JPH01313848A - Angular sealed cell and manufacture of cell container thereof - Google Patents

Angular sealed cell and manufacture of cell container thereof

Info

Publication number
JPH01313848A
JPH01313848A JP63144231A JP14423188A JPH01313848A JP H01313848 A JPH01313848 A JP H01313848A JP 63144231 A JP63144231 A JP 63144231A JP 14423188 A JP14423188 A JP 14423188A JP H01313848 A JPH01313848 A JP H01313848A
Authority
JP
Japan
Prior art keywords
side wall
battery
container
battery container
ironing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63144231A
Other languages
Japanese (ja)
Inventor
Zenichiro Ito
伊藤 善一郎
Takafumi Fujii
隆文 藤井
Shinji Hamada
真治 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63144231A priority Critical patent/JPH01313848A/en
Publication of JPH01313848A publication Critical patent/JPH01313848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To obtain a thin cell container with a high-precision shape, stable sealing performance and high volume efficiency by applying ironing to a step rising side wall formed with an expanded step by drawing. CONSTITUTION:An angular cell container 1 with an expanded step 2 is molded with a nickel-plated steel plate by drawing, an ironing punch 11 with a step 12 is inserted, it is inserted into an ironing die 13 formed with a guide section 13a with the same size as the width W1 (L1) of the expanded step, a taper section 13b, and a die section 13c with the same size as the width W2 (L2) of a side wall and extruded. A cell container 1 having a step rising side wall 3a with the preset thin thickness (t2) above the expanded step 2a is obtained. A sealing plate is mounted on the expanded step 2a, the edge of the step rising side wall 31 is folded inward and pressurized to form an edge folded/fastened section, then a cell is closely sealed. The cell container with excellent sealing performance and good volume efficiency is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属製の電池容器に絶縁封口パッキングを介
して金属製の封口板を装填し、締着封口した角形密閉電
池およびその容器の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rectangular sealed battery in which a metal battery container is loaded with a metal sealing plate via an insulating sealing packing and sealed tightly, and a method for manufacturing the container. It is something.

従来の技術 近年電子機器のコードレス化の進展と共に、小型高容量
密度で信頼性のすぐれた密閉電池が要望されるようにな
ってきた。とくに、機器に組込まれて長期間使用される
電池、例えば密閉形ニッケル・カドミウム蓄電池あるい
は各種のリチウム電池において、収納性の良い小型の角
形電池に対する要求が強tb、具体化が進められている
。上記の電池系などの小型・角形密閉電池の場合、容積
効率を低下させずに過充電、過放電時あるいは誤った条
件での使用などで発生する内部ガス圧力に耐えるものと
するために、通常金属製の電池容器が用いられ、電池を
封口する方法として、気密性を確保しやすいという理由
でレーザシーム溶接法が一般的であった。しかし、レー
ザ溶接方式は、部品加工に高精度が要求され、設備が高
価で生産性は高くなく、とくに角形電池では、生産コス
トが甚くつく問題があり、円筒形電池で一般に用いられ
ている電池容器開口端を内方に折曲して密封する「かし
め」封口法(クリンプ法)の適用が一部検討されている
2. Description of the Related Art In recent years, as electronic devices have become more cordless, there has been a demand for small, high-capacity, high-density, and highly reliable sealed batteries. In particular, for batteries that are built into devices and used for long periods of time, such as sealed nickel-cadmium storage batteries or various lithium batteries, there is a strong demand for small prismatic batteries that are easy to store, and their implementation is progressing. In the case of small, prismatic sealed batteries such as those listed above, in order to withstand the internal gas pressure that occurs during overcharging, overdischarging, or use under incorrect conditions, without reducing volumetric efficiency, Metal battery containers are used, and laser seam welding has been a common method for sealing the batteries because it is easy to ensure airtightness. However, the laser welding method requires high precision in parts processing, requires expensive equipment, and is not very productive. Especially for prismatic batteries, the production cost is extremely high, so it is generally used for cylindrical batteries. The application of the ``crimping'' sealing method, in which the open end of the battery container is bent inward to seal it, is being considered in some cases.

第7図、第8図のものは、角形アルカリ電池の一例で、
実開昭58−169859号公報に開示されたものであ
シ、各図のとは外観を示しbは縦断面を示す。何れも金
属製の角形の電池容器31に発電要素を収納し、負極集
電体を兼ねた負極端子33を中央に固着した合成樹脂製
の封口板32を用い、第7図のものは、電池容器31の
開口縁近くに内方に突出するビード(溝)31aを設け
、その上に封口板32を載置し、開口縁先端31bを内
方に折曲して封口している。第8図のものは、電池容器
31の開口縁に前記封口板を押込んだ後、電池容器31
の開口端所定の位置に図示のごとく内方に突出する点状
突起(凸部)31Cを突設して封口板を固定している。
The ones in Figures 7 and 8 are examples of prismatic alkaline batteries.
This was disclosed in Japanese Utility Model Application Publication No. 58-169859, and in each figure, the symbol "" indicates the external appearance, and the symbol "b" indicates the longitudinal section. In each case, a power generation element is housed in a rectangular metal battery container 31, and a sealing plate 32 made of synthetic resin is fixed to the center with a negative electrode terminal 33 that also serves as a negative electrode current collector. A bead (groove) 31a protruding inward is provided near the opening edge of the container 31, a sealing plate 32 is placed thereon, and the opening edge tip 31b is bent inward to seal the container. In the case of FIG. 8, after the sealing plate is pushed into the opening edge of the battery container 31, the battery container 31 is opened.
As shown in the figure, a point-like projection (projection) 31C that projects inward is provided at a predetermined position on the opening end of the sealing plate to fix the sealing plate.

第9図に側断面を示す電池は、実公昭41−9618号
公報に開示された円筒形の密閉式アルカリ蓄電池であり
、開口端を拡口した拡ロ段部41a1段部立上シ側壁4
1bを有する金属製円筒形の陰極端子を兼ねた電池容器
41にアルカリ蓄電池発電要素44を収納し、前記拡口
段部41a上に金属製の正極端子を兼ねた封口蓋43を
、絶縁封口リング42を介して載置し、前記電池容器4
1の段部立上シ側壁41bの口縁部41cを内方向に加
圧折曲して電池を密封口せしめたものである。前記例の
ごとく電池容器に拡口段部を設け、封口蓋を載置する方
法を応用し、高さ8〜10111ff。
The battery whose side cross section is shown in FIG. 9 is a cylindrical sealed alkaline storage battery disclosed in Japanese Utility Model Publication No. 41-9618.
An alkaline storage battery power generation element 44 is housed in a metal cylindrical battery container 41 which also serves as a cathode terminal, and a sealing lid 43 which also serves as a metal positive terminal is placed on the enlarged step 41a with an insulating sealing ring. 42 and the battery container 4
The opening edge 41c of the side wall 41b of the first stepped portion is pressurized and bent inward to seal the battery. The height is 8 to 10111 ff by applying the method of providing the battery container with an expanding step and placing the sealing lid as in the above example.

縦・横共に50〜6oWIII、角部にR8〜R12の
円弧を設けた、比較的大きい角形のボタン型アルカリ蓄
電池の検討が為されていた。
A relatively large rectangular button-type alkaline storage battery with 50 to 6 degrees WIII in both the vertical and horizontal directions and an arc of R8 to R12 at the corner has been studied.

発明が解決しようとする課題 このような従来の構成では、側面形状が比較的幅広ある
いは、縦長の第7図〜第9図に示すごとき形態で、充電
時あるいは過充電、過放電時にガス発生によって電池内
圧が上昇するような角形密閉電池に適用した場合は、電
池内圧力上昇によって、電池の封口部分から電解液もし
くはガスが容易に漏出する、あるいは電池容器側壁が外
方に膨張変形する場合が多かった。すなわち、第7図。
Problems to be Solved by the Invention In such a conventional structure, the side shape is relatively wide or vertically long as shown in FIGS. When applied to a rectangular sealed battery where the internal pressure of the battery increases, the electrolyte or gas may easily leak from the sealed part of the battery, or the side wall of the battery container may expand and deform outward. There were many. That is, FIG.

第8図に示した電池では、合成樹脂製の封口製の封口板
32と電池容器31の開口縁部分との密封口強度が低い
ために、電池内に発生した比較的低いガス圧力でも封口
部分からガスあるいは電解液が漏出しやすかった。
In the battery shown in FIG. 8, the strength of the seal between the sealing plate 32 made of synthetic resin and the opening edge of the battery container 31 is low, so even if the gas pressure generated within the battery is relatively low, the sealing portion It was easy for gas or electrolyte to leak out.

第9図に示した拡口段部を有する電池の場合、円筒形電
池容器では、AAA−Cサイズ(φ1゜〜φ2 e m
yt )の範囲で、容器側壁および拡口段部を含め0.
2〜0.41程度の鋼板で充分な強度を有し、加工性、
密封口工程ともに容易であり、精度上の支障も見られな
かった。しかし角形電池に適用した場合は、電池容器側
壁が平板状であるため、円筒形と同じ厚さの鋼板では強
度が低く、僅かな電池内圧力、例えば1〜s KST 
/ d程度でも容器側面は膨張変形を生じた。前記した
密閉形ニッケル・カドミウム蓄電池などのアルカリ蓄電
池ちるいは密閉使用されるリチウム電池の場合、実用上
6〜10に9/dの電池内圧力での膨張が0.3〜0.
2朋以下であシ、永久変形せずに復元する必要がある。
In the case of a battery having the enlarged step shown in FIG.
yt), including the container side wall and the opening step.
2 to 0.41 steel plate has sufficient strength, workability,
The sealing process was easy, and no problems with accuracy were observed. However, when applied to a prismatic battery, since the side wall of the battery container is flat, a steel plate of the same thickness as a cylindrical battery has low strength, and the pressure inside the battery is low, e.g. 1~s KST.
/ d, the side surface of the container was expanded and deformed. In the case of an alkaline storage battery such as the above-mentioned sealed nickel-cadmium storage battery or a lithium battery that is used in a sealed manner, the expansion at an internal battery pressure of 6 to 10 to 9/d is practically 0.3 to 0.
2 or less, it must be restored without permanent deformation.

この条件を角形密閉電池とした場合、例えば一方の幅が
26M、他方の幅が13M、高さ60MNのニッケルめ
っき鋼製の電池容器では、上記変形抑制条件を満すには
鋼板厚さとして0.7〜0.9朋とせねばならない。し
かし、この条件で第9図に見られるような拡口段部を有
する角形の電池容器を、通常生産に用いられるトリミン
グ法などの絞シ成型法で製作すると第12図上面模式図
に示す形状不良の問題を生じやすい。すなわち、成型さ
れた角形の電池容器子1は、角部子7付近に偏肉しやす
く、角部76は比較的大きい円弧、例えば成型上はR2
,5〜R3MM以上、拡ロ段部開口縁を加圧折曲するに
はR4−Ruffを必要とするが、偏肉によシ正確な形
状が得難い。拡口段部72よシ上方の開口縁の直線部も
図示のように直線とならず内側ではG1.G2の偏りを
生じ、外周は角部と中央とその中間にうねシを有した波
打ち状となるなど形状的に精度不十分となシやすい。さ
らに電池容器の側壁厚さが大となると、第9図ΔDで示
した拡口度合を板厚差以上に大にせねばならないという
課題があった。それは第9図において41bで示した段
部立上シ側壁の口縁部41aを内方に加圧折曲する際の
加圧力を段部を変形させることなく受は止めるためであ
る。その結果、電池の容量密度が低下し、角形とした効
果が減殺される。このように配慮しても拡ロ段部口縁を
均一に加圧折曲することは困難であシ、耐潴液性が不十
分となるなど多くの課題があった。
When this condition is applied to a square sealed battery, for example, in a battery case made of nickel-plated steel with one width of 26M, the other width of 13M, and height of 60MN, the steel plate thickness is 0 to satisfy the above deformation suppression condition. It must be between .7 and 0.9. However, under these conditions, if a rectangular battery container with an enlarged step as shown in Figure 9 is manufactured using a drawing molding method such as the trimming method that is normally used in production, it will have the shape shown in the top schematic diagram in Figure 12. Easy to cause problems with defects. That is, the molded rectangular battery container 1 tends to have uneven thickness near the corner part 7, and the corner part 76 has a relatively large arc, for example, R2 when molded.
, 5 to R3MM or more, R4-Ruff is required to press and bend the opening edge of the enlarged step, but it is difficult to obtain an accurate shape due to uneven thickness. The straight part of the opening edge above the enlarged opening step 72 is not straight as shown in the figure, but is G1 on the inside. G2 is biased, and the outer periphery tends to have a wavy shape with ridges at the corners, center, and in between, resulting in insufficient precision in shape. Furthermore, when the side wall thickness of the battery container becomes large, there is a problem in that the degree of expansion shown by ΔD in FIG. 9 must be made greater than the difference in plate thickness. This is to stop the pressure applied when the edge 41a of the side wall of the raised step shown at 41b in FIG. 9 is bent inward without deforming the step. As a result, the capacity density of the battery decreases, and the effect of having a square shape is diminished. Even with these considerations, it was difficult to press and bend the mouth edge of the enlarged step portion uniformly, and there were many problems such as insufficient drip resistance.

上記課題の改良策として、第1o図要部側断面図、第1
1口封口部の部分側断面図で示した円筒形電池の適用を
検討した。第10図のものは、実公昭36−26438
号公報に開示されたアルカリ電池に見られ、電池容器5
1の開口縁の内壁の一部を切除して鋭角的突出縁51b
を有する溝(段部)51を設け、股上に円板状の封口体
52を載置して電池容器の口縁51cを内方にかしめて
封口するものである。この案のように角形の電池容器の
開口縁を切除するにはフライス盤などによる機械加工を
必要とし、生産性が低く、加工精度面でも不十分で生産
適用は困難であった。第11図のものは、実公昭37−
164号公報に開示されたもので(同様のものとして、
実開昭57−75477号公報がある)、前記第9図で
述べた拡口段部41aの拡口度合ΔDを小さくし、且つ
電池容器側壁部分での密封性向上を目的としていて、金
属製の電池容器61の開口端に拡口段部(61aは後加
工後の段部を示す)を設け、この段部上にポリアミドな
どの硬質の環状ガスケット62を介して蓋部片63を載
置し、引抜き型などによシ図示矢印のように半径方向の
圧縮力64を加えて電池容器61の段部立上り側壁61
bを縮径して密封口するものである。但し、この方法で
は電池内ガス圧力が高まると、蓋部片63が図示上方に
持ち上げられて排気するようになっている。
As an improvement measure for the above problem, Figure 1o is a side sectional view of the main part.
We investigated the application of a cylindrical battery shown in a partial side cross-sectional view of the single-mouth seal. The one in Figure 10 is Utility Model Publication No. 36-26438.
Seen in the alkaline battery disclosed in the publication, the battery container 5
A part of the inner wall of the opening edge of No. 1 is removed to form an acute protruding edge 51b.
A groove (step) 51 is provided, a disc-shaped sealing body 52 is placed on the crotch, and the lip 51c of the battery container is caulked inward to seal it. Cutting out the opening edge of a rectangular battery container as in this proposal requires machining using a milling machine or the like, resulting in low productivity and insufficient machining accuracy, making it difficult to apply to production. The one in Figure 11 is from 1977-
It was disclosed in Publication No. 164 (as a similar one,
(Japanese Utility Model Publication No. 57-75477), the purpose is to reduce the degree of expansion ΔD of the expansion step 41a described in FIG. An enlarged stepped portion (61a indicates the stepped portion after post-processing) is provided at the open end of the battery container 61, and a lid piece 63 is placed on this stepped portion via a hard annular gasket 62 made of polyamide or the like. Then, by applying compressive force 64 in the radial direction as shown by the arrows using a drawing die or the like, the rising side wall 61 of the stepped portion of the battery container 61 is removed.
b is reduced in diameter and sealed. However, in this method, when the gas pressure inside the battery increases, the lid piece 63 is lifted upward in the figure to exhaust the gas.

このように、電池容器上方を縮径する場合、本発明者等
の検討結果では電池容器側壁の厚さは0.4n以下(実
公昭37−164号公報の実施例では0.25ffj+
)が加工容易な範囲である。上記したように角形の密閉
電池では、耐圧力の問題で0.41!r51以上、0.
5〜1期程度の厚さの鋼材を用いる必要があり、側壁を
縮めるに要する力が大きく、電池を変形させたり、引抜
き型を用いる場合は型から電池を取シ出せなくなったシ
するなど、改良策にも加工上の課題があった。
As described above, when reducing the diameter of the upper part of the battery container, the thickness of the side wall of the battery container is 0.4n or less according to the study results of the present inventors (0.25ffj +
) is the range that is easy to process. As mentioned above, in a square sealed battery, 0.41 due to pressure resistance problem! r51 or more, 0.
It is necessary to use a steel material with a thickness of about 5 to 1 times, and the force required to shrink the side wall is large, which may deform the battery or cause the battery to become impossible to remove from the mold if a pull-out mold is used. The improvement measures also had processing issues.

本発明はこのような課題を解決するもので、生産生に適
した製造法で電池容器に設けた拡口段部の形状を高精度
に整えると共に段部上方の段部立上り側壁の厚さを適切
な厚さに薄肉化し、電池の密封口工程を容易にして、密
封性がすぐれた、また容積効率の良い角形密閉電池およ
びその製造法を提供することを目的とするものである。
The present invention solves these problems, and uses a manufacturing method suitable for production to precisely shape the expanded step provided in the battery container and to reduce the thickness of the rising side wall of the step above the step. The object of the present invention is to provide a rectangular sealed battery that is thinned to an appropriate thickness, facilitates the process of sealing the battery, has excellent sealing performance, and has good volumetric efficiency, and a method for manufacturing the same.

課題を解決するだめの手段 本発明は、上記の目的を達成するため、開口端に形成さ
れた拡口段部の段部立上り側壁の外面をしごき加工によ
って薄肉とすると共に所定形状に整形された金属製の角
形電池容器を用い、整形された段部上に絶縁封口パッキ
ングを介して金属製の封口板を載置し、前記段部立上シ
側壁の口縁を内方に折曲締着するか、もしくは段部立上
シ側壁の口縁を内方に折曲すると共に段部側壁に直角方
向の力を加えて段部上方を縮幅させて電池を密封口した
ものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides that the outer surface of the rising side wall of the step part of the enlarged step part formed at the opening end is thinned by ironing and is shaped into a predetermined shape. Using a metal rectangular battery container, a metal sealing plate is placed on the shaped stepped portion via an insulating sealing packing, and the edge of the side wall of the stepped portion is bent inward and fastened. Alternatively, the edge of the side wall of the raised stepped portion is bent inward and a force is applied to the stepped side wall in a perpendicular direction to reduce the width of the upper portion of the stepped portion to seal the battery.

また本発明は、絞シ加工法によって開口端に拡口段部を
設けて成型された金属製の角形電池容器に、所定の電池
内部形状寸法としたポンチを挿入し、次いでしごきダイ
スに挿入、押出して、前記拡口段部上方の段部立上シ側
壁の外面をしごき加工し、この側壁肉厚をしごき加工前
の厚さの30〜70%に薄肉化すると共に所定の形状に
整形して目的に適応した角形の電池容器を得る製法であ
る。
In addition, the present invention involves inserting a punch with a predetermined battery internal shape into a metal rectangular battery container that has been molded with an enlarged step at the opening end using a drawing process, and then inserting it into a drawing die. Extrusion is performed, and the outer surface of the side wall of the raised step above the enlarged step is ironed, and the wall thickness of this side wall is reduced to 30 to 70% of the thickness before ironing, and is shaped into a predetermined shape. This is a manufacturing method to obtain a rectangular battery container suitable for the purpose.

作  用 このような方法によると、従来の製造法と比較して製作
が容易となり加工精度の大幅な向上が図れる。また、拡
口段部上方がしごき加工によシ薄肉化された角形電池容
器を用いることによって、容易に確実なかしめ封口がで
きて密封度の高い電池が得られる。まだ縮幅による封口
が容易に精度よく行なえるため、封口部分の拡口度を小
さくして、容積効率のすぐれた電池が得られることとな
る。
Effect: According to such a method, manufacturing becomes easier and processing accuracy can be significantly improved compared to conventional manufacturing methods. Furthermore, by using a rectangular battery container in which the upper part of the enlarged step part is made thinner by ironing, a reliable caulking seal can be easily made and a battery with a high degree of sealing can be obtained. Since sealing by width reduction can still be easily and accurately performed, it is possible to reduce the degree of expansion of the sealing portion and obtain a battery with excellent volumetric efficiency.

実施例 以下、本発明の実施例を図によって説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図Aは本発明の第1の実施例の電池上部の封口部分
外観の斜視図であり、後述する工程によって開口端に形
成された拡口段部上方の段部立上り側壁の外表面をしご
き加工されて薄肉とすると共に、所定形状に整形された
金属製の角形電池容器1の拡口段部上に、絶縁封口パッ
キング6を介して端子キャップ9を装着した金属製の封
口板7を載置し、薄肉化された段部立上シ側壁3aの口
縁を内方に折曲締着して密封口したものである。
Embodiment 1 FIG. 1A is a perspective view of the external appearance of the sealing part at the upper part of the battery according to the first embodiment of the present invention, and shows the rising side wall of the step above the enlarged step formed at the opening end by the process described later. A metal seal in which a terminal cap 9 is attached via an insulating seal packing 6 to the enlarged step part of a metal rectangular battery container 1 whose outer surface is ironed and made thin and shaped into a predetermined shape. A plate 7 is placed thereon, and the edge of the thinned step-up side wall 3a is bent inward and fastened to form a sealed opening.

次に本発明の主体となる金属製の角形電池容器の加工工
程について詳述する。金属板として、電池内圧力に耐え
る所定の容器側壁厚さ(第2図。
Next, the process of manufacturing a metal rectangular battery container, which is the main subject of the present invention, will be described in detail. As a metal plate, there is a predetermined container side wall thickness that can withstand the internal pressure of the battery (Fig. 2).

第3図のz)K対応する厚さのニッケルめっき鋼板を、
一般に用いられる絞シ加工法によって、有底の円筒形も
しくは楕円筒形から順次成型工程を経て、第2図の一方
の側面断面図に示すように、開口端を拡口して形成され
た拡口段部2を有する角形電池容器1を成型する。成型
された電池容器1の拡口段部2の上方の段部立上シ側壁
3の厚さは段部よシ下部の側壁厚さと同じとなっている
(図示t1)。次に第3図へ一方の側面断面模式図に示
すように、前記電池容器に所定の電池容器内部寸法形状
に合致した段部12を有するしごきポンチ11を挿入し
て、拡口段部の幅W1.(Ll)と同寸法のガイド部1
3 a、 、 10度以下の煩斜とした直線または曲線
のテーパ一部13b、第3図Bに示したしごき加工後の
段部立上シ側壁の幅W2(L2)と合致させた寸法のダ
イス部130で形成されたしごきダイス13に挿入し押
出すことによって、拡口段部2よシ上方の段部立上シ側
壁3の外面をしごき加工して第3図B一方の要部側面断
面図に示すように拡口段部2&より上方の段部立上シ側
壁3&の厚さが所定値に薄肉化された(厚さt2)電池
容器1が得られる。この方法によって、拡口段部より上
方の加工精度公差は0.05間程度と高精度なものとな
る。段部立上シ側壁3aの厚さt2は、先にも述べたよ
うに、電池を密封するための強度及びかしめ工程との関
係は、適用する電池サイズによって若干異なるが、電池
の幅(参考:W2.(I、2))が約30W1K(円筒
形Dサイズ相当)以下の場合は0.2〜0.4羽とする
のがよい。前記したように電池内圧力との関係から、角
形密閉電池では、電池容器1の側壁の厚さtlは上記の
ごとく電池の幅が約3o朋以下の場合、0.4〜1朋の
範囲となる。封口工程における加工性、電池を密封する
封口強度、耐漏液性等の条件を含めて検討した結果、し
ごきダイス13のダイス部の寸法は、段部立上シ側壁3
と3aの厚さt ’1とt2の関係は1:0.3〜0.
7すなわち、しごき加工後の段部立上シ側壁3aの厚さ
tlは元の肉厚さの30−70 %の範囲から選択する
のがよい。なお、しごき加工後の段部立上シ側壁の高さ
h(第3図B)は、しごき率に比例して扁くなるので予
め算出して最初の絞シ加工時に調整するか、しごき加工
後所定高さに切断する。上記例では、金属板としてニッ
ケルめっき鋼板を用いたが、密閉形アlレカリ蓄電池系
では鋼板を用いて成型した後にニッケルめっきを施して
もよく、またニッケルクラッド鋼板でもよい。リチウム
電池系では同様の材料(負極容器として)、あるいはス
テンレスm17/レミニウムクラツド鋼板等が適用でき
る。前記加工途中において、とくにステンレス系材料等
が加工硬化によシ成型に支障を生じた場合は熱処理炉等
を用いアニール処理を行なう。
A nickel-plated steel plate with a thickness corresponding to z)K in Fig. 3,
Using a commonly used drawing process, the shape is sequentially formed into a cylindrical shape with a bottom or an elliptical shape, and then, as shown in the cross-sectional side view of one side of Fig. A square battery container 1 having a mouth part 2 is molded. The thickness of the side wall 3 of the raised stepped portion above the enlarged stepped portion 2 of the molded battery container 1 is the same as the side wall thickness of the lower portion of the stepped portion (t1 in the drawing). Next, as shown in the schematic cross-sectional side view of one side in FIG. W1. Guide part 1 with the same dimensions as (Ll)
3a, Tapered part 13b with a straight line or curve with an angle of 10 degrees or less, with dimensions that match the width W2 (L2) of the side wall of the stepped section after ironing shown in Fig. 3B. By inserting it into the ironing die 13 formed by the die part 130 and extruding it, the outer surface of the step riser side wall 3 above the enlarged step 2 is ironed, and the side wall of one main part in FIG. 3B is formed. As shown in the sectional view, a battery container 1 is obtained in which the thickness of the side wall 3& of the raised step above the enlarged step 2& is reduced to a predetermined value (thickness t2). By this method, the machining accuracy tolerance above the enlarged step is about 0.05, which is highly accurate. As mentioned earlier, the thickness t2 of the stepped side wall 3a differs slightly depending on the battery size (reference :W2.(I, 2)) is approximately 30W1K (equivalent to cylindrical D size) or less, it is preferable to use 0.2 to 0.4 wings. As mentioned above, in relation to the internal pressure of the battery, in a prismatic sealed battery, the thickness tl of the side wall of the battery container 1 is in the range of 0.4 to 1 mm when the width of the battery is about 3 mm or less as described above. Become. As a result of considering conditions such as workability in the sealing process, sealing strength for sealing the battery, and leakage resistance, the dimensions of the die part of the ironing die 13 are as follows:
The relationship between the thicknesses t'1 and t2 of 3a and 3a is 1:0.3~0.
7. That is, the thickness tl of the stepped side wall 3a after ironing is preferably selected from a range of 30-70% of the original wall thickness. Note that the height h of the side wall of the stepped section after ironing (Fig. 3 B) becomes flat in proportion to the ironing rate, so either calculate it in advance and adjust it during the first drawing process, or Then cut to a specified height. In the above example, a nickel-plated steel plate was used as the metal plate, but in a sealed alkaline storage battery system, a steel plate may be molded and then nickel-plated, or a nickel-clad steel plate may be used. For lithium battery systems, similar materials (as the negative electrode container) or stainless steel M17/reminium clad steel plates can be used. During the above-mentioned processing, if the stainless steel material or the like is particularly difficult to mold due to work hardening, annealing treatment is performed using a heat treatment furnace or the like.

上記工程によって完成した角形電池容器発電要素6の外
観を第3図Cに示す。この角形電池容器に、正極にニッ
ケル活物質を含浸させた焼結式極板を、負極としてカド
ミウム活物質を芯材に塗着したペースト弐極板を用い、
ポリプロピレン系不織布セパレータを介在させた複数組
の極板群を収納し、所定量のアルカリ電解液を注入した
後、第4図要部側面断面図に示すように66ナイロン等
のポリアミドを成型した絶縁封口パッキング6を介して
、ガス通気孔7aを閉塞するように合成ゴム製の弾性弁
体8及び排気孔9aを設けた端子キャップ9を配役固着
した金属製角形の封口板7を、拡口段部2aの上に載置
し、第5図要部側断面模式図に示したように、上記組立
中の電池の拡口段部2a外周縁を受け、補助的に電池容
器1の底面を受ける受型14に前記電池を載置し、かし
め上型16に矢印の方向の力を加えることによシ、段部
立上シ側壁3aの口縁を内方に折曲加圧して口縁折曲締
着部4を形成し電池を密封口して完成する(第6図B)
。なお、10は一方の極性の接続リードを示す。
FIG. 3C shows the appearance of the prismatic battery container power generation element 6 completed by the above steps. In this rectangular battery container, a sintered electrode plate impregnated with a nickel active material is used as the positive electrode, and a paste plate with a cadmium active material coated on the core material is used as the negative electrode.
After storing multiple sets of electrode plates with polypropylene nonwoven fabric separators interposed therebetween and injecting a predetermined amount of alkaline electrolyte, an insulator made of polyamide such as 66 nylon is molded as shown in the side cross-sectional view of the main part in Figure 4. A rectangular metal sealing plate 7 having an elastic valve body 8 made of synthetic rubber and a terminal cap 9 provided with an exhaust hole 9a fixed thereon so as to close the gas vent hole 7a is inserted into the expansion stage through the sealing packing 6. 2a, and as shown in the schematic side cross-sectional view of main parts in FIG. By placing the battery on the receiving mold 14 and applying force in the direction of the arrow to the caulking upper mold 16, the edge of the side wall 3a of the stepped portion is bent inward and pressurized to break the edge. Form the curved fastening part 4 and seal the battery to complete the process (Figure 6B).
. Note that 10 indicates a connection lead of one polarity.

実施例2 第1図Bは、本発明の別の形態の角形密閉電池を示す一
方の側面の要部側断面図であシ、第6図はそ、の電池の
封口工程を示す一方の側面の要部側断面模式図である。
Example 2 FIG. 1B is a sectional side view of a main part of one side of a rectangular sealed battery according to another embodiment of the present invention, and FIG. 6 is a side view of one side showing the sealing process of the battery. FIG.

実施例1において第2図、第3図、第4図によって詳述
した、しごき加工を経て薄肉の段部立上シ側壁3aを右
する拡口段部2aを形成した電池容器(第3図B 、C
)を用い、発電要素6を収納し、前記した絶縁封口パッ
キング6を介して、端子キャップ9等を配設固着した金
属製の角形の封口板7を前記拡口段部2aの上に載置し
た後、段部立上シ側壁3&の口縁を第5図Aに示したか
しめ上型15によって内方に折曲して口縁折曲部4′を
形成したものを、次いで第6図に示すしごき加工後の電
池容器の口縁の寸法幅、W2.L2(第4図参照)とし
たガイド部16a。
As described in detail with reference to FIGS. 2, 3, and 4 in Example 1, a battery container (Fig. B,C
), a rectangular metal sealing plate 7 containing the power generation element 6 and having terminal caps 9 etc. arranged and fixed thereon is placed on the enlarged step part 2a via the above-mentioned insulating sealing packing 6. After that, the edge of the side wall 3& of the stepped portion is bent inward by the caulking upper die 15 shown in FIG. The dimensional width of the mouth edge of the battery container after ironing shown in W2. The guide portion 16a is L2 (see FIG. 4).

約10度以下の傾斜角のテーパ一部16b、電池容器1
の下部の寸法幅とほぼ同じか、0.1〜0.2−大とし
たダイス部16cで形成された縮幅ダイスに挿入し、電
池上部形状に合わせた先端形状の押出しロッドによシ矢
印の力を加えて電池を押出すことによって、第6図、第
1図Bに示したように、拡口段部よシ上方の段部立上り
側壁に対し直角方向の力を加え、その幅を電池容器1の
下部の寸法に対し、+0.1〜+0.3.の範囲に縮小
すると共に絶縁封口パッキング6の側壁を圧縮して電池
を密封口する(このとき、段部立上シ側壁の厚さtlは
変化しない)。
Tapered part 16b with an inclination angle of about 10 degrees or less, battery container 1
Insert it into the reduced width die formed by the die part 16c, which is approximately the same as the dimensional width of the lower part of the battery, or 0.1 to 0.2-larger than the lower part of the battery. By pushing out the battery by applying a force of +0.1 to +0.3 with respect to the lower dimension of the battery container 1. , and the side wall of the insulating sealing packing 6 is compressed to seal the battery (at this time, the thickness tl of the side wall of the stepped portion does not change).

次に本発明の効果を見るために、完成電池上部の一方の
幅が25順、他方の幅が13mm5電池容器高さを48
mmとした角形の密閉形ニッケル・カドミウム蓄電池を
製作した。金属板として、両面に各5μmのめつき層を
有する厚さ0.7−を用いて角形電池容器を成型し、本
発明のものは、実施例1.実施例2共に、段部立上り側
壁3aの厚さt2を約40チに減じ0.3(財)とした
。また拡口段部よシ上方の角部の円弧R(第1図A、第
3図C参照)は封口実験結果より、容器外側で13 m
mとした。この条件によって製作した結果、実施例1゜
実施例2の何れも工程上の問題点を発生せず、また電池
容器の耐圧力は内圧8〜1oKy/cm(安全弁の動作
圧力はBK5+/diとした)において、幅の広い側面
側で厚さとして0.16〜0.2肛の膨張が認められた
が、電池内圧力が低下すると元に復し、封口部分に異常
は認められなかった。さらに耐漏液性などの信頼性につ
いてもCサイズ、5ubCサイズの同系電池と同等であ
った。なお、上記において封口板7とバッキング6をイ
ンサートモールド化しても同効果が得られる。
Next, in order to see the effects of the present invention, one width of the upper part of the completed battery was 25 mm, the other width was 13 mm, and the height of the battery container was 48 mm.
A rectangular sealed nickel-cadmium storage battery with a diameter of 2 mm was manufactured. A prismatic battery container was molded using a metal plate having a thickness of 0.7 mm and having a plating layer of 5 μm on each side on both sides. In both Example 2, the thickness t2 of the rising side wall 3a of the stepped portion was reduced to about 40 inches, which was 0.3 (goods). Also, the arc R of the upper corner of the opening step (see Figures 1A and 3C) is 13 m outside the container, based on the results of the sealing experiment.
It was set as m. As a result of manufacturing under these conditions, neither Example 1 nor Example 2 caused any process problems, and the internal pressure of the battery container was 8 to 1 oKy/cm (the operating pressure of the safety valve was BK5+/di). In this case, an expansion of 0.16 to 0.2 in thickness was observed on the wide side surface, but it returned to its original state when the internal pressure of the battery decreased, and no abnormality was observed in the sealed portion. Furthermore, reliability such as leakage resistance was also equivalent to C size and 5ubC size batteries of the same type. Note that the same effect can be obtained even if the sealing plate 7 and the backing 6 are formed by insert molding in the above.

一方、比較のために、本発明のものと同一のニッケルめ
っき鋼板を用い、第9図に示した従来の円筒形電池の形
状応用として、第2図に示しだ絞シ加工法に、拡口段部
よシ上方の口縁形状の修正工程を付加して検討した。そ
の結果、段部立上り側壁3(厚さt 1 = 0.7m
to )及び拡口段部2の厚さが厚いために、本発明で
述べた拡口段部よシ上方の角部の円弧(容器下部もほぼ
同じになる)をR3〜R8mm’?で変更して検討した
が、実施例1ではR7−R8mmとしても拡口段部2が
変形して封口不良となるものを生じた。実施例2ではR
6町以上とすれば、縮幅は可能であるが、電池を押出す
圧力が過大となシミ池上部封ロ部分を変形させたシ、縮
幅ダイスから押出し不能となるものが発生した。また密
封できた電池の耐漏液性についても、従来の円筒形電池
及び本発明の2形式の電池と比較して不十分なものであ
った。さらに第9図の従来例で述べた拡口段部よシ上方
の突出度を示す拡口度ΔDについて比較すると、前記従
来例応用品(本発明形態、実施例1に相当するもの)で
は1.6〜1.7(ト)であるのに対し、本発明実施例
1のものは約0.9mである(参考;縮幅された電池で
は本発明品〜o、1〜0.3mm s従来例〜0.2〜
0.4M)。
On the other hand, for comparison, the same nickel-plated steel plate as that of the present invention was used, and as an application to the shape of the conventional cylindrical battery shown in Fig. 9, the drawing method shown in Fig. 2 was used. We added a process to modify the shape of the lip above the step. As a result, the stepped portion rising side wall 3 (thickness t 1 = 0.7 m
to) and the thickness of the widening step 2, the arc of the corner above the widening step described in the present invention (approximately the same is true for the lower part of the container) is R3 to R8 mm'? However, in Example 1, even with R7-R8 mm, the enlarged step portion 2 was deformed, resulting in poor sealing. In Example 2, R
If the width is 6 or more, width reduction is possible, but the pressure to extrude the battery is too high, deforming the upper part of the stain pond, and making it impossible to extrude from the width reduction die. Furthermore, the leakage resistance of the sealed battery was also insufficient compared to the conventional cylindrical battery and the two types of batteries of the present invention. Furthermore, when comparing the degree of opening ΔD, which indicates the degree of protrusion above the widening stepped portion described in the conventional example in FIG. .6 to 1.7 (g), while that of Example 1 of the present invention is approximately 0.9 m (for reference; in the case of a reduced width battery, the width of the present invention is ~o, 1 to 0.3 mm s Conventional example ~0.2~
0.4M).

以上述べたように、絞シ加工法によシ成型された角形電
池容器の段部立上シ側壁を、上述した方法によシしどき
加工することによシ、薄肉とすると共に高精度に形状が
整えられ、この電池容器を適用することによって、実施
例1の形態では容器口縁の折曲締着(かしめ封口)が容
易に確実に行なえ、密封度が安定して高い電池が得られ
、実施例2の形態では縮幅加工が精度よく容易に行なえ
、密封性の安定した容積効率のすぐれた電池が得られる
As described above, by repeatedly processing the side wall of the stepped portion of a square battery container formed by the drawing process method, it is possible to make the wall thinner and achieve high precision. By applying this battery container with a well-arranged shape, the container edge can be easily and reliably bent and fastened (sealed by caulking) in the form of Example 1, and a battery with a stable and high degree of sealing can be obtained. In the form of Example 2, the width reduction process can be easily performed with high accuracy, and a battery with stable sealing performance and excellent volumetric efficiency can be obtained.

発明の効果 以上のように本発明によれば、絞り加工により成型し拡
口段部を形成した角形電池容器の段部立上シ側壁を、し
ごき加工を適用することによシ薄しめ封口が容易に確実
に適用できるために密封度が安定して高い電池が得られ
る。また縮幅加工が高精度に容易に実施できるので、密
封性が安定した容積効率の高い角形密閉電池が得られる
Effects of the Invention As described above, according to the present invention, by applying ironing to the side wall of the stepped portion of a rectangular battery container formed by drawing to form an enlarged stepped portion, a thin seal can be formed. Since it can be applied easily and reliably, a battery with a stable and high degree of sealing can be obtained. Further, since the width reduction process can be easily performed with high precision, a rectangular sealed battery with stable sealing performance and high volumetric efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第6図、第6図は本
発明の実施例であって、第1図Aはかしめ封目方式の本
発明の角形密閉電池の上方斜視図、Bは縮幅封口方式の
本発明の角形密閉電池の要部側断面図、第2図、第3図
Aは本発明の角形電池容器のしごき加工を含む加工工程
を示す側断面図、第3図B及びCは得られた角形電池容
器の側断面及び外観形状を示す図、第4図は本発明の電
池の組立工程を示す図、第5図A及びBは本発明のかし
め封口方式による角形密閉電池の封口工程と完成電池の
側断面図、第6図は縮幅封口方式による本発明の封口工
程を示す側断面図、第7図、第8図は従来の角形電池の
外観と側断面を示す図、第9図は従来の拡口段部を有す
る円筒形電池の側断面図、第10図は従来の別の円筒形
電池の要部側断面図、第11図は従来の縮径による封口
法を適用しだ円筒形電池の要部側断面図、第12図は従
来の拡口段部を有する角形電池容器の上面模式図である
。 1・・・・・・角形電池容器、2・・・・・・絞シ加工
時の拡口段部、2a・・・・・・しごき加工後の拡口段
部、2b・・・・・・縮幅後の拡口段部、3・・・・・
・絞シ加工時の段部立上り側壁、3a・・・・・・しご
き加工後の段部立上り側壁、3b・・・・・・縮幅後の
段部立上シ側壁、4・・・・・・口縁折曲締着部、4′
・・・・・・口縁折曲部、5・・・・・・発電要素、6
・・・・・・絶縁封口パッキング、7・・・・・・封口
板、8・・・・・・弾性弁体、9・・・・・・端子キャ
ップ、11・・・・・・しごきポンチ、12・・・・・
・しごきポンチの段部、13・・・・・・しごきダイス
、13a・・・・・・ガイド部、13b・・・・・パテ
−パ一部、13C・・・・・・タ罫ス部、14・・・・
・・受型、16・・・・・・かしめ上型、16・・・・
・・縮幅ダイス、1ea・・・・・・ガイド部、18b
・・・・・・テーパ一部、16c90.・・・ダイス部
、17・・・・・・押出しロッド、R・・・・・・段部
立上り側壁の角部外面円弧、x3a・・・・・・縮幅前
の口縁を折曲された電池。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名L・
−禰9碗河3器 2oL−−−t:1azdiK口匍1ヤT−+、T05
ノに イー−−β12彩し1り7シ+!!容」5に2α−、C
−;さ加工償A紘田9舒 3a−−−L eプη〕エイh段1Fγiユニυイ勅壁
7−に1叛 7(L−−−71’スメ1艮孔 g −−−5η斡与τ)t41長 9−−−んφ)ヤヤブブ q、lL−↑押気凡 lo−−一子季兼范り−「 第5図      4−ロル折白縛看舒;4・−受1 +5−一力°しめ1型 乙υイ ■−肖滑4i:濱容器 f&−−一力“11′召や +6−−−テーハ′−杏p ff;c−−−tl”ゲス哉 17−−−押出しD−Vl−′ χ3a−−−犯各7眉萌’nrJl五−乏ギ1捨ごれF
11之第7図 (α)(b2 第8図 (α)(b2 第9図 v 第10図
Figures 1, 2, 3, 4, 6, and 6 show embodiments of the present invention, and Figure 1A shows a prismatic sealed battery of the present invention using a caulking method. An upper perspective view, B is a side cross-sectional view of the main parts of the rectangular sealed battery of the present invention with a reduced width sealing method, and FIGS. 2 and 3 A are side cross-sectional views showing processing steps including ironing of the rectangular battery container of the present invention. 3B and 3C are views showing the side cross section and external shape of the obtained prismatic battery container, FIG. 4 is a view showing the assembly process of the battery of the present invention, and FIGS. Fig. 6 is a side sectional view showing the sealing process of the present invention using the reduced width sealing method, and Figs. 7 and 8 show a conventional prismatic battery. Fig. 9 is a side sectional view of a conventional cylindrical battery with an enlarged step, Fig. 10 is a side sectional view of main parts of another conventional cylindrical battery, Fig. 11 1 is a sectional side view of a main part of a cylindrical battery to which the conventional sealing method by diameter reduction is applied, and FIG. 12 is a schematic top view of a prismatic battery container having a conventional enlarged step. DESCRIPTION OF SYMBOLS 1... Square battery container, 2... Enlarged stepped part during drawing process, 2a... Expanded stepped part after ironing process, 2b...・Expanded stepped part after width reduction, 3...
・Rising side wall of the stepped part during drawing process, 3a... Standing side wall of the stepped part after ironing process, 3b... Side wall of the rising step part after narrowing, 4...・・Brim bend fastening part, 4'
...... Mouth rim bent portion, 5... Power generation element, 6
...Insulating sealing packing, 7...Sealing plate, 8...Elastic valve body, 9...Terminal cap, 11...Stringing punch , 12...
・Step part of ironing punch, 13... Ironing die, 13a... Guide part, 13b... Part of putty, 13C... Taper part , 14...
... Receiving mold, 16 ... Upper caulking mold, 16 ...
・・Width reduction die, 1ea・・・Guide part, 18b
・・・・・・Taper part, 16c90. ...Die part, 17...Extrusion rod, R...Corner outer surface arc of the rising side wall of the step, x3a...The mouth edge before narrowing is bent. battery. Name of agent: Patent attorney Toshio Nakao and one other person L.
-Ne9 Ganga 3ki 2oL---t: 1azdiK mouthful 1ya T-+, T05
ノにーーーβ12colors 1ri7shi+! ! 5 to 2α-, C
- ;S machining compensation A Hirota 9 3a ---L e pu η] ray h stage 1Fγi uni υi 1 wall 7- 1 7 (L --- 71' Sume 1 hole g --- 5η斡YOτ) t41 Long 9--Nφ) Yayabubuq, 1L-↑Oshikibenlo--Ichiko Kikane-' Fig. +5-Ichiriki ° Shime 1 type Otsui■-Portrait 4i: Hama container f&--Ichiriki "11' call +6--Teha'-An p ff; c---tl" Gesuya 17- --Extrusion D-Vl-' χ3a--Criminal 7 eyebrows moe'nrJl 5-Shogi 1 Throw away F
11 Figure 7 (α) (b2 Figure 8 (α) (b2 Figure 9 v Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)開口端を拡口して形成された拡口段部の段部立上
り側壁外面をしごき加工によって薄肉とすると共に所定
形状に整形された金属製の角形電池容器に、発電要素を
収納し、前記整形された段部上に絶縁封口パッキングを
介して金属製の封口板を載置し、薄肉化された段部立上
り側壁口縁を内方に折曲締着して密封口したことを特徴
とする角形密閉電池。
(1) The power generating element is housed in a metal square battery container in which the outer surface of the rising side wall of the step part formed by enlarging the opening end is made thin by ironing and is shaped into a predetermined shape. , a metal sealing plate was placed on the shaped stepped portion via an insulating sealing packing, and the thinned stepped portion rising side wall edge was bent inward and tightened to form a sealed opening. Features a square sealed battery.
(2)開口端を拡口して形成された拡口段部の段部立上
り側壁外面をしごき加工によって薄肉とすると共に所定
形状に整形された金属製の角形電池容器に、発電要素を
収納し、前記整形された段部上に絶縁封口パッキングを
介して金属製の封口板を載置し、薄肉化された段部立上
り側壁口縁を内方に折曲すると共に段部側壁に直角方向
の力を加えて段部上方を縮幅させて密封口したことを特
徴とする角形密閉電池。
(2) The power generation element is housed in a square metal battery container in which the outer surface of the rising side wall of the step part formed by enlarging the opening end is made thin by ironing and is shaped into a predetermined shape. , A metal sealing plate is placed on the shaped step through an insulating sealing packing, and the thinned step-up rising side wall edge is bent inward and the edge is bent in a direction perpendicular to the step side wall. A prismatic sealed battery characterized by applying force to reduce the width of the upper part of the step to create a sealed opening.
(3)金属板を絞り加工により開口端に拡口段部を設け
た形状に成型した角形電池容器に、拡口段部を含む所定
の容器内部形状寸法としたしごきポンチを挿入し、次い
でしごきダイスに挿入して押出すことによって、電池容
器の段部立上り側壁の外側壁をしごき加工し、側壁肉厚
を元の30〜70%に薄肉化すると共に所定の形状寸法
に整形することを特徴とする角形電池容器の製法。
(3) An ironing punch is inserted into a rectangular battery container formed by drawing a metal plate into a shape with an enlarged step at the opening end, and the ironing punch is inserted to create the specified internal shape of the container including the enlarged step. By inserting it into a die and extruding it, the outer wall of the rising side wall of the stepped portion of the battery container is ironed, reducing the side wall thickness to 30 to 70% of the original thickness and shaping it into a predetermined shape and size. A method for manufacturing a square battery container.
JP63144231A 1988-06-10 1988-06-10 Angular sealed cell and manufacture of cell container thereof Pending JPH01313848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144231A JPH01313848A (en) 1988-06-10 1988-06-10 Angular sealed cell and manufacture of cell container thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144231A JPH01313848A (en) 1988-06-10 1988-06-10 Angular sealed cell and manufacture of cell container thereof

Publications (1)

Publication Number Publication Date
JPH01313848A true JPH01313848A (en) 1989-12-19

Family

ID=15357292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144231A Pending JPH01313848A (en) 1988-06-10 1988-06-10 Angular sealed cell and manufacture of cell container thereof

Country Status (1)

Country Link
JP (1) JPH01313848A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773860A (en) * 1993-09-02 1995-03-17 Toshiba Battery Co Ltd Manufacture of square alkaline battery
WO1999008332A1 (en) * 1997-08-05 1999-02-18 Matsushita Electric Industrial Co., Ltd. Battery and method of its manufacture
EP1191615A2 (en) * 1996-05-09 2002-03-27 TOYO KOHAN Co., Ltd A battery container and surface treated steel sheet for battery container
KR100788558B1 (en) * 2005-09-22 2007-12-26 삼성에스디아이 주식회사 Pack of secondary battery
JP2009166120A (en) * 2007-12-19 2009-07-30 Tanaka Sangyo:Kk Working apparatus, method of fixing lid to container, metal-made hermetic container and sealed type accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475039A (en) * 1977-11-25 1979-06-15 Matsushita Electric Ind Co Ltd Method of sealing port of battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475039A (en) * 1977-11-25 1979-06-15 Matsushita Electric Ind Co Ltd Method of sealing port of battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773860A (en) * 1993-09-02 1995-03-17 Toshiba Battery Co Ltd Manufacture of square alkaline battery
EP1191615A2 (en) * 1996-05-09 2002-03-27 TOYO KOHAN Co., Ltd A battery container and surface treated steel sheet for battery container
EP1191615A3 (en) * 1996-05-09 2003-07-02 TOYO KOHAN Co., Ltd A battery container and surface treated steel sheet for battery container
WO1999008332A1 (en) * 1997-08-05 1999-02-18 Matsushita Electric Industrial Co., Ltd. Battery and method of its manufacture
US6333124B1 (en) 1997-08-05 2001-12-25 Matsushita Electric Industrial Co., Ltd. Metal outer can for a battery and method of manufacturing same
EP1246274A2 (en) * 1997-08-05 2002-10-02 Matsushita Electric Industrial Co., Ltd. Battery and method of its manufacture
EP1246274A3 (en) * 1997-08-05 2004-01-14 Matsushita Electric Industrial Co., Ltd. Battery and method of its manufacture
KR100788558B1 (en) * 2005-09-22 2007-12-26 삼성에스디아이 주식회사 Pack of secondary battery
JP2009166120A (en) * 2007-12-19 2009-07-30 Tanaka Sangyo:Kk Working apparatus, method of fixing lid to container, metal-made hermetic container and sealed type accumulator

Similar Documents

Publication Publication Date Title
US6893773B2 (en) Flat square battery
JP2897104B2 (en) Manufacturing method of sealed alkaline storage battery
JP4037046B2 (en) Flat rectangular battery
US6066184A (en) Voltaic cell
KR20110124269A (en) Button cells and method for producing same
JP2003282032A (en) Battery and its manufacturing method
JPH01313848A (en) Angular sealed cell and manufacture of cell container thereof
JP2002124219A (en) Flat square battery
CN212991165U (en) Button type lithium ion battery and shell
JP3751765B2 (en) Method for manufacturing cylindrical battery
JP2863591B2 (en) Manufacturing method of cylindrical sealed battery
JP3253161B2 (en) Manufacturing method of prismatic sealed battery
JP2003059466A (en) Organic electrolyte secondary battery, negative electrode can of organic electrolyte secondary battery and method of manufacturing these
US20050003267A1 (en) Prismatic battery and method for manufacturing the same
JP3599391B2 (en) Method of manufacturing prismatic battery
CN219350444U (en) Button cell cover plate and button cell thereof
JP3760427B2 (en) Battery case manufacturing method and battery
JPH02207449A (en) Manufacture of flat type cell
JPH04341756A (en) Manufacture of closed battery
JPS63239763A (en) Square enclosed-type cell
JP2632492B2 (en) Manufacturing method of battery sealing plate
US4452062A (en) Method of manufacturing battery lid
JP3996973B2 (en) Cylindrical lithium battery and manufacturing method thereof
JP3883884B2 (en) Manufacturing method of sealed battery
JP2000048780A (en) Coin type organic electrolyte cell, and its manufacture