JP3883884B2 - Manufacturing method of sealed battery - Google Patents

Manufacturing method of sealed battery Download PDF

Info

Publication number
JP3883884B2
JP3883884B2 JP2002054608A JP2002054608A JP3883884B2 JP 3883884 B2 JP3883884 B2 JP 3883884B2 JP 2002054608 A JP2002054608 A JP 2002054608A JP 2002054608 A JP2002054608 A JP 2002054608A JP 3883884 B2 JP3883884 B2 JP 3883884B2
Authority
JP
Japan
Prior art keywords
wide
sealing
sealed battery
opening
sealing lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002054608A
Other languages
Japanese (ja)
Other versions
JP2003257382A (en
Inventor
悟 福岡
誠二 森田
慎一郎 上田
正明 栗村
正雄 近藤
晃大 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002054608A priority Critical patent/JP3883884B2/en
Publication of JP2003257382A publication Critical patent/JP2003257382A/en
Application granted granted Critical
Publication of JP3883884B2 publication Critical patent/JP3883884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有底筒状の外装缶を有する密閉型電池の製造方法に関し、特に、かしめ固定を用いる封止技術に関する。
【0002】
【従来の技術】
一般的に密閉型のリチウム電池などは、有底筒状の金属製外装缶に、電極、セパレータ、電解液などからなる電極体を収納し、外装缶の開口部を封口蓋で封口して製造される。
封口蓋の縁部分と外装缶の開口部周縁との接合には、レーザー溶接などの方法が用いられることもあるが、製造が容易であるという面から外装缶の開口縁部をかしめて封口蓋を固定する方法が多く用いられている。この際、外装缶と封口蓋との間には、封止性を確保するために、通常、ガスケットが介挿される。
【0003】
さらに、封止部分におけるガスケットおよび外装缶の各々には、封止性を向上させるためにシール剤が塗布される。外装缶の開口縁部には、封口蓋を載置したり、塗布したシール剤が缶底側に垂れ落ちないようにしたりするために、凹凸や段差が設けられる。
【0004】
【発明が解決しようとする課題】
しかしながら、製造時に上記のような理由から外装缶に凹凸や段差を設けた場合には、完成後の電池における外側側面に凹凸や段差が残ってしまう。このような外側側面に残った凹凸や段差は、規格により外寸が規定されている電池にあって、容積効率を低下させてしまう原因となってしまう。つまり、凹凸や段差が外側側面にある電池では、段差の分、中に収納される電極体の容積が制限されることになり、電池容量が低いものとなってしまう。
【0005】
本発明は、このような課題を解決するためになされたものであって、容積効率および封止性に優れる密閉型電池の製造方法を提供することを目的とする。
【0006】
上記目的を達成するために、本発明は、開口部を口広げしてなる口広部を有する有底筒状の外装缶を作製し、当該外装缶の口広部における内面にシール剤を塗布する第1のステップと、内方に電極体が収納されてなる内缶を外装缶の内方に収納し、外装缶の開口側における内缶の端面に封口蓋を載置する第2のステップと、外装缶における口広部よりも缶底側の部分から開口端にかけての領域を成形型で加圧することにより縮径し、封口蓋を内缶と開口部の内面とでかしめ固定する第3のステップとを有する。そして、上記本発明に係る製造方法では、第2のステップの実行により、外装缶の内方に内缶が収納された状態において、外装缶の深さ方向での内缶の上端面が、外装缶における口広部の下端よりも外装缶の缶底側に配されていることを特徴とする。
【0007】
この密閉型電池の製造方法では、第1のステップで開口部に口広部を設けた有底筒状の外装缶を作製し、外装缶の内面における口広部にシール剤を塗布するので、シール剤が口広部より缶底側の胴体部に垂れることがないとともに、第2のステップで電極体および封口蓋を外装缶に収納する際に電極体および封口蓋にシール剤が付着することがない。
【0008】
また、上記製造方法の第3のステップでは、口広部よりも缶底側から開口端にかけての領域を縮径するので、外装缶の外側面に口広部とそれよりも缶底側の部分(胴体部との間の段差が残ることがなく、容積効率に優れた密閉型電池を製造することが出来る。
従って、上記製造方法では、容積効率および封止性に優れる密閉型電池を製造することが出来る。
【0009】
上記製造方法において、第3のステップでは、縮径しようとする領域を外装缶の内方(断面方向)に向けてくせ付けするサブステップと、くせ付けされた領域を口広部の内面が封口蓋に密着するとともに、口広部とそれよりも缶底側の胴体部との間の段差が曲面になるまで加圧するサブステップとを経て、前記封口蓋をかしめ固定することが望ましい。これは、くせ付けするサブステップで外装缶における縮径しようとする領域を筒の内方に向けてくせ付けすることにより、所定寸法に安定して成形することができる。
【0010】
また、加圧するサブステップで口広部と胴体部との間の段差がなくなるまで加圧しているので、封口蓋と外装缶との密着性が確保されるとともに、優れた外観品質が得られる。なお、目視では確認できないほどの微視的な段差は、実質的に封口蓋と外装缶との密着性が確保できると考えられるので許容される。
なお、上記くせ付けとは、後者のサブステップを実施するために、予め縮径しようとする部分を外装缶の内側に向けて少しだけ絞っておくことを指している。
【0011】
上記第1のステップにおいて外装缶に形成される口広部と胴体部との段差(口広げ方向)は、口広部でのシール剤の保持性とかしめ後の封止性の両面から、0.02mm以上0.10mm以下の範囲とすることが望ましい。
また、上記密閉型電池の製造方法においては、封止性の確保という観点から、第2のステップで封口蓋の縁部分にガスケットを取り付けることが望ましい。
【0012】
上記製造方法は、極板とセパレータとの積層体が有底筒状の内缶に収納されてなる電極体を有する密閉型電池を製造する上で特に効果的である。
【0013】
【発明の実施の形態】
本発明の実施の形態に係る円筒型密閉電池の製造方法について、図1および図2を用いて説明する。図1は、外装缶に電極体および封口蓋を収納するまでを示す工程図であり、図2は、かしめ加工による封口工程を示す工程図である。
図1(a)に示すように、外装缶10は、開口部に口広部11が形成された、薄肉のステンレス板からなる有底円筒体である。この口広部11は、予め深絞り加工などにより作製された有底筒状体の開口部をプレス加工することにより口広げされた部分である。
【0014】
口広部11の形成によって、口広部11とそれより缶底側の胴体部12との境目には、外面側に段差10a、内面側に段差10bが生じる。
次に、図1(b)に示すように、上記外装缶10における口広部11の内面側にシール剤20を塗布する。この時、塗布されたシール剤20は、段差10bによって胴体部12への垂れ落ちが防がれ、口広部11に保持される。シール剤20は、例えば、アスファルトをキシレンで溶かしたものである。
【0015】
次に、図1(c)に示すように、外装缶10の内部に電極体30を収納する。電極体30を外装缶10に収納する際には、半径方向における中心軸を外装缶10の中心軸と一致させながら、内缶32の底面が外装缶10の内側底面に着くまで下ろしてゆく。収納する際の電極体30と外装缶10との中心軸は、口広部11に塗布されたシール剤20が電極体30に付着しない範囲であれば、少しずれてもよい。
【0016】
電極体30は、渦巻き状電極体31が電解液が含浸された状態で内缶32に収納されたものである。この渦巻き状電極体31には、予めリード45を介して封口蓋40が接続されている。
封口蓋40は、内缶32と略同等の外径の縁部分を有する蓋であり、縁部分にガスケット50が取り付けられている(詳細図参照)。このガスケット50の封口蓋40と接触する部分には、外装缶10の内面側に塗布されているのと同じシール剤が予め塗布されている(不図示)。
【0017】
この後、内缶32の底面と外装缶10の底面とをスポット溶接し、封口蓋40の縁部分に取り付けられているガスケット50の下側の面が内缶32の上面に密着するように封口蓋40を配置する(図1(d))。
外装缶10の高さと電極体30の高さとの関係は、上記のように内缶32の底面が外装缶10の内側底面についた状態(図1(d))で、ガスケット50の外装缶と向き合う部分とほぼ同じ高さに外装缶10の段差10bがくるようになっている。
【0018】
次に、図2に示すかしめ加工により、封口蓋40をかしめ固定する方法について説明する。
図2(a)に示すように、外装缶10の開口部に対してくせ付け用金型100を用いてプレスし、段差10a、10bの少し下より外装缶10の側壁面を径方向の内側に向けてくせ付けする。
【0019】
外装缶10に対するくせ付け用金型100のストロークは、外装缶10の開口部の端部近傍(口広部11と胴体部12の一部)をくせ付けしようとする程度によって設定される。ただし、くせ付けは、段差10aが後述するかしめ加工(図2(b))の際にかしめ用金型200のR部200rにあたる位置に来るように行うことが必要である。つまり、ここでいうくせ付けとは、図2(a)の状態から図2(b)の状態まで、縮径しようとする部分を外装缶10の内側に向けて絞り込むことを指している。
【0020】
このように縮径しようとする部分がくせ付けされた外装缶10は、かしめ用金型200を用いてプレスされる。この時用いるかしめ用金型200には、外装缶10を絞り込むR部200rが設けられている。
かしめ用金型200を外装缶10に対して下ろしてきた場合に、外装缶10の段差10aがかしめ用金型200のR部200rに当る。そのまま、段差10aがR部200rに沿って内側に誘い込まれていくまで、かしめ用金型200を下ろしてゆく。このように段差10aが内側に誘い込まれていくことにより、圧力を受ける外装缶10のかしめ部分は、ガスケット50に沿うようにして縮径される。このとき、ガスケット50は、圧力を受けて厚み方向に圧縮される。
【0021】
段差10aは、上記縮径に伴いガスケット50の上面に位置するように変形(縮径)される。
かしめ用金型200のR部200rまで誘い込まれた段差10aは、かしめ用金型200の圧力を受けて、外装缶10の径方向および高さ方向に塑性変形を生じる。そして、段差10aおよび段差10bは、曲面となる。ここでいう曲面とは、目視上段差の残っていない状態をいうものである。
【0022】
かしめ加工の終了した状態の円筒型密閉電池を、図2(c)に示す。ここで示すように、上述のような工程を経て封口された円筒型密閉電池は、外装缶10の外側側面に段差10aが残っておらず、電池の外周部に無駄な空間が無く、容積効率に優れるとともに、外観品質の点からも優れる。
また、この円筒型密閉電池では、封口後の封口部分において、かしめ加工前にあった段差10bも曲面となるまで塑性変形しているので、外装缶10とガスケット50とが確実に密着され、封止性にも優れている。
【0023】
なお、上記実施の形態では、渦巻き状電極体31を有する円筒型密閉電池を一例に説明したが、電極体の形態や電池の形状は、これに限定を受けるものではない。例えば、極板とセパレータがスタックされた電極体を有するような密閉型電池であってもよく、電池の外観形状も楕円形のものであってもよい。
また、上記では、くせ付け工程とかしめ工程の2つの工程を経て封口を行ったが、用いる金型の種類や工程数などは、これに限定を受けるものではない。
(確認実験)
次に、以下の実験によって、段差の程度と工程性および電池の封止性との関係について確認を行った。
【0024】
この実験においては、対象としてCR−1/3N(JIS C8512)の規格の密閉電池を用いた。この密閉電池の規格外寸は、外径がφ11.6mmで、全高が10.8mmである。
電極体は、二酸化マンガンを主成分とする正極活物質を有する正極板にセパレータを熱溶着し、リチウムを主成分とする負極活物質を重ねて巻回して渦巻き状電極体を形成し、これを内缶に収納した後、電解液槽に浸漬して作製される。これに上述のように封口蓋を接合して、図3(a)または(b)に示すような形状の口広部を有する外装缶(ステンレス製)に収納し、上述の方法を用いて封口を行った。
【0025】
外装缶の口広部の形状は、実施例1〜3および比較例1のものを図3(a)に示すように段差付きとし、比較例2、3のものを図3(b)に示すように段差なしとした。
外装缶へのシール剤の塗布については、実施例1〜3と比較例1、2で外装缶の開口部から深さ1.4mmのところまでとし、比較例3のものはなしとした。
【0026】
電池は、各実験用に各50個作製した。
なお、実施例1〜3および比較例1の口広部の深さは、全てd=1.4mmである。そしてすべての実施例、比較例で用いた外装缶の缶胴体部の材厚0.26mmである。
(実施例1)
口広部:段差g=0.02mm
(実施例2)
口広部:段差g=0.05mm
(実施例3)
口広部:段差g=0.10mm
(比較例1)
口広部:段差g=0.15mm
(比較例2)
口広部なし(図3(b))。
(比較例3)
口広部なし(図3(b))。
【0027】
シール剤の塗布なし。
電極体の高さは、上記実施例1〜3および比較例1、2と同一とした。
(実験1)シール剤の垂れ実験
封口前において、口広部における外装缶の内面にシール剤(アスファルトをキシレンで溶かしたもの)を塗布した際に、シール剤が下部に垂れた個数をカウントし、全個数(50個)に対するシール剤が垂れた個数の割合を、表1に示す。
【0028】
【表1】

Figure 0003883884
【0029】
表1に示すように、シール剤は、外装缶に口広部が形成されている場合にはその段差の大きさに関わらず、垂れ落ちないことがわかる。
これに対して、外装缶に口広部を設けなかった比較例2では、90%のサンプルでシール剤の垂れ落ちが観察された。
(実験2)シール剤の付着実験
外装缶に電極体を収納する際に、内缶にシール剤が付着した個数をカウントし、その割合を表2に示す。ただし、実験に際しては、シール剤を塗布した際にシール材の垂れ落ちがなかったものだけ各50個使用した。
【0030】
【表2】
Figure 0003883884
【0031】
表2に示すように、実施例1〜3および比較例1、つまり、外装缶に口広部を設けたものでは、電極体へのシール剤の付着が観察されなかった。
これに対して、比較例2では、6%のサンプルでシール剤の付着が観察された。(比較例3は、シール剤を塗布していないので、電極体へのシール剤の付着はなし。)
(実験3)段差残存実験
封口後の外装缶を観察し、かしめ加工前に段差が形成されていた箇所に、段差あるいは凹凸が残っているか否かを調べた。外装缶に凹凸が残っていた割合を表3に示す。
【0032】
【表3】
Figure 0003883884
【0033】
実施例1〜3では、封口後に段差が残っているものは観察されなかったが、比較例1(段差g=0.15mm)では、60%のサンプルで段差が残っているのが観察された。
(実験4)温度サイクル試験
封口後の電池を以下の条件で温度サイクル試験をし、20日経過時点、50日経過時点、100日経過時点における漏液発生個数をカウントし、その割合を表4に示す。
【0034】
試験条件)
1サイクル:(60℃キープ→降温→−10℃キープ→昇温)/1時間
6サイクル/日
【0035】
【表4】
Figure 0003883884
【0036】
表4に示すように、漏液が確認されたのは、比較例2、3の電池における50日経過時点と、100日経過時点においてである。
実施例1〜3および比較例1の電池では、経過日数に関わらず、漏液は確認されなかった。
(実験の考察)
上記実験1〜4の結果より、シール剤を塗布時におけるシール剤の垂れ落ちは、外装缶に少しでも段差が形成されるように口広部を設けておけば、防止されるが、比較例1のように段差g=0.15mmまで大きくすると、封口後の外装缶に段差の痕跡が残り外観品質上好ましくなく、また外装缶とガスケットとの間に隙間があるので、封止性が低下するおそれがある。
【0037】
外装缶に電極体を収納する際の電極体へのシール剤の付着に関しては、表2に示すように、外装缶に段差を設けておけば防止できる。
温度サイクル試験での漏液の発生は、実施例1〜3および比較例1では無かったのに対して、比較例2、3では日数の経過とともに発生割合が増加してゆく。これは、比較例2のようにシール剤を外装缶に塗布したものでも、垂れ落ちたり、電極体を収納する際の電極体への付着したりして、封口時にシール剤が封口部に十分残っていなかったためであると考えられる。外装缶にシール剤を塗布しなかった比較例3の電池における漏液の発生が一番多いことからも明らかである。
【0038】
以上のことから、外装缶に口広部を形成して側部内面に段差を設け、その部分にシール剤を塗布して封口することが、封止性の面から効果的であることがわかる。特に、段差gを0.02mm以上0.10mm以下の範囲となるように、口広部を形成することが、封止性および外観品質などの面から望ましい。
【0039】
【発明の効果】
以上で説明してきたように、本発明の密閉型電池の製造方法は、開口部を口広げして口広部が形成されてなる有底筒状の外装缶を作製し、外装缶の内面における口広部にシール剤を塗布する第1のステップと、電極体およびその上に載置された封口蓋とを外装缶に収納する第2のステップと、外装缶における封口蓋が収納された部分から開口部にかけての部分を成形型で加圧することにより縮径し、封口蓋をかしめ固定する第3のステップとを有することを特徴とする。
【0040】
この密閉型電池の製造方法では、第1のステップで開口部に口広部を設けた有底筒状の外装缶を作製し、外装缶の内面における口広部にシール剤を塗布するので、シール剤が胴体部に垂れることがないとともに、第2のステップで電極体および封口蓋を外装缶に収納する際に電極体および封口蓋にシール剤が付着することがない。
【0041】
また、上記製造方法の第3のステップでは、口広部よりも缶底側の胴体部から縮径するので、外装缶の外側面に口広部と胴体部との間の段差が残ることがなく、容積効率に優れた密閉型電池を製造することが出来る。
従って、上記製造方法では、容積効率および封止性に優れる密閉型電池を製造することが出来る。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る円筒型密閉電池の製造方法を示す概略工程図である。
【図2】 封口工程を示す概略工程図である。
【図3】 外装缶における開口端部の断面図である。
【符号の説明】
10.外装缶
10a、10b.段差
11.口広部
12.胴体部
20.シール剤
30.電極体
40.封口蓋
50.ガスケット
100.くせ付け用金型
200.かしめ用金型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a sealed battery having a bottomed cylindrical outer can, and more particularly to a sealing technique using caulking.
[0002]
[Prior art]
Generally, a sealed lithium battery is manufactured by storing an electrode body composed of electrodes, separators, electrolytes, etc. in a bottomed cylindrical metal outer can and sealing the opening of the outer can with a sealing lid. Is done.
For joining the edge portion of the sealing lid and the periphery of the opening of the outer can, a method such as laser welding may be used, but the opening lid of the outer can is caulked from the viewpoint of easy manufacture. Many methods are used to fix the. At this time, a gasket is usually interposed between the outer can and the sealing lid in order to ensure sealing performance.
[0003]
Furthermore, a sealing agent is applied to each of the gasket and the outer can in the sealing portion in order to improve the sealing performance. The opening edge of the outer can is provided with irregularities and steps to place a sealing lid and prevent the applied sealing agent from dripping down to the bottom of the can.
[0004]
[Problems to be solved by the invention]
However, when unevenness and a level | step difference are provided in the exterior can for the above reasons at the time of manufacture, an unevenness | corrugation and level | step difference will remain in the outer side surface in the battery after completion. Such irregularities and steps remaining on the outer side surface are in a battery whose outer dimensions are defined by the standard, and cause a reduction in volumetric efficiency. That is, in a battery having irregularities and steps on the outer side surface, the volume of the electrode body housed therein is limited by the amount of the step, resulting in a low battery capacity.
[0005]
The present invention has been made to solve such problems, and an object of the present invention is to provide a method for producing a sealed battery that is excellent in volumetric efficiency and sealing performance.
[0006]
To achieve the above object, the present invention is to produce a bottomed cylindrical outer can having a wide-port portion formed by widening the mouth opening, a sealing agent applied to the inner surface of the wide-port portion of the outer can And a second step in which an inner can in which an electrode body is accommodated inside is accommodated inside the outer can, and a sealing lid is placed on the end face of the inner can on the opening side of the outer can. And the diameter of the outer can from the wide side of the outer can to the opening end is reduced by pressing with a molding die, and the sealing lid is caulked and fixed between the inner can and the inner surface of the opening. Steps. In the manufacturing method according to the present invention, in the state where the inner can is housed inside the outer can by the execution of the second step, the upper end surface of the inner can in the depth direction of the outer can is It is arrange | positioned rather than the lower end of the wide part in a can at the can bottom side of an exterior can .
[0007]
In this sealed battery manufacturing method, a bottomed cylindrical outer can with an opening provided in the first step is produced, and a sealing agent is applied to the outer opening on the inner surface of the outer can. The sealing agent does not hang down on the body part on the bottom side of the can from the wide portion, and the sealing agent adheres to the electrode body and the sealing lid when the electrode body and the sealing lid are stored in the outer can in the second step. There is no.
[0008]
In the third step of the manufacturing method, since the region from the can bottom side to the opening end is narrower than the wide portion, the wide portion and the portion on the can bottom side from the wide portion are formed on the outer surface of the outer can. A stepped portion with the ( body part ) does not remain, and a sealed battery excellent in volumetric efficiency can be manufactured.
Therefore, in the above manufacturing method, a sealed battery excellent in volumetric efficiency and sealing performance can be manufactured.
[0009]
In the above manufacturing method, in the third step, a region to be reduced in diameter of the outer can inside the sub-steps of attaching habit towards the (cross direction), imprint area of the inner surface of the wide-port portion sealing It is desirable that the sealing lid is caulked and fixed through a sub-step in which the step is pressed until the step between the wide portion and the body portion on the can bottom side becomes a curved surface while being in close contact with the lid. This can be stably molded to a predetermined size by applying the area of the outer can where the diameter is to be reduced toward the inside of the cylinder in the sub-step of applying.
[0010]
In addition, since pressurization is performed until the step between the wide portion and the body portion disappears in the sub-step of pressurization, adhesion between the sealing lid and the outer can is ensured, and excellent appearance quality is obtained. It should be noted that a microscopic level difference that cannot be visually confirmed is allowed because it is considered that the adhesion between the sealing lid and the outer can can be substantially secured.
In addition, the above-mentioned wrinkle indicates that the portion to be reduced in diameter is narrowed slightly toward the inside of the outer can in order to perform the latter substep.
[0011]
In the first step, the step between the wide portion and the body portion (in the widening direction) formed on the outer can is 0 from both the retention of the sealing agent at the wide portion and the sealing property after caulking. Desirably, the range is from 0.02 mm to 0.10 mm.
Moreover, in the said manufacturing method of a sealed battery, it is desirable to attach a gasket to the edge part of a sealing lid at a 2nd step from a viewpoint of ensuring sealing performance.
[0012]
The above manufacturing method is particularly effective in manufacturing a sealed battery having an electrode body in which a laminated body of an electrode plate and a separator is housed in a bottomed cylindrical inner can.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A method for manufacturing a cylindrical sealed battery according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a process diagram showing the process until the electrode body and the sealing lid are housed in the outer can, and FIG. 2 is a process diagram showing the sealing process by caulking.
As shown to Fig.1 (a), the armored can 10 is a bottomed cylindrical body which consists of a thin stainless steel plate in which the wide part 11 was formed in the opening part. The wide portion 11 is a portion that has been widened by pressing an opening of a bottomed cylindrical body that has been prepared in advance by deep drawing or the like.
[0014]
Due to the formation of the wide portion 11, a step 10a is formed on the outer surface side and a step 10b is formed on the inner surface side at the boundary between the wide portion 11 and the body portion 12 on the bottom side of the can.
Next, as shown in FIG. 1B, a sealing agent 20 is applied to the inner surface side of the wide portion 11 in the outer can 10. At this time, the applied sealing agent 20 is prevented from dripping onto the body portion 12 by the step 10 b and is held in the wide portion 11. The sealing agent 20 is obtained by, for example, dissolving asphalt with xylene.
[0015]
Next, as shown in FIG. 1C, the electrode body 30 is housed inside the outer can 10. When the electrode body 30 is housed in the outer can 10, the inner can 32 is lowered until the bottom surface of the inner can 32 reaches the inner bottom surface of the outer can 10 while keeping the central axis in the radial direction coincident with the central axis of the outer can 10. The central axis of the electrode body 30 and the outer can 10 when housed may be slightly shifted as long as the sealing agent 20 applied to the wide portion 11 does not adhere to the electrode body 30.
[0016]
The electrode body 30 is housed in an inner can 32 in a state where a spiral electrode body 31 is impregnated with an electrolytic solution. A sealing lid 40 is connected to the spiral electrode body 31 via a lead 45 in advance.
The sealing lid 40 is a lid having an edge portion having an outer diameter substantially equal to that of the inner can 32, and a gasket 50 is attached to the edge portion (refer to a detailed view). The same sealing agent as that applied to the inner surface side of the outer can 10 is applied in advance to the portion of the gasket 50 that contacts the sealing lid 40 (not shown).
[0017]
Thereafter, the bottom surface of the inner can 32 and the bottom surface of the outer can 10 are spot welded so that the lower surface of the gasket 50 attached to the edge portion of the sealing lid 40 is in close contact with the upper surface of the inner can 32. The lid 40 is disposed (FIG. 1 (d)).
The relationship between the height of the outer can 10 and the height of the electrode body 30 is that the bottom of the inner can 32 is attached to the inner bottom of the outer can 10 as described above (FIG. 1 (d)). The step 10b of the outer can 10 comes to be approximately the same height as the facing part.
[0018]
Next, a method for caulking and fixing the sealing lid 40 by caulking shown in FIG. 2 will be described.
As shown in FIG. 2 (a), the opening of the outer can 10 is pressed by using a caulking die 100, and the side wall surface of the outer can 10 is radially inwardly slightly below the steps 10a and 10b. Squeeze toward.
[0019]
The stroke of the brazing die 100 with respect to the outer can 10 is set according to the degree to which the vicinity of the end of the opening of the outer can 10 (part of the wide portion 11 and the body portion 12) is to be attached. However, it is necessary to perform the caulking so that the step 10a comes to a position corresponding to the R portion 200r of the caulking die 200 in the caulking process (FIG. 2B) described later. In other words, the term “crimping” here refers to narrowing the portion to be reduced in diameter from the state of FIG. 2A to the state of FIG.
[0020]
Thus, the outer can 10 with the portion to be reduced in diameter is pressed using a caulking die 200. The caulking die 200 used at this time is provided with an R portion 200r for narrowing down the outer can 10.
When the caulking die 200 is lowered with respect to the outer can 10, the step 10 a of the outer can 10 hits the R portion 200 r of the caulking die 200. The caulking die 200 is lowered until the step 10a is drawn inward along the R portion 200r. In this way, the stepped portion 10a is drawn inward, so that the caulked portion of the outer can 10 that receives pressure is reduced in diameter along the gasket 50. At this time, the gasket 50 receives pressure and is compressed in the thickness direction.
[0021]
The step 10a is deformed (reduced diameter) so as to be positioned on the upper surface of the gasket 50 along with the reduced diameter.
The step 10 a that is guided to the R portion 200 r of the caulking die 200 receives the pressure of the caulking die 200 and causes plastic deformation in the radial direction and the height direction of the outer can 10. And the level | step difference 10a and the level | step difference 10b become a curved surface. The curved surface here means a state in which no step remains visually.
[0022]
FIG. 2 (c) shows the cylindrical sealed battery in the state where the caulking has been completed. As shown here, the cylindrical sealed battery sealed through the above-described steps does not have a step 10a on the outer side surface of the outer can 10, and there is no useless space on the outer periphery of the battery, and the volumetric efficiency. In addition to being excellent in appearance quality.
Further, in this cylindrical sealed battery, since the step 10b before the caulking process is plastically deformed until it becomes a curved surface in the sealed portion after sealing, the outer can 10 and the gasket 50 are securely adhered and sealed. Excellent stopping properties.
[0023]
In the above-described embodiment, the cylindrical sealed battery having the spiral electrode body 31 has been described as an example. However, the form of the electrode body and the shape of the battery are not limited thereto. For example, a sealed battery having an electrode body in which an electrode plate and a separator are stacked may be used, and the external shape of the battery may be elliptical.
Moreover, in the above, sealing was performed through two steps, a squeezing step and a caulking step, but the types of molds used and the number of steps are not limited thereto.
(Confirmation experiment)
Next, the following experiment confirmed the relationship between the level of the step, the processability, and the battery sealing performance.
[0024]
In this experiment, a CR-1 / 3N (JIS C8512) standard sealed battery was used as an object. The outside dimensions of this sealed battery are an outer diameter of 11.6 mm and an overall height of 10.8 mm.
The electrode body is formed by forming a spiral electrode body by thermally welding a separator on a positive electrode plate having a positive electrode active material mainly composed of manganese dioxide, and winding and winding a negative electrode active material mainly composed of lithium. After being housed in the inner can, it is produced by immersing in an electrolyte bath. A sealing lid is joined to this as mentioned above, and it accommodates in the exterior can (made of stainless steel) which has a wide part of the shape as shown to Fig.3 (a) or (b), and seals using the above-mentioned method Went.
[0025]
As for the shape of the lip portion of the outer can, steps of Examples 1 to 3 and Comparative Example 1 are stepped as shown in FIG. 3 (a), and those of Comparative Examples 2 and 3 are shown in FIG. 3 (b). There was no level difference.
About application | coating of the sealing agent to an exterior can, it was set to the place of the depth of 1.4 mm from the opening part of an exterior can in Examples 1-3 and Comparative Examples 1 and 2, and the thing of the comparative example 3 was nothing.
[0026]
50 batteries were prepared for each experiment.
In addition, the depths of the wide portions in Examples 1 to 3 and Comparative Example 1 are all d = 1.4 mm. And the material thickness of the can body part of the outer can used in all Examples and Comparative Examples is 0.26 mm.
Example 1
Wide part: step g = 0.02 mm
(Example 2)
Wide part: level difference g = 0.05 mm
(Example 3)
Wide part: level difference g = 0.10 mm
(Comparative Example 1)
Wide part: step g = 0.15 mm
(Comparative Example 2)
There is no lip portion (FIG. 3B).
(Comparative Example 3)
There is no lip portion (FIG. 3B).
[0027]
No sealant applied.
The height of the electrode body was the same as in Examples 1 to 3 and Comparative Examples 1 and 2.
(Experiment 1) Dripping of the sealing agent Before the sealing, when the sealing agent (asphalt dissolved in xylene) was applied to the inner surface of the outer can in the wide mouth part, the number of the sealing agent dripped at the bottom was counted. Table 1 shows the ratio of the number of the sealant dripping to the total number (50).
[0028]
[Table 1]
Figure 0003883884
[0029]
As shown in Table 1, it can be seen that the sealant does not sag regardless of the size of the step when the lip portion is formed in the outer can.
On the other hand, in Comparative Example 2 in which the outer can was not provided with the lip portion, the sealant sagging was observed in 90% of the samples.
(Experiment 2) Adhesion experiment of sealing agent When the electrode body was housed in the outer can, the number of the adhering sealing agent to the inner can was counted, and the ratio is shown in Table 2. However, in the experiment, 50 pieces were used each of which the sealant did not sag when the sealant was applied.
[0030]
[Table 2]
Figure 0003883884
[0031]
As shown in Table 2, adhesion of the sealing agent to the electrode body was not observed in Examples 1 to 3 and Comparative Example 1, that is, the outer can provided with the wide portion.
On the other hand, in Comparative Example 2, adhesion of the sealing agent was observed in 6% of the samples. (Since Comparative Example 3 does not have a sealing agent applied thereto, the sealing agent does not adhere to the electrode body.)
(Experiment 3) A step remaining test was observed on the outer can after sealing, and it was examined whether or not a step or unevenness remained in a portion where the step was formed before caulking. Table 3 shows the ratio of unevenness remaining in the outer can.
[0032]
[Table 3]
Figure 0003883884
[0033]
In Examples 1 to 3, no remaining step was observed after sealing, but in Comparative Example 1 (step g = 0.15 mm), it was observed that a step was left in 60% of the samples. .
(Experiment 4) Temperature cycle test The battery after sealing was subjected to a temperature cycle test under the following conditions, and the number of leaked liquids was counted when 20 days passed, 50 days passed, and 100 days passed. Shown in
[0034]
Test conditions)
1 cycle: (keep 60 ° C. → decrease in temperature → keep at −10 ° C. → heat up) / 1 hour 6 cycles / day
[Table 4]
Figure 0003883884
[0036]
As shown in Table 4, the liquid leakage was confirmed at the time when 50 days passed and at the time when 100 days passed in the batteries of Comparative Examples 2 and 3.
In the batteries of Examples 1 to 3 and Comparative Example 1, no leakage was confirmed regardless of the number of days elapsed.
(Experimental considerations)
From the results of the above experiments 1 to 4, dripping of the sealing agent at the time of applying the sealing agent can be prevented by providing a wide portion so that even a slight step is formed on the outer can, but the comparative example If the step g is increased to 0.15 mm as shown in Fig. 1, traces of the step remain in the outer can after sealing, which is not preferable in terms of appearance quality, and there is a gap between the outer can and the gasket, so that the sealing performance is lowered. There is a risk.
[0037]
As shown in Table 2, the adhesion of the sealing agent to the electrode body when the electrode body is housed in the outer can can be prevented by providing a step in the outer can.
The occurrence of liquid leakage in the temperature cycle test was not found in Examples 1 to 3 and Comparative Example 1, whereas in Comparative Examples 2 and 3, the rate of occurrence increased with the passage of days. Even if the sealing agent is applied to the outer can as in Comparative Example 2, the sealing agent may drip off or adhere to the electrode body when the electrode body is stored, and the sealing agent is sufficient in the sealing portion at the time of sealing. This is probably because it did not remain. It is clear from the fact that the leakage of the battery of Comparative Example 3 in which the sealing agent was not applied to the outer can is the largest.
[0038]
From the above, it can be seen that it is effective from the viewpoint of sealing performance to form a wide part in the outer can and provide a step on the inner surface of the side part, and to apply the sealing agent to the part and seal it. . In particular, it is desirable from the viewpoints of sealing properties and appearance quality that the wide portion is formed so that the step g is in the range of 0.02 mm to 0.10 mm.
[0039]
【The invention's effect】
As described above, the method for manufacturing a sealed battery according to the present invention produces a bottomed cylindrical outer can formed by widening an opening to form a widened portion, and the inner surface of the outer can A first step of applying a sealant to the wide portion, a second step of storing the electrode body and the sealing lid placed thereon in an outer can, and a portion in which the sealing lid of the outer can is stored And a third step of reducing the diameter by pressing with a molding die and caulking and fixing the sealing lid.
[0040]
In the manufacturing method of this sealed battery, since the bottomed cylindrical outer can provided with a wide portion in the opening in the first step, and a sealing agent is applied to the wide portion on the inner surface of the outer can, The sealing agent does not hang down on the body portion, and the sealing agent does not adhere to the electrode body and the sealing lid when the electrode body and the sealing lid are stored in the outer can in the second step.
[0041]
Further, in the third step of the manufacturing method, since the diameter is reduced from the body part on the can bottom side with respect to the wide part, a step between the wide part and the body part may remain on the outer surface of the outer can. In other words, it is possible to manufacture a sealed battery excellent in volumetric efficiency.
Therefore, in the above manufacturing method, a sealed battery excellent in volumetric efficiency and sealing performance can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic process diagram showing a method for manufacturing a cylindrical sealed battery according to an embodiment of the present invention.
FIG. 2 is a schematic process diagram showing a sealing process.
FIG. 3 is a cross-sectional view of an opening end portion of the outer can.
[Explanation of symbols]
10. Exterior cans 10a, 10b. Step 11 Wide part 12. Body part 20. Sealant 30. Electrode body 40. Sealing lid 50. Gasket 100. Kake-up mold 200. Caulking mold

Claims (3)

開口部を口広げしてなる口広部を有する有底筒状の外装缶を作製し、当該外装缶の口広部における内面にシール剤を塗布する第1のステップと、
内方に電極体が収納されてなる内缶を前記外装缶の内方に収納し、前記外装缶の開口側における前記内缶の端面に封口蓋を載置する第2のステップと、
前記外装缶における前記口広部よりも缶底側の部分から開口端にかけての領域を成形型で加圧することにより縮径し、前記封口蓋を前記内缶と前記開口部の内面とでかしめ固定する第3のステップとを有し、
前記第2のステップの実行により、前記外装缶の内方に前記内缶が収納された状態においては、前記外装缶の深さ方向での前記内缶の上端面が、前記口広部の下端よりも前記外装缶の缶底側に配されている
ことを特徴とする密閉型電池の製造方法。
Openings to form a bottomed cylindrical outer can having a wide-port portion formed by widened mouth, a first step of applying a sealant on the inner surface of the wide-port portion of the outer can,
A second step of accommodating an inner can in which an electrode body is accommodated inwardly in the outer can, and placing a sealing lid on an end surface of the inner can on the opening side of the outer can;
The outer can is reduced in diameter by pressurizing a region from the bottom side of the outer can to the opening end with a molding die, and the sealing lid is fixed by crimping the inner can and the inner surface of the opening. And a third step to
When the inner can is housed inside the outer can by the execution of the second step, the upper end surface of the inner can in the depth direction of the outer can is the lower end of the wide portion. A method for producing a sealed battery, wherein the sealed battery is disposed closer to the bottom of the outer can .
前記第3のステップでは、
前記縮径しようとする前記領域を前記外装缶の内方に向けてくせ付けするサブステップと、
前記くせ付けされた領域を、前記開口部の内面が前記封口蓋に密着するとともに、前記口広部とそれよりも缶底側の胴体部との間の段差が曲面になるまで加圧するサブステップとを経て、前記封口蓋をかしめ固定する
ことを特徴とする請求項1に記載の密閉型電池の製造方法。
In the third step,
A sub-step of attaching the region to be reduced in diameter toward the inside of the outer can;
The imprint area, together with the inner surface of the opening is in close contact with the sealing lid, substeps step is pressurized to a curved surface between the wide-port portion and the body portion of the can bottom side thereof The method for producing a sealed battery according to claim 1, wherein the sealing lid is fixed by caulking.
前記第1のステップでは、前記胴体部との間で口広げ方向に0.02mm以上0.10mm以下の段差を有するように口広部を形成する
ことを特徴とする請求項2に記載の密閉型電池の製造方法。
3. The hermetic seal according to claim 2, wherein, in the first step, a wide portion is formed so as to have a step of 0.02 mm or more and 0.10 mm or less in the widening direction with the body portion. Type battery manufacturing method.
JP2002054608A 2002-02-28 2002-02-28 Manufacturing method of sealed battery Expired - Fee Related JP3883884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054608A JP3883884B2 (en) 2002-02-28 2002-02-28 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054608A JP3883884B2 (en) 2002-02-28 2002-02-28 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2003257382A JP2003257382A (en) 2003-09-12
JP3883884B2 true JP3883884B2 (en) 2007-02-21

Family

ID=28665715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054608A Expired - Fee Related JP3883884B2 (en) 2002-02-28 2002-02-28 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP3883884B2 (en)

Also Published As

Publication number Publication date
JP2003257382A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
US6670073B2 (en) Battery constructions having increased internal volume for active components
JP5066834B2 (en) Alkaline storage battery
CN212434722U (en) Button cell and electronic equipment
US6300004B1 (en) Battery constructions having reduced collector assembly volume
JP4037046B2 (en) Flat rectangular battery
USRE38518E1 (en) Battery constructions having increased internal volume for active components
US6410186B1 (en) Battery construction having double seam cover closure
US6265096B1 (en) Electrochemical cell having collector electrically insulated from cover
US6632558B1 (en) Battery construction having pressure release mechanism
WO1995010124A1 (en) Process for ultrasonic sealing an anode cup into a gasket for electrochemical cells
JP3883884B2 (en) Manufacturing method of sealed battery
JP4983095B2 (en) Alkaline storage battery and manufacturing method thereof
JP3597150B2 (en) Organic electrolyte secondary battery and method for producing negative electrode can of organic electrolyte secondary battery
JPH04144054A (en) Manufacture of cylindrical battery
JP3131145U (en) Button-type alkaline battery
US6294283B1 (en) Electrochemical cell having low profile seal assembly
JPH0696748A (en) Elliptical sealed battery
JPH11224651A (en) Cylindrical battery filled with nonaqueous electrolyte and its manufacture
CN216698485U (en) Metal shell battery
JP3760427B2 (en) Battery case manufacturing method and battery
CN219457815U (en) High-sealing cylindrical battery
JP2005123060A (en) Manufacturing method of sealed battery
JPS61233963A (en) Manufacture of cylindrical battery
JP2005044649A (en) Flat battery, battery can of flat battery, and manufacturing method of battery can of flat battery
JP3631792B2 (en) Square battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R151 Written notification of patent or utility model registration

Ref document number: 3883884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees