensile tester manufactured by Toyo Baldwin,
The initial length was 2 Q cm, the stretching speed was 2 cm, and the stretching was repeated 5 times at 2% of the original length, and the recovery rate was calculated as 100% when the original length was restored. In this measurement, if the recovery rate is 90% or more, it can be said to be good.

(ホ)紡糸安定性 ポリエステル糸条の紡糸・巻取に於て、30分間の紡糸
・巻取を行ない、糸切れ及び連続巻取の状態を以下の4
段階に区分した。
(E) During spinning and winding of the spinning stable polyester yarn, spin and wind it for 30 minutes, and check the following 4 conditions for yarn breakage and continuous winding.
Divided into stages.

◎;糸切れなく、30分間の連続巻取可能。◎; Can be continuously wound for 30 minutes without thread breakage.

○;時々、単糸切れが生しるが30分間の連続巻取が可
能。
○: Occasionally, single yarn breaks, but continuous winding is possible for 30 minutes.

△;数分〜士数分間の連続巻取が可能。△: Continuous winding for several minutes to several minutes is possible.

×;糸切れのため巻取不可能。×: Unable to wind due to thread breakage.

(へ)ネック変形倍率 Zimmer社製 外径測定器 model 460 
A / 2型を用いて、紡糸線に沿った繊維径を測定し
た。
(to) Neck deformation magnification Zimmer outer diameter measuring device model 460
Type A/2 was used to measure the fiber diameter along the spinning line.

ネック発生直前の直径をDl、発生直後の直径をD2と
し、ネック変形倍率は次式で示した。
The diameter immediately before neck generation is Dl, the diameter immediately after neck generation is D2, and the neck deformation magnification is expressed by the following formula.

固有粘度〔η) 0.63の実質的にポリエチレンテレ
フタレートからなるポリエステルを、外径651mφ、
紡糸孔径0.35mmφ、孔数24個を有する紡糸口金
を用い、紡糸温度310℃で押出した。紡糸口金直下に
は、内径12cm、長さ75cmの円形でアルミ鋳込ヒ
ーター加熱方式の加熱筒を紡糸口金面に密着させた加熱
域を設け、加熱域の温度を290℃とした。該加熱域を
出た糸条は、通常の横吹きチャンバーを用い、20℃1
0,1m/秒の冷却風によって冷却され、ネック変形を
生じた後、集束、給油され、延伸することなく巻取機に
巻取った。巻取後の糸条は、どの条件も50’/24.
’とした。
Polyester consisting essentially of polyethylene terephthalate with an intrinsic viscosity [η) of 0.63 was made of polyester having an outer diameter of 651 mφ and
Extrusion was carried out at a spinning temperature of 310° C. using a spinneret having a spinning hole diameter of 0.35 mmφ and 24 holes. Immediately below the spinneret, a heating zone was provided in which a circular heating cylinder with an inner diameter of 12 cm and a length of 75 cm was heated by a cast aluminum heater in close contact with the surface of the spinneret, and the temperature of the heating zone was set at 290°C. The yarn that has left the heating area is heated to 20℃1 using a normal side-blowing chamber.
After being cooled by cooling air at 0.1 m/sec to cause neck deformation, it was bundled, oiled, and wound up on a winder without stretching. The yarn after winding was 50'/24.
'.

第1表に、紡糸中のネック変形倍率、紡糸安定性、及び
得られた糸条の各特性を示した。
Table 1 shows the neck deformation ratio during spinning, spinning stability, and each characteristic of the obtained yarn.

尚、比較例として従来の低速紡糸−延伸糸として、L5
00 m7分で紡糸後、3.3倍に延伸したポリエステ
ル糸条の各特性を示した。
As a comparative example, L5 was used as a conventional low speed spun-drawn yarn.
Each characteristic of a polyester yarn drawn 3.3 times after spinning at 00 m for 7 minutes is shown.

第1表から明らかなように、本発明の方法では耐熱性、
伸張回復性の優れたポリエステル糸条が安定して得られ
ることが判る。
As is clear from Table 1, in the method of the present invention, heat resistance,
It can be seen that polyester yarn with excellent stretch recovery properties can be stably obtained.

以下余白 ス】l肌ム 紡糸速度を10,000m/分として、加熱筒温度を第
2表に示すごとく異ならせる以外は、実施例1と同様に
して紡糸・巻取を行なった。各温度条件によるネック変
形倍率、紡糸性及び得られたポリエステル糸条の特性を
第2表に示す。
The following margins are blank: 1. Spinning and winding were carried out in the same manner as in Example 1, except that the spinning speed was 10,000 m/min and the heating cylinder temperature was varied as shown in Table 2. Table 2 shows the neck deformation ratio, spinnability, and properties of the obtained polyester yarn under each temperature condition.

第2表から明らかなごとく、加熱域の温度が本発明の範
囲であれば、良好な紡糸性でかつ、高融点と伸張回復性
に優れたポリエステル糸条が得ら〔発明の効果〕 物、殊に立毛布帛の立毛糸として用いた場合、加工工程
でのへクリがなく、良好な表面性を示す。
As is clear from Table 2, if the temperature of the heating region is within the range of the present invention, a polyester yarn with good spinnability, high melting point and excellent stretch recovery properties can be obtained. In particular, when used as a raised yarn for a raised fabric, there is no denting during the processing process and it exhibits good surface properties.

また、本発明の製造法によれば、上記ポリエステル糸条
を紡糸中の糸切れなく安定に製造することが可能となり
、極めて高い生産性が達成される。
Further, according to the production method of the present invention, it is possible to stably produce the polyester yarn without breakage during spinning, and extremely high productivity can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、単糸の比表面積とネック変形倍率の関係を図
示したものである。図中、直線Aと直線Bで囲まれた斜
線の範囲で本発明を示す。 第1図
FIG. 1 illustrates the relationship between the specific surface area of a single yarn and the neck deformation magnification. In the figure, the present invention is shown in a diagonally shaded area surrounded by straight line A and straight line B. Figure 1

Claims (1)

【特許請求の範囲】 1、示差走査熱量計DSC融解ピーク温度が275℃以
上、非晶部複屈折率(Δn_a)が0.03以下で、且
つフィラメント断面内の複屈折率差(δΔn)が0.0
4以下であることを特徴とするポリエステル糸条 2、実質的にポリエチレンテレフタレートからなるポリ
エステルを9,000m/分以上で紡糸するに際し、紡
口直下に250℃以上の加熱域を設けて、加熱し、紡糸
過程で生じる糸条のネック変形倍率を次式で示される範
囲として紡糸することを特徴とするポリエステル糸条の
超高速紡糸法 3×10^−^3S−0.5≦N≦15×10^−^3
S−5.5但しN≧2 (ここで、Nはネック変形倍率、 Sは単糸の比表面積cm^2/g)
[Claims] 1. The differential scanning calorimeter DSC melting peak temperature is 275°C or higher, the amorphous birefringence (Δn_a) is 0.03 or lower, and the birefringence difference (δΔn) in the filament cross section is 0.0
4 or less, when spinning polyester consisting essentially of polyethylene terephthalate at a speed of 9,000 m/min or more, a heating zone of 250° C. or more is provided immediately below the spinneret to perform heating. , an ultra-high speed spinning method for polyester yarn, characterized in that the neck deformation ratio of the yarn generated during the spinning process is spun within the range shown by the following formula: 3×10^-^3S-0.5≦N≦15× 10^-^3
S-5.5 However, N≧2 (Here, N is the neck deformation magnification, S is the specific surface area of the single yarn cm^2/g)
JP63138398A 1988-06-07 1988-06-07 Polyester yarn and production thereof Pending JPH01314721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138398A JPH01314721A (en) 1988-06-07 1988-06-07 Polyester yarn and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138398A JPH01314721A (en) 1988-06-07 1988-06-07 Polyester yarn and production thereof

Publications (1)

Publication Number Publication Date
JPH01314721A true JPH01314721A (en) 1989-12-19

Family

ID=15221020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138398A Pending JPH01314721A (en) 1988-06-07 1988-06-07 Polyester yarn and production thereof

Country Status (1)

Country Link
JP (1) JPH01314721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458455A2 (en) * 1990-05-22 1991-11-27 E.I. Du Pont De Nemours & Company Incorporated High speed spinning process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458455A2 (en) * 1990-05-22 1991-11-27 E.I. Du Pont De Nemours & Company Incorporated High speed spinning process

Similar Documents

Publication Publication Date Title
JPS5947726B2 (en) Polyester fiber manufacturing method
JP4325387B2 (en) Polyester monofilament for screen bag and method for producing the same
JPH05311512A (en) Production of polyester yarn
JPH01162820A (en) Direct spinning and drawing for polyester fiber
JPH01314721A (en) Polyester yarn and production thereof
JPH0261109A (en) Polyester fiber
JP3888164B2 (en) Polyester monofilament and method for producing the same
JPH11302919A (en) Cheese-like package and its production
JPS584091B2 (en) Polyester fiber manufacturing method
JPS61194218A (en) Production of polyester fiber
JPH0931749A (en) Production of polyester fiber
JP3693552B2 (en) Method for producing polyester fiber
JP2823231B2 (en) Polyester multifilament and method for producing the same
JPS6211085B2 (en)
JP2968381B2 (en) Polyester fiber for textile
JP2564872B2 (en) Polyester fiber for seat belt
JPH1096117A (en) Polyester fiber and its production
JPS62238815A (en) Polyester fiber for clothing use
JPH05263315A (en) Polyester fiber for hard twisted crepe woven fabric and its production
JP3303798B2 (en) Polyester fiber
JP3657418B2 (en) Polyester fiber and method for producing the same
JP2003313725A (en) Method for producing polyester extra fine multifilament yarn
JPH05311513A (en) High-strength polyester yarn having low shrinkage percentage
JPH1193015A (en) Monofilament and its production
JPS63227811A (en) Polyester fiber for strong twisting