JPH01313710A - Detector for looseness degree of overhead wire - Google Patents

Detector for looseness degree of overhead wire

Info

Publication number
JPH01313710A
JPH01313710A JP63144983A JP14498388A JPH01313710A JP H01313710 A JPH01313710 A JP H01313710A JP 63144983 A JP63144983 A JP 63144983A JP 14498388 A JP14498388 A JP 14498388A JP H01313710 A JPH01313710 A JP H01313710A
Authority
JP
Japan
Prior art keywords
wire
electric wire
sensor
servo
catenary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63144983A
Other languages
Japanese (ja)
Other versions
JPH0551849B2 (en
Inventor
Katsuyoshi Fujikura
藤倉 勝吉
Yoshikiyo Urabe
ト部 義清
Masahiro Terunuma
照沼 征廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63144983A priority Critical patent/JPH01313710A/en
Publication of JPH01313710A publication Critical patent/JPH01313710A/en
Publication of JPH0551849B2 publication Critical patent/JPH0551849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE:To convert a time aging of a catenary to an electric signal, to read the fluctuation quantity of the catenary with high accuracy from a deviation of a voltage and to immediately calculate a looseness degree by placing an angle sensor having a servo-mechanism on an electric wire. CONSTITUTION:The title device is provided with a roller which can run on an electric wire 1, and a servo-inclination angle sensor S1 on its frame 12. The sensor S1 is connected to an operation display device 14 by a lead wire 13. As a matter of fact, the roller 11 does not run, and the frame 12 is supported and fixed by a supporting rope 15 to a supporting structure of a steel tower side, and the electric wire 1 which is being drawn moves under the roller 11. Each catenary theta1 of the electric wire 1 is always fluctuated by whether wire drawing tension of the electric wire 1 is large or small, or a brake in a snatch block 4, or partial run-in of the electric wire, etc. The fluctuation of the angle theta1 is detected by the sensor S1, and its signal is inputted to the operation display device 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、架空線の弛度を高精度をもって簡易迅速に測
定し得る架空線の弛度検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overhead wire sag detection device that can easily and quickly measure the sag of an overhead wire with high accuracy.

[従来の技術] 架空線は、鉄塔間に張り上げ架線されるが、その張り上
げが強すぎれば外気温による熱収縮や風圧荷重などによ
り電線に異常張力が負荷されるし、張り上ばか小さすぎ
れば対地絶縁間隔が問題となる。従って、架空線は適正
弛度に設置される必要があり、架線工事における弛度測
定は不可欠である。
[Prior art] Overhead wires are stretched between steel towers, but if the tension is too strong, abnormal tension will be applied to the wires due to heat shrinkage due to outside temperature and wind pressure load, and if the tension is too small, the wires will be subjected to abnormal tension. Ground insulation spacing becomes a problem. Therefore, overhead wires must be installed with appropriate slack, and slack measurement during overhead line construction is essential.

また、架空線を延線する際には、電線を鉄塔に吊下され
た金車上に引き渡す作業が行なわれる。
Furthermore, when extending overhead lines, the wires are passed onto metal wheels suspended from steel towers.

この際電線が走り込んだりして地上に垂れ下り、電線自
身を損傷させあるいは繰下の構造物等を破壊したりしな
いよう、延線車による制動を加えつつ延線する。
At this time, the wires are stretched while applying braking with the wire rolling cars to prevent the wires from running in and hanging down to the ground, damaging the wires themselves or destroying the structures they are being carried down.

しかして、近年、架空送電線は、超々高圧化の一途を辿
り、鉄塔の大型化、架線径間の長大化、そして送電線そ
のものの大サイズ多導体化が進められ、1回の延線作業
で延線される延線区間も数Kmにも及ぶようになった。
However, in recent years, overhead power transmission lines have become increasingly high-voltage, with larger steel towers, longer overhead wire spans, and larger, multi-conductor transmission lines. The length of the line now extends to several kilometers.

このような長距離延線では、たとえドラム場で延線車に
よる制動を与えておいても途中の鉄塔径間の平均張力し
か制御できず、−の径間では電線が張り上り次の径間で
は電線が走り込んで大きく垂れ下るようなこともしばし
ば起っている。このような張り上りや垂れ下りは各鉄塔
における延線中の電線の弛度の変化となって現われるか
ら、延線中の電線の弛度測定も非常に重要な問題となっ
てきている。
In such long-distance extensions, even if braking is applied by the extension cars at the drum field, it is only possible to control the average tension in the middle spans of the towers; It often happens that electric wires run in and hang down a lot. Since such tension and sagging appear as changes in the slackness of the wires during the extension of each steel tower, measurement of the slackness of the wires during the extension has also become a very important issue.

従来、架空線の弛度測定は、つぎのような方法で行なわ
れれてきた。
Conventionally, the slackness of overhead wires has been measured using the following method.

まず、緊線作業の際に第14図に示す鉄塔Tl。First, the steel tower Tl shown in Fig. 14 is used during line tension work.

T2間に架線される電線1の弛度を知ろうとするときに
は、一方の鉄塔T2に目盛付きのバーテックス3を設置
し、鉄塔T1(l!1には望遠鏡付きコンパス2を取付
け、バーテックス3をコンパス2より規準して弛度dを
読みとる方法で測定を行なっていた。
When trying to find out the slackness of the electric wire 1 that is connected between T2, install a vertex 3 with a scale on one of the steel towers T2, install a compass 2 with a telescope on the steel tower T1 (l!1), and use the vertex 3 as a compass. The measurement was carried out by reading the sagging d based on the standard 2.

しかし、延線作業の場合には、延線中の電線1の弛度を
上記のようにして直接測定することは困誼である。そこ
で、第9図に示すようなアーム6を有する角度検出器5
を延線用の金車4に取付け、延線中の″1!線1のカテ
ナリ角をアーム6の回動量で検出し、この角度に基いて
弛度を求める方法がとられてきた。
However, in the case of wire-stretching work, it is difficult to directly measure the slackness of the electric wire 1 during wire-stretching as described above. Therefore, an angle detector 5 having an arm 6 as shown in FIG.
A method has been adopted in which the catenary angle of the "1! wire 1" during wire stretching is detected by the amount of rotation of the arm 6, and the slackness is determined based on this angle.

[発明が解決しようとする問題点] 電iiiの本来の弛度は、第15図に示す鉄塔アームT
aの直下点P−sを観測点とした弛度aOであるが、前
記第14図に示す規準方式で測定した弛度は鉄塔脚上の
P−2点より測定した弛度dlであり、第15図に示す
誤差△dが生ずる。
[Problem to be solved by the invention] The original sag of the electricity iii is determined by the tower arm T shown in Fig. 15.
The sag is aO with the point P-s directly below a as the observation point, but the sag measured using the standard method shown in FIG. 14 is the sag dl measured from the P-2 point on the tower leg, An error Δd shown in FIG. 15 occurs.

この誤差は鉄塔が大型化するほど大きくなるから、水平
角があったり高低差の大きな鉄塔間においては、無視で
きない。
This error increases as the tower becomes larger, so it cannot be ignored between towers with horizontal angles or large height differences.

第9図に示すアーム6を用いる方法では検出角が非常に
大まかであり、単なる目安程度にしかならない、しかも
、延線中の金車4の軸線は、延線張力により第10図の
PsからP2へと線方向に振られることがある。すると
、金庫は4−の状態となりアーム6も6−の位置に移動
する。電線1のカテナリはほとんど変化しないのに、角
度検出器5は角度α1から角度α2に変化した如く動作
し、大きな誤差をつくることになる。
In the method using the arm 6 shown in Fig. 9, the detection angle is very rough and can only be used as a rough guide.Moreover, the axis of the metal wheel 4 during wire drawing can vary from Ps in Fig. 10 due to the wire tension. It may be swung in the linear direction to P2. Then, the safe enters the 4- position and the arm 6 also moves to the 6- position. Although the catenary of the electric wire 1 hardly changes, the angle detector 5 operates as if it had changed from the angle α1 to the angle α2, resulting in a large error.

このほかにも、第11・図のように鉄塔Ts。In addition to this, there are steel towers Ts as shown in Figure 11.

T2゜T3間に水平角を有する場合には、アーム6のロ
ーラ7をかなり長くしても電線1から外れてしまい計測
ができない。
If there is a horizontal angle between T2 and T3, even if the roller 7 of the arm 6 is made considerably long, it will come off the wire 1 and measurement will not be possible.

また、第12図に示すように、測定鉄塔T lより両サ
イドの鉄塔T2.T3の方が高いような場合には、電線
1の張力を増すと電線1は金車4の溝から浮き上ってし
まい、角度検出ができなくなる。この浮き上りを押える
ために、第13図に示すように押え金車8を設置しても
、検出値は当初の角度と異なった値しか示さず、延線用
の角度検出器としては不適当である。
In addition, as shown in FIG. 12, there are steel towers T2 on both sides of the measurement tower Tl. If T3 is higher, increasing the tension of the wire 1 will cause the wire 1 to rise from the groove of the metal wheel 4, making it impossible to detect the angle. Even if a presser foot wheel 8 is installed as shown in Fig. 13 to suppress this lifting, the detected value only shows a value different from the initial angle, making it unsuitable as an angle detector for wire stretching. It is.

本発明の目的は、上記したような従来技術の問題点を解
消し、単に電線上に設置するだけで自動的に迅速かつ高
精度に電線のカテナリを検出し、これを直ちに演算器に
より演算してそのときの電線弛度を直読できるようにし
た新規な弛度検出装置を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned problems of the conventional technology, to automatically detect the catenary of the wire quickly and with high precision simply by simply installing it on the wire, and to immediately calculate the catenary of the wire using a calculator. The present invention aims to provide a novel slackness detection device that can directly read the wire slackness at that time.

[課題を解決するための手段] 本発明は、自動的に角度検知可能なサーボ傾斜角センサ
を電線上に設置し、当該センサの検知した検出角を演算
器に投入し、既知の径間長や高低差を入力しである演算
器により直ちに電線弛度を算出表示可能に構成したもの
である。
[Means for Solving the Problems] The present invention installs a servo inclination angle sensor capable of automatically detecting an angle on an electric wire, inputs the detection angle detected by the sensor into a calculator, and calculates the angle of a known span length. The structure is such that the electric wire sag can be immediately calculated and displayed using a calculator by inputting the height difference and the height difference.

[作用] サーボaSを有する角度センサを用いることで、電線の
カテナリの経時変動を直ちに電気信号に変換し、電圧の
偏差からカテナリの変動量を高精度に読み取ってこれを
演算器に投入することができる。演算器に設定されたプ
ログラムにより即時に弛度を算出できるから、作業者は
高精度に検出された現実の弛度を直読しつつ延線作業あ
るいは緊線作業を行なうことができ、安心して効率のよ
い架線作業を進行させ得る。
[Function] By using an angle sensor with servo aS, it is possible to immediately convert the change over time in the catenary of the wire into an electrical signal, read the amount of change in the catenary from the voltage deviation with high precision, and input it to the computing unit. I can do it. Since the sag can be calculated instantly using a program set in the calculator, workers can directly read the actual sag detected with high precision while conducting line extension or tensioning work, ensuring peace of mind and efficiency. This allows for good overhead line work to be carried out.

[実施例] 以下に、本発明について実施例図面を参照し説明する。[Example] The present invention will be described below with reference to the drawings.

第1図は、鉄塔Tl、T2・・・・・・間に延線中の電
線1に本発明に係る弛度検出装置1ユを設置し、延線中
の電線1の弛度変化を監視しつつ延線している様子を示
す説明図であり、第2図は弛度検出装置−10,の具体
的構成を示す説明図である。
Fig. 1 shows a sag detection device 1 according to the present invention installed on an electric wire 1 that is being extended between steel towers Tl, T2, etc., and monitoring changes in the sag of the electric wire 1 that is being extended. FIG. 2 is an explanatory diagram showing the specific configuration of the slackness detection device-10.

電線1上を走行可能なローラ11,11により支持され
たフレーム12にはサーボ傾斜角センサSlが設けられ
ており、当該センサ31はリード線13によって演算表
示装置14に接続される。
A servo tilt angle sensor Sl is provided on a frame 12 supported by rollers 11, 11 that can run on electric wires 1, and the sensor 31 is connected to an arithmetic display device 14 by a lead wire 13.

実際はローラ11,11は走行せず、フレーム12が鉄
塔側支持物に支持ロー115により支持固定され、ロー
ラit、ttの下を延線中の電線1が移動する。
Actually, the rollers 11, 11 do not run, the frame 12 is supported and fixed to the steel tower side support by the support rows 115, and the electric wire 1 being extended moves under the rollers it, tt.

電線1のカテナリ角θlは、電線1の延線張力の大小あ
るいは金車4におけるブレーキあるいは電線の部分的な
走り込みなどによって絶えず変動しており、その角度θ
lの変動をセンサS1が追従検知し、その検知信号を演
算表示装!14に入力させる。
The catenary angle θl of the electric wire 1 constantly fluctuates depending on the magnitude of the wire tension of the electric wire 1, the braking on the metal wheel 4, the partial running of the electric wire, etc.
The sensor S1 tracks and detects the fluctuation of l, and the detection signal is displayed on the calculation display! 14 to input.

第3図は、上記弛度検出装置1ユの動作説明図である。FIG. 3 is an explanatory diagram of the operation of the sag detection device 1 unit.

センサSlにより検知された電線のカテナリ信号は、増
巾変換器AMPにより電気信号に増巾され、その電圧が
角度メータMlに表示される。角度メータMlには例え
ば0〜5■の目盛があり、例えばOVがOoで5■が9
0’であるように設定される。
The catenary signal of the wire detected by the sensor Sl is amplified into an electrical signal by the amplification converter AMP, and the voltage thereof is displayed on the angle meter Ml. The angle meter Ml has a scale of 0 to 5, for example, OV is Oo and 5 is 9.
0'.

M2は偏差メータであり、ポテンションメータPMに接
続されている。CXは抵抗Rを適宜選択することでポテ
ンションメータPMの検知倍率を変える倍率切替器であ
る。結局、偏差メータM2にはセンサSlが検知した微
小な角度変動が高精度に拡大表示される。
M2 is a deviation meter and is connected to potentiometer PM. CX is a magnification switch that changes the detection magnification of the potentiometer PM by appropriately selecting a resistor R. As a result, the minute angular fluctuations detected by the sensor Sl are displayed in an enlarged manner on the deviation meter M2 with high accuracy.

OPEは演算器であり、センサS1の検知した角度信号
の前記電圧変換されたものが逐一人力される。演算器O
PEには、既知である架線径間長Sおよび電線支持点の
高低差Hが別途入力されており、これらのデータに基い
て電線1の弛度を計算し得るプログラムが組込まれてい
る。
OPE is a computing unit, into which the voltage-converted version of the angle signal detected by the sensor S1 is inputted one by one. Arithmetic unit O
The known overhead wire span length S and the height difference H between the wire support points are separately input to the PE, and a program that can calculate the slack of the wire 1 based on these data is incorporated.

第8図は、架線径間S、高低差Hを示す説明図である。FIG. 8 is an explanatory diagram showing the overhead wire span S and the height difference H.

電線1の弛度dはそれぞれ次式で求まる。The slackness d of the electric wire 1 is determined by the following formula.

(イ)高い側の鉄塔の場合 (ロ)低い側の鉄塔の場合 (1) 、(2)式のいずれにおいてもS、Hは既知で
あり、θ1が求まれば直ちに弛度dを計算できることが
わかる。
(a) In the case of a steel tower on the high side (b) In the case of a steel tower on the low side In both equations (1) and (2), S and H are known, and once θ1 is determined, the sag d can be calculated immediately. I understand.

演算器OPEにより算出された弛度は表示器DMにより
数値表示され、作業者はそれを直読することで延線中の
弛度の変動を即時に知ることができる。
The sag calculated by the calculator OPE is numerically displayed on the display DM, and by directly reading it, the operator can instantly know the fluctuations in the sag during wire extension.

上記は、サーボ傾斜角センサSlに横振れがなく、第5
図に示すように、電線のカテナリ角θ1をそのまま正し
く検知できた場合を例示したが、鉄塔上は強い風圧を受
けることが多く、それによってセンサS1が第6図に示
すようにθ2だけ横振れを起すことがあり得る。このよ
うにθ2だけセンサ31が横に傾斜した状態で検知した
角度は正しいθ1ではない、従って、強風下で検出作業
を行なう場合は、第7図に示すように、横振れを検知す
る第2のセンサS2を設け、当該第2のセンサS2が検
知した結果を第4図に示すように演算表示装置14に入
力させ、第1のセンサSlの測定値を第2のセンサS2
で正しいθlに演算補正し得るようにするのがよい。
In the above case, there is no lateral vibration in the servo tilt angle sensor Sl, and the fifth
As shown in the figure, we have shown an example where the catenary angle θ1 of the wire can be detected correctly, but the top of the steel tower is often subject to strong wind pressure, which causes the sensor S1 to oscillate by θ2 as shown in Figure 6. may occur. The angle detected when the sensor 31 is tilted sideways by θ2 is not the correct angle θ1. Therefore, when performing detection work in strong winds, as shown in FIG. A sensor S2 is provided, and the result detected by the second sensor S2 is inputted to the calculation display device 14 as shown in FIG.
It is desirable to be able to perform calculation correction to the correct value θl.

もっとも、センサS1の角度検知能力が横振れによって
変動しない構造のものであれば上記第2のセンサS2の
付加は必要ない。
However, if the sensor S1 has a structure in which the angle detection ability does not change due to lateral vibration, it is not necessary to add the second sensor S2.

以上は、延線中における弛度検出を例示説明したが、本
発明に係る装置は緊線作、業にも適用できることは勿論
であり、その場合にはローラの代りに電線把持部材を使
用してもよい。
The above description has been given by way of example of detecting slack during wire stretching, but it goes without saying that the device according to the present invention can also be applied to wire tensioning work, in which case wire gripping members may be used instead of rollers. You can.

また、リード線を使用せずワイヤレスに接続することも
可能であり、そうすることにより作業をより簡易化させ
ることができる。
It is also possible to connect wirelessly without using lead wires, which can further simplify the work.

[発明の効果] 以上の通り、本発明に係る装置によれば、弛度の変化を
連続的に精確に把握しつつ延線あるいは緊線を行なうこ
とができ、架線作業の高精度化および高能率化を促進し
得る効果はきわめて大きい。
[Effects of the Invention] As described above, according to the device according to the present invention, it is possible to perform wire stretching or tensioning while continuously and accurately grasping changes in sag, and it is possible to improve the accuracy and efficiency of overhead wire work. The effect of promoting efficiency is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置を用いて延線している様子を
示す説明図、第2図は本発明に係る装置の実施例を示す
説明図、第3および4図は本発明に係る装置の動作系を
示す2様の説明図、第5から7図はセンサの横振れに係
る説明図、第8図は弛度計算上の構成要素についての説
明図、第9図は従来のカテナリ検出装置を示す説明図、
第10から13図は従来のカテナリ検出装置の実用上に
おける問題点を示す説明図、第14図は従来の弛度測定
方法を示す説明図、第15図は第14図に示す方法で弛
度測定をしたときの問題点を示す説明図である。 1:電線、 4:金車、 10:弛度検出装置、 13:リード線、 14:演算表示装置、 Ss 、 S2 :サーボ傾斜角センサ。 代理人  弁理士  佐 藤 不二雄 第1図 第3図    14 第4図       14 第6図 第5図 b。 第7図 第11図 第14図 第15図
Fig. 1 is an explanatory diagram showing how wire is extended using the device according to the present invention, Fig. 2 is an explanatory diagram showing an embodiment of the device according to the present invention, and Figs. Two types of explanatory diagrams showing the operating system of the device, Figures 5 to 7 are explanatory diagrams related to lateral vibration of the sensor, Figure 8 is an explanatory diagram of the components for calculating sag, and Figure 9 is an explanatory diagram of the conventional catenary. An explanatory diagram showing a detection device,
Figures 10 to 13 are explanatory diagrams showing problems in practical use of conventional catenary detection devices, Figure 14 is an explanatory diagram showing a conventional sag measurement method, and Figure 15 is an explanatory diagram showing the sag measurement method shown in Figure 14. FIG. 3 is an explanatory diagram showing problems when making measurements. 1: Electric wire, 4: Metal wheel, 10: Slack detection device, 13: Lead wire, 14: Arithmetic display device, Ss, S2: Servo tilt angle sensor. Agent Patent Attorney Fujio Sato Figure 1 Figure 3 14 Figure 4 14 Figure 6 Figure 5 b. Figure 7 Figure 11 Figure 14 Figure 15

Claims (2)

【特許請求の範囲】[Claims] (1)電線上に設置可能なサーボ傾斜角センサと、該セ
ンサの検知した傾斜角を電気信号に増巾変換する増巾変
換器と、前記電気信号に基いて電線弛度を計算する演算
器およびその結果を表示する表示器とを有してなる架空
線の弛度検出装置。
(1) A servo inclination angle sensor that can be installed on a wire, an amplification converter that amplifies and converts the inclination angle detected by the sensor into an electrical signal, and a calculator that calculates the wire sag based on the electrical signal. and a display device for displaying the result.
(2)電線上に設置可能な第1のサーボ傾斜角センサと
、当該第1のサーボ傾斜角センサの横振れ角を検知する
第2のサーボ傾斜角センサと、これら第1および第2の
サーボ傾斜角センサの検知した傾斜角をそれぞれ電気信
号に増巾変換する増巾変換器と、前記それぞれの電気信
号を入力させて電線弛度を計算する演算器と、演算結果
を表示する表示器とを有してなる架空線の弛度検出装置
(2) A first servo tilt angle sensor that can be installed on the electric wire, a second servo tilt angle sensor that detects the lateral deflection angle of the first servo tilt angle sensor, and these first and second servo tilt angle sensors. an amplification converter that amplifies and converts each inclination angle detected by the inclination angle sensor into an electrical signal; a calculator that inputs each of the electrical signals to calculate wire slack; and a display that displays the calculation results. An overhead wire slack detection device comprising:
JP63144983A 1988-06-13 1988-06-13 Detector for looseness degree of overhead wire Granted JPH01313710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144983A JPH01313710A (en) 1988-06-13 1988-06-13 Detector for looseness degree of overhead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144983A JPH01313710A (en) 1988-06-13 1988-06-13 Detector for looseness degree of overhead wire

Publications (2)

Publication Number Publication Date
JPH01313710A true JPH01313710A (en) 1989-12-19
JPH0551849B2 JPH0551849B2 (en) 1993-08-03

Family

ID=15374755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144983A Granted JPH01313710A (en) 1988-06-13 1988-06-13 Detector for looseness degree of overhead wire

Country Status (1)

Country Link
JP (1) JPH01313710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103395412A (en) * 2013-07-22 2013-11-20 张磊 Braking mechanism for high-voltage transmission line maintenance power-driven coasters and lead deicing robots
CN106840499A (en) * 2017-01-10 2017-06-13 赵墨林 Pole wire Tensile Test Method, device and system
CN112051050A (en) * 2020-09-23 2020-12-08 中国建筑第八工程局有限公司 Detection device and detection method for steel strand inhaul cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103395412A (en) * 2013-07-22 2013-11-20 张磊 Braking mechanism for high-voltage transmission line maintenance power-driven coasters and lead deicing robots
CN106840499A (en) * 2017-01-10 2017-06-13 赵墨林 Pole wire Tensile Test Method, device and system
CN112051050A (en) * 2020-09-23 2020-12-08 中国建筑第八工程局有限公司 Detection device and detection method for steel strand inhaul cable

Also Published As

Publication number Publication date
JPH0551849B2 (en) 1993-08-03

Similar Documents

Publication Publication Date Title
RU2014114125A (en) CRANE MANAGEMENT METHOD
CN109632168B (en) Ultrahigh-voltage stringing stress sag measuring instrument and method based on GPS (global positioning system)
JPH01313710A (en) Detector for looseness degree of overhead wire
JPH01260324A (en) Method for measuring weight of suspended load of crane
JP4979475B2 (en) Twisted wire residual torsion measuring device, stranded wire machine and stranded wire winder equipped therewith
CN105572330A (en) Smart monitoring device and method of shrinkage coefficient and temperature shrinkage coefficient of cement stabilized macadam
JPH06105275B2 (en) Train line disconnection detection device
KR100319596B1 (en) Apparatus for adjusting tension of wire rope for exposed gas pipe
CN205642656U (en) Perpendicular temperature rise detection device of bus duct
JP6807802B2 (en) Wire extension system, wire extension or wire removal method
WO2020148794A1 (en) Device for the static and dynamic monitoring of supporting structures
JPH01315210A (en) Wire stretching technique of transmission line
JP2600385B2 (en) Multiconductor power line tightening tool and method of tightening using the same
JPH11173838A (en) Device for continuously measuring ruggedness of long length body
JPH0829151A (en) Displacement detection device for rolling horizontal roll
CN209961193U (en) Freight transport cableway carrier cable sag change measuring device
JP2833480B2 (en) Steel strip tension measuring device
JPH0428686A (en) Installation error measuring device for elevator guide rail
JP2697248B2 (en) Transmission line tension measuring device
JP2802831B2 (en) Measuring method of reaction force of bearing part during traveling construction of long span beam
CN208135538U (en) A kind of detection device of roller
CN208166398U (en) A kind of stage adjustable and balancing sunpender
CN105953933A (en) Bus duct vertical temperature rise detection device and detection method
JPH0518366Y2 (en)
JPH08110227A (en) Displacement measuring apparatus with fine line as reference