JPH01313746A - Insulating temperature rise measuring instrument - Google Patents

Insulating temperature rise measuring instrument

Info

Publication number
JPH01313746A
JPH01313746A JP14708588A JP14708588A JPH01313746A JP H01313746 A JPH01313746 A JP H01313746A JP 14708588 A JP14708588 A JP 14708588A JP 14708588 A JP14708588 A JP 14708588A JP H01313746 A JPH01313746 A JP H01313746A
Authority
JP
Japan
Prior art keywords
temperature
sample
temperature rise
amplifier
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14708588A
Other languages
Japanese (ja)
Inventor
Yasubumi Fukaya
深谷 泰文
Kazumi Kato
加藤 和巳
Seiichi Hagiwara
萩原 清市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO RIKO KK
Chichibu Cement Co Ltd
Original Assignee
TOKYO RIKO KK
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO RIKO KK, Chichibu Cement Co Ltd filed Critical TOKYO RIKO KK
Priority to JP14708588A priority Critical patent/JPH01313746A/en
Publication of JPH01313746A publication Critical patent/JPH01313746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously execute the measurement of an insulating temperature variation with respect to plural samples with high accuracy by providing plural pieces of insulated containers in a testing tank and setting an insulating temperature control to a 3-stage control. CONSTITUTION:A prescribed number of samples are put into an insulated container 15 which has contained a dual bottle 18, and a soaking cylinder 17 placed on its outside and covered up. Heating of the sample 19 is detected by a differential thermocouple 29 which has been connected between the inside surface of the tank and the soaking cylinder 17, inputted to a power control circuit 32 through amplifiers 30, 31, and a heater 16 is heated. When a temperature of the soaking cylinder 17 rises, a temperature difference is detected by a differential thermocouple 33 which has been connected between the cylinder and 13, inputted to a power control circuit 35 through an amplifier 34, and a heater 36 is heated. Also, when a temperature rises in an air duct 13, a temperature difference is detected by a differential thermocouple 37 which has been connected between the air duct and circulating water 38, inputted to a power control circuit 40 through an amplifier 39, and a heater 41 is heated. An output of a temperature sensor 25 which has been put into the inside of the sample is switched by a switch 26, and recorded in a recorder 28 through an amplifier 27.

Description

【発明の詳細な説明】 し発明の目的] (産業上の利用分野) 本発明は断熱温度上昇測定装置、特にセメント。[Detailed description of the invention] Purpose of invention] (Industrial application field) The present invention relates to an adiabatic temperature rise measurement device, particularly for cement.

モルタルまたはコンクリート等が水和反応によって発生
する温度上昇値を測定して、その熱特性を検知する際使
用される断熱温度上昇測定装置に間する。また生石灰な
どセメント以外の反応性試料にも同様な目的で使用でき
る。
It is connected to an adiabatic temperature rise measuring device used to measure the temperature rise generated by mortar or concrete due to hydration reaction and detect its thermal characteristics. It can also be used for reactive samples other than cement, such as quicklime, for similar purposes.

〈従来の技術) コンクリートはセメントと骨材及び水とを混練してつく
られるが、その際セメントの水和熱(こよって温度上昇
する。ここで−旦上昇した温度は部材寸法や外気温度等
の条件によって放熱し温度降下する。この時点で部材寸
法の大きいマスコンクリートにおいては、以下に示すよ
うなメカニズムによって温度ひび割れを生じる場合があ
る。
(Prior art) Concrete is made by kneading cement, aggregate, and water, but at this time, the heat of hydration of the cement (thus, the temperature rises.The increased temperature is caused by factors such as component dimensions and outside air temperature). Heat is dissipated and the temperature drops depending on the conditions. At this point, in mass concrete with large member dimensions, temperature cracks may occur due to the following mechanism.

■ 蓄熱され温度が高くなったコンクリート内部と冷却
された表面部との間の温度差に起因する温度応力(内部
拘束応力)によるもの。
■ Temperature stress (internal restraint stress) caused by the temperature difference between the inside of the concrete, which has become hot due to heat accumulation, and the cooled surface.

■ 高温で硬化したコンクリートが冷却される過程で熱
収縮が生じこれが外部から拘束されることによる温度応
力く外部拘束応力)によるもの。
■ Heat shrinkage occurs during the cooling process of concrete that has hardened at high temperatures, and this is caused by temperature stress (external restraint stress) caused by being restrained from the outside.

したがって温度ひび割れと最も相関の大きいモルタルや
コンクリートの発PA特性を評価するためには、マスコ
ンクリート内部におけると同じ状態でセメントの水和反
応熱による温度上昇が測定できなければならない。すな
わち、熱の移動のない断熱状態における温度上昇値の測
定が必要となる。
Therefore, in order to evaluate the PA characteristics of mortar and concrete that have the highest correlation with temperature cracking, it is necessary to be able to measure the temperature rise due to the heat of hydration reaction of cement under the same conditions as inside mass concrete. That is, it is necessary to measure the temperature rise value in an adiabatic state without heat transfer.

要するに、コンクリートのIr熱温度上昇試験はセメン
トの水和熱によって生じるコンクリート試料の温度上昇
値と試料外部の雰囲気温度(試験槽内温度)との差を常
に零とするように制御しマスコンクリート内部と等しい
@熱状態を再現して測定する。
In short, the Ir heat temperature rise test for concrete is controlled so that the difference between the temperature rise value of the concrete sample caused by the heat of hydration of cement and the ambient temperature outside the sample (temperature inside the test chamber) is always zero. Reproduce and measure the @thermal state equal to .

第3図は従来装置の構成側口であり、これによって概要
説明をする。第3図は空気循環式と称されるタイプで、
試験#j1は@熱材で形成されている。2は容器で、こ
の内部にはコンクリート練込品3(以後試料と称す)を
収納する。容器2の側面スは下面にはヒータ4が設けら
れ、ジュール熱源5及び温度調節計6に接続される。7
は液体循環式温度制御機であり、ファン8によって槽内
の空気を循環させる。9aは試料内に埋込まれた温度セ
ンサ、9bは容器内に設けた温度センサで温度記録計1
0に接続され、同じ<9Cは試料3の表面に設けた温度
センサ、9dは容器2の外壁に設けた温度センサであり
、これらは温度調節計に接続される。
FIG. 3 shows a side view of the configuration of a conventional device, and will be used to provide an overview. Figure 3 shows a type called the air circulation type.
Test #j1 is made of @heat material. Reference numeral 2 denotes a container, in which a mixed concrete product 3 (hereinafter referred to as a sample) is stored. A heater 4 is provided on the lower side of the container 2 and is connected to a Joule heat source 5 and a temperature controller 6. 7
is a liquid circulation type temperature controller, and a fan 8 circulates the air inside the tank. 9a is a temperature sensor embedded in the sample, 9b is a temperature sensor provided in the container, and temperature recorder 1
0, the same <9C is a temperature sensor provided on the surface of the sample 3, and 9d is a temperature sensor provided on the outer wall of the container 2, and these are connected to a temperature controller.

したがって試料3中にて水とセメントとが反応して発生
した温度と容器2内の温度とは温度記録計10にて記録
され、この試料3の中心温度に追随させて試料を断熱状
態に保ち、断熱温度上昇量を測定する。
Therefore, the temperature generated by the reaction between water and cement in the sample 3 and the temperature inside the container 2 are recorded by the temperature recorder 10, and the sample is kept in an insulated state by following the center temperature of the sample 3. , measure the amount of adiabatic temperature rise.

(発明が解決しようとする課題〉 上記した従来装置は一つの試料につき一つの試験槽を設
けて、個々に断熱制御する方式である。
(Problems to be Solved by the Invention) The conventional apparatus described above is a system in which one test tank is provided for one sample, and the heat insulation is controlled individually.

また装置そのものがコンクリート用のみであって、−度
に多くの試料を評価測定することができない。
Furthermore, the device itself is only for use with concrete, and cannot evaluate and measure many samples at once.

そしてコンクリート用であれば、試料をつくるためのコ
ンクリートの混練作業がモルタルやペーストに比較して
たいへんであるばかりか、装置が大きく高価であるため
、多くの試験槽を併列で設置できない。
For concrete, not only is the work of mixing the concrete to prepare the sample much more difficult than that for mortar or paste, but the equipment is large and expensive, making it impossible to install many test chambers in parallel.

更に、コンクリート用のみであるため一回の測定に多量
のセメントを使用し、少量試料の評価に適さない欠点が
ある。
Furthermore, since it is only for concrete, a large amount of cement is used for one measurement, making it unsuitable for evaluating small samples.

上記に併ない、一般に断熱温度上昇試験は一つの試料に
つき7日以上にわたって継続測定を行うものであるため
、数多くのセメントあるいはモルタルを評価するには多
くの日数を必要とする欠点がある。
In addition to the above, since the adiabatic temperature rise test generally involves continuous measurement of one sample over 7 days or more, it has the disadvantage of requiring many days to evaluate a large number of cements or mortars.

本発明は上記事情に鑑みてなされたものであり、複数の
試料の温度上昇を同時に測定することの可能な断熱温度
上昇測定装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an adiabatic temperature rise measuring device capable of simultaneously measuring temperature rises of a plurality of samples.

[発明の構成] (課題を解決するための手段) 本発明では試料の断熱温度変化を測定する断熱温度上昇
測定装置において、試験槽内には複数個の試料格納用の
断熱容器を備え、これらの各断熱容器内にはデュア瓶と
均熱筒とを設けると共に、rgrPI、温度#J#は前
記デュア瓶の内部に充填した試料と均熱筒間及び均fi
筒と空気槽間及び空気槽と冷媒間の3段階にて行うよう
に構成した。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides an adiabatic temperature rise measuring device for measuring adiabatic temperature change of a sample, which includes a plurality of adiabatic containers for storing samples in a test chamber. A dewar bottle and a soaking cylinder are provided in each insulated container, and rgrPI and temperature #J# are set between the sample filled inside the dewar bottle and the soaking cylinder and the soaking cylinder.
It was configured to be carried out in three stages: between the cylinder and the air tank, and between the air tank and the refrigerant.

(作 用〉 試験槽内には断熱容器を複数個備えているため複数の試
料を同時に測定することができ、また断熱温度制御を3
段階制御としているために、極めて精度の良い断熱温度
変化の測定が可能である。
(Function) Since the test chamber is equipped with multiple insulated containers, multiple samples can be measured at the same time, and adiabatic temperature control can be performed in three ways.
Since it is controlled in stages, it is possible to measure adiabatic temperature changes with extremely high accuracy.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図は本発明による@熱温度上昇測定装置の一実施例
の構成図である。
FIG. 1 is a configuration diagram of an embodiment of the @thermal temperature rise measuring device according to the present invention.

第1図において11は試験槽であり、従来例と同様に断
熱材にて構成される。2は壁材であって前記した試験槽
11の内壁との間を風道13として利用する。壁材12
と一体にして下方には底板14を設け、この底板上には
複数個の断熱容器■を設ける。なお第1図では断熱容器
は2個の場合が示される。
In FIG. 1, 11 is a test tank, which is made of a heat insulating material like the conventional example. Reference numeral 2 denotes a wall material, and the space between it and the inner wall of the test tank 11 is used as an air passage 13. Wall material 12
A bottom plate 14 is provided below, and a plurality of heat-insulating containers (2) are provided on this bottom plate. Note that FIG. 1 shows a case where there are two heat-insulating containers.

ここで断熱容器■の内壁には辷−夕16が取付けられ、
その内部には均熱筒17を介してデユア類(魔法瓶)1
8を挿入する。19は試料であるためデュア瓶の内部に
充填するが、その場合に直接入れることなく、−旦ビニ
ール袋(図示せず)に入れた状態でデユア瓶内に挿入す
る。20は冷凍機、21は冷媒であり、これらはボンダ
22を介して循環バイブを峰山する。これは冷凍機を用
いて室温以下からの断熱温度上昇試験をするためである
。底板14の下方にはファン24を設け、この作用Qこ
よって風道内13から試験槽内に空気を循環させる。2
5は試料19の内部に入れた温度センサであり、各温度
センナは入力切換器26にて切換えることにより、増幅
器27を介して記録計28に記録されるようになってい
る。29は第1の差動pA電対で試料19と均熱筒17
とに接続され、これからの出力はTanAmp(リニア
な出力を導出するアンプ)30とLO9Alp(非線形
の出力を導出するアンプ)31とを介して電力制御回路
32に接続され、また制御回路32からの出力はヒータ
16に接続される。33は第2の差動熱電対で均熱1’
!i17と風道(空気槽)13との間に接続され、これ
からの出力は増幅器34と電力制御回路35とを経由し
て辷−夕36に接続される。37は第3の差動熱電対で
風道(空気槽)13と循環水38との間に接゛続され、
これからの出力は増幅器39と電力制御回路40とを経
由してヒータ41に接続される。
Here, the sleeves 16 are attached to the inner wall of the heat-insulating container ■.
Inside it, a thermos (thermos flask) 1 is inserted through a soaking cylinder 17.
Insert 8. Since the sample No. 19 is a sample, it is filled inside the Dua bottle, but in that case, it is not put directly into the Dua bottle, but first placed in a plastic bag (not shown) and then inserted into the Dua bottle. 20 is a refrigerator, and 21 is a refrigerant, which circulate through the circulation vibrator via a bonder 22. This is to perform an adiabatic temperature rise test from room temperature or below using a refrigerator. A fan 24 is provided below the bottom plate 14, and its action Q circulates air from the air passage 13 into the test chamber. 2
Reference numeral 5 denotes a temperature sensor placed inside the sample 19, and each temperature sensor is switched by an input switch 26 so that the temperature is recorded on a recorder 28 via an amplifier 27. 29 is the first differential pA couple, which connects the sample 19 and the soaking tube 17.
The output from this is connected to the power control circuit 32 via TanAmp (amplifier that derives a linear output) 30 and LO9Alp (amplifier that derives a nonlinear output) 31, and the output from the control circuit 32 is connected to The output is connected to heater 16. 33 is the second differential thermocouple for uniform heating 1'
! It is connected between the air passage (air tank) 13 and the air passage (air tank) 13, and the output thereof is connected to the drawer 36 via an amplifier 34 and a power control circuit 35. 37 is a third differential thermocouple connected between the air passage (air tank) 13 and the circulating water 38;
The output from this is connected to a heater 41 via an amplifier 39 and a power control circuit 40.

次に作用について説明する。Next, the effect will be explained.

先ず、試験に先立って所定数の試料を大々別個のビニー
ル袋等に入れ、各断熱容器u内に入れて蓋をする。この
場合、断熱容器の内部には最も内側にビニール袋等に入
った試料19があり、次にはデユア類18、更に外側に
は均熱筒17、そして最も外側には断熱容器長の壁面の
順序配列となっている。そして試料19の発熱は試料1
9と均熱1’1J17との間に接続した第1の差動fi
電対29によって温度差が検出され、これが増幅器30
.31にて増幅されて電力制御回路32に入力する。電
力制御回路32からは温度差に応じた制御出力が導出さ
れてヒータ16を加熱する。これが第1段目の断熱制御
である。
First, prior to the test, a predetermined number of samples are placed in separate plastic bags, etc., and the bags are placed inside each heat-insulating container u and covered with a lid. In this case, inside the heat-insulating container, there is a sample 19 in a plastic bag or the like on the innermost side, next is a dure 18, then a soaking cylinder 17 on the outside, and a wall of the length of the heat-insulating container is on the outermost side. It is an ordered array. And the heat generation of sample 19 is the same as that of sample 1.
The first differential fi connected between 9 and soaking 1'1J17
A temperature difference is detected by the couple 29, which is detected by the amplifier 30.
.. 31 and input to the power control circuit 32. A control output corresponding to the temperature difference is derived from the power control circuit 32 to heat the heater 16. This is the first stage of adiabatic control.

前記した第1段目の断熱制御によって均熱frJ17が
温度上昇すると、均熱ff!J17と風道(空気槽)1
3との間に接続した第2の差動熱電対33によって温度
差が検出され、これが増幅器34を介して電力制御回路
35に入力する。そして前記同様に温度差に応じた制御
出力が導出されてヒータ36を加熱する。
When the temperature of soaking frJ17 rises due to the first-stage adiabatic control described above, soaking ff! J17 and wind duct (air tank) 1
A temperature difference is detected by a second differential thermocouple 33 connected between the power control circuit 3 and the power control circuit 35 via an amplifier 34. Then, in the same manner as described above, a control output corresponding to the temperature difference is derived to heat the heater 36.

これが第2段目の断熱制譚である。This is the second stage of insulation control.

更に、前記した第2段目の断熱制御によって風道(空気
槽)13内が温度上昇すると、風道(空気槽)13と循
環水38との間に接続した第3の差動熱電対37によっ
て温度差が検出され、これが増幅器39を介して電力制
御回路40に入力する。そして前記同様(こ、この温度
差に応じた制御出力が導出されてヒータ41を加熱する
。これが第3段目の断熱制御である。
Furthermore, when the temperature inside the air passage (air tank) 13 rises due to the second-stage adiabatic control described above, the third differential thermocouple 37 connected between the air passage (air tank) 13 and the circulating water 38 The temperature difference is detected and inputted to the power control circuit 40 via the amplifier 39. Then, as described above, a control output corresponding to this temperature difference is derived to heat the heater 41. This is the third stage of adiabatic control.

上記実施例によればl!!r熱容器が2個の場合につい
て説明しな。しかし断熱容器は2個に限定されるもので
はなく、物理的に配置可能であればいくつでもよい。し
かし、この場合の第2段目の断熱制御としては、複数の
断熱容器中の最も温度の低いものを検出し、その温度を
基準にして第2段目の断熱制御をすればよい。
According to the above embodiment, l! ! rExplain the case where there are two heat containers. However, the number of heat-insulating containers is not limited to two, and any number may be used as long as it is physically possible to arrange them. However, in this case, the second-stage heat insulation control may be performed by detecting the one with the lowest temperature among the plurality of heat-insulating containers, and performing the second-stage heat insulation control based on that temperature.

第2図は断熱温度上昇についての比較結果を図にしたも
のである。そして縦軸は温度上昇値(C)を示し、横軸
は材令(日)を示す。また図の実線は本発明装置の場合
であり、点線はデュア瓶のみ、を用いた場合である。い
ずれにしても本装置を用いた場合、極めて良好なl!l
r5@制御が可能であることが判る。
Figure 2 is a diagram showing the comparison results regarding the adiabatic temperature rise. The vertical axis shows the temperature rise value (C), and the horizontal axis shows the wood age (days). Moreover, the solid line in the figure is for the case of the device of the present invention, and the dotted line is for the case where only the Deur bottle was used. In any case, when this device is used, extremely good l! l
It can be seen that r5@ control is possible.

[発明の効果コ 以上説明したように、本発明によれば試験槽内に複数の
断熱容器を設け、これらの断熱容器中の最も温度の低い
試料を基準にして以降第3階にわたる温度制御をするよ
う構成したので、以下に示す効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, a plurality of insulated containers are provided in the test chamber, and the temperature is controlled over the third floor based on the sample with the lowest temperature in these insulated containers. Since it is configured to do so, the following effects are achieved.

■ −度に多数の試料を評価測定することができる。■ - A large number of samples can be evaluated and measured at the same time.

■ 試料はコンクリート、モルタル、ペーストのいずれ
でも可能であり、かつ試料が少量であってもよい。
■ The sample may be concrete, mortar, or paste, and the sample may be small.

■ 断熱制御を3段階制御としているために、極めて高
精度に制御がなされる。
■ Since the insulation control is a three-stage control, the control can be performed with extremely high precision.

■ 装置が小型で製作費が安い。■ The device is small and the manufacturing cost is low.

■ 冷凍機を用いているため室温以下からの測定ができ
る。
■ Since a refrigerator is used, measurements can be taken from room temperature or below.

■空気槽は風道による立体撹拌であるなめ試験槽内の温
度分布が均一である。
■The air tank uses three-dimensional agitation using air passages, so the temperature distribution inside the test tank is uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による断熱温度上昇測定装置の一実施例
の構成図、第2図は効果を確認するための実測図、第3
図は従来装置の概要図である611・・・・・・試験槽
    12・・・・・・壁材13・・・・・・風道 
    14・・・・・・底板■・・・・・・@熱容器
   16.36.41・・・・・・辷−タ17・・・
・・・均熱筒    18・・・・・・デユア類19・
・・・・・試料     20・・・・・・冷凍機21
・・・・・・冷g      22・・・・・・ボンダ
23・・・・・・fff、Tilハイグ  24・・・
・・・ファン25・・・・・・温度センサ  26・・
・・・・入力切換器27.30,31,34.39・・
・・・・増幅器28・・・・・・記録計    29.
33.37・・・・・・差動熱電対32、35.40・
・・・・・電力制御回路特許出願人 秩父セメント株式
会社 (ほか1名) 代理人弁理士 石 井   紀 実 弟2図 手続補正書(自発) 1、事件の表示 昭和63年  特許願 第 147085号2、発明 
の名称 断熱温度上昇測定装置 3、補正をする者 事件との関係 住 所  〒106  東京都港区麻布台1丁目1番2
0号5、補正命令の日付 6、補正の対象 補 正 の 内容 (1)明細書第6頁第11行目に記載された「2は壁材
であって・・・」を「12は壁材であって・・・」に訂
正する。 (2)第1図を別添図面と差し換える。 以上
Fig. 1 is a configuration diagram of an embodiment of the adiabatic temperature rise measuring device according to the present invention, Fig. 2 is an actual measurement diagram for confirming the effect, and Fig. 3
The figure is a schematic diagram of a conventional device. 611...Test tank 12...Wall material 13...Air duct
14...Bottom plate■...@heat container 16.36.41...Lander 17...
...Soaking cylinder 18... Dua type 19.
...Sample 20 ... Refrigerator 21
... Cold g 22 ... Bonda 23 ... fff, Til Haig 24 ...
...Fan 25...Temperature sensor 26...
...Input switch 27.30, 31, 34.39...
...Amplifier 28...Recorder 29.
33.37... Differential thermocouple 32, 35.40.
...Power control circuit patent applicant Chichibu Cement Co., Ltd. (and 1 other person) Representative patent attorney Nori Ishii Younger brother 2 Drawing procedure amendment (voluntary) 1. Indication of the case 1988 Patent application No. 147085 2 ,invention
Name: Adiabatic Temperature Rise Measuring Device 3, person making the correction Address related to the case: 1-1-2 Azabudai, Minato-ku, Tokyo 106
No. 0 No. 5, date of amendment order 6, subject of amendment Contents of amendment (1) "2 is wall material..." written on page 6, line 11 of the specification was replaced with "12 is wall material..." Corrected to ``It's a material...''. (2) Replace Figure 1 with the attached drawing. that's all

Claims (1)

【特許請求の範囲】[Claims] 試験槽内に格納したセメントペースト、モルタルまたは
コンクリート試料が水和反応にて発生する熱量に追随し
て、その雰囲気温度を上昇させることにより試料の断熱
温度変化を測定する断熱温度上昇測定装置において、前
記試験槽内には複数個の試料格納用断熱容器を備え、こ
れらの各断熱容器内にはデュア瓶と均熱筒とを設けると
共に、断熱温度制御は前記デュア瓶の内部に充填した試
料と均熱筒間及び均熱筒と空気槽間及び空気槽と冷媒間
の3段階にて行うように構成したことを特徴とする断熱
温度上昇測定装置題。
In an adiabatic temperature rise measurement device that measures the adiabatic temperature change of a sample by increasing the ambient temperature by following the amount of heat generated by the hydration reaction of a cement paste, mortar, or concrete sample stored in a test tank, The test chamber is equipped with a plurality of insulated containers for storing samples, and each of these insulated containers is provided with a dewar bottle and a soaking cylinder, and the adiabatic temperature control is performed to control the sample filled inside the dewar bottle. An adiabatic temperature rise measurement device characterized in that the measurement is performed in three stages: between the soaking tubes, between the soaking tube and the air tank, and between the air tank and the refrigerant.
JP14708588A 1988-06-13 1988-06-13 Insulating temperature rise measuring instrument Pending JPH01313746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14708588A JPH01313746A (en) 1988-06-13 1988-06-13 Insulating temperature rise measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14708588A JPH01313746A (en) 1988-06-13 1988-06-13 Insulating temperature rise measuring instrument

Publications (1)

Publication Number Publication Date
JPH01313746A true JPH01313746A (en) 1989-12-19

Family

ID=15422130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14708588A Pending JPH01313746A (en) 1988-06-13 1988-06-13 Insulating temperature rise measuring instrument

Country Status (1)

Country Link
JP (1) JPH01313746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435376B1 (en) * 1997-06-17 2004-07-27 현대자동차주식회사 Adiabatic measuring device for headlining
JP2008241520A (en) * 2007-03-28 2008-10-09 Tokyo Institute Of Technology Adiabatic calorimeter and quality control method of cement and concrete using it
JP2009097882A (en) * 2007-10-12 2009-05-07 Tokyo Riko:Kk Device for measuring amount of insulated heat
CN104458792A (en) * 2014-12-19 2015-03-25 苏州市东华试验仪器有限公司 Asphalt mixed material freeze-thawing machine
JP2020106377A (en) * 2018-12-27 2020-07-09 三井住友建設株式会社 Concrete heating characteristic testing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428679A (en) * 1977-08-08 1979-03-03 Dow Chemical Co Adiabatic calorimeter and method of measuring energy change in chemical reaction
JPS61105450A (en) * 1984-10-30 1986-05-23 Sumitomo Cement Co Ltd Testing device for temperature rise in heat insulated concrete and mortar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428679A (en) * 1977-08-08 1979-03-03 Dow Chemical Co Adiabatic calorimeter and method of measuring energy change in chemical reaction
JPS61105450A (en) * 1984-10-30 1986-05-23 Sumitomo Cement Co Ltd Testing device for temperature rise in heat insulated concrete and mortar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435376B1 (en) * 1997-06-17 2004-07-27 현대자동차주식회사 Adiabatic measuring device for headlining
JP2008241520A (en) * 2007-03-28 2008-10-09 Tokyo Institute Of Technology Adiabatic calorimeter and quality control method of cement and concrete using it
JP2009097882A (en) * 2007-10-12 2009-05-07 Tokyo Riko:Kk Device for measuring amount of insulated heat
CN104458792A (en) * 2014-12-19 2015-03-25 苏州市东华试验仪器有限公司 Asphalt mixed material freeze-thawing machine
JP2020106377A (en) * 2018-12-27 2020-07-09 三井住友建設株式会社 Concrete heating characteristic testing method

Similar Documents

Publication Publication Date Title
Fowler A third generation water bath based blackbody source
AU680434B2 (en) Device for measuring parameters such as thermal conductivity or heat capacity of an injectable ornon-injectable material and method of identifying said parameters
JP7295931B2 (en) Apparatus and method for developing lyophilization protocols with small batches of product
US20200166417A1 (en) Adiabatic Concrete Calorimeter and Method
US5099441A (en) Method for determining thermal conductivity incorporating differential scanning calorimetry
CN107490595A (en) A kind of normal load influences the assay method and device of relation on faying face thermal contact resistance
JPH01313746A (en) Insulating temperature rise measuring instrument
Flynn et al. Design of a subminiature guarded hot plate apparatus
US10139292B2 (en) Calorimeter with stabilized temperature
CN110779748B (en) Multi-temperature-zone transport refrigeration unit performance test device and test method
TWI734438B (en) Thermal control system, thermal control method and temperature calibration apparatus
RU2364845C1 (en) Differential adiabatic scanning high-pressure microcalorimetre
Foster III et al. A high pressure, high temperature device for measuring polymer compressibilities
Chen et al. Chip calorimetry for fast cooling and thin films: a review
Brady et al. Thermal image analysis for the in-situ NDE of composites
CN216284022U (en) Temperature sensor calibrating device of multiple temperature points
JPH04142443A (en) Variable temperature test chamber
Hardy Trust but verify–practical approaches to humidity generation and measurement
Rochatka Method elaboration for determining heat losses within heat leakage bridges occurring in isothermal and cooling bodies
CN108872303B (en) Spontaneous combustion curve detecting system of self-heating substance
SU1100550A1 (en) Device for adiabatic heating/cooling
CN111537557A (en) Performance test method, system, medium and equipment of total heat exchange membrane
Scott et al. Discussion of Heat Flow Meter Apparatus Calibration and Traceability Issues for Thermal Conductivity Measurements
JP3420737B2 (en) Temperature variable magnetic resonance device
SU830155A1 (en) Heat flow determining method