JPH01313285A - Malfunction detector for elevator - Google Patents

Malfunction detector for elevator

Info

Publication number
JPH01313285A
JPH01313285A JP14626988A JP14626988A JPH01313285A JP H01313285 A JPH01313285 A JP H01313285A JP 14626988 A JP14626988 A JP 14626988A JP 14626988 A JP14626988 A JP 14626988A JP H01313285 A JPH01313285 A JP H01313285A
Authority
JP
Japan
Prior art keywords
load
detection signal
signal
variation
load detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14626988A
Other languages
Japanese (ja)
Inventor
Yoshio Miyanishi
宮西 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14626988A priority Critical patent/JPH01313285A/en
Publication of JPH01313285A publication Critical patent/JPH01313285A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep off any increase in a starting impact even at a time when a load detecting signal comes abnormal by compensating this load detecting signal according to a difference between output of a load variation detecting means and that of a load variation predictive operational means. CONSTITUTION:A load variation detecting means 21 inputs a load detecting signal 8a and detects the maximum value of a variation portion of this load detecting signal 8a during travel of a cage. A load variation predictive operational means 22 predictively operates the maximum value of the variation portion of the load detecting signal 8a during travel by the load detecting signal 8a during stoppage of the cage and the preset maximum acceleration. Then, a compensating means 23 compensates the load detecting signal 8a according to a difference between output of the load variation detecting means 21 and that of the load variation predictive operational means 22, while a speed control operational means 24 generates a current command signal 10a by a speed command signal 9a and a speed signal 7a. With this constitution, even at a time when the load detecting signal 8a comes abnormal, any increase in a starting impact is preventable.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はエレベータ−の負荷検出器の異常を検出する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting an abnormality in a load detector of an elevator.

[従来の技術] 第5図及び第6図は、例えば特公昭62−15467号
公報に示された従来のエレベータ−の負荷検出装置を示
す図で、第5図は構成図、第6図は速度制御演算装置の
ブロック図である。
[Prior Art] Fig. 5 and Fig. 6 are diagrams showing a conventional elevator load detection device disclosed in, for example, Japanese Patent Publication No. 15467/1982, in which Fig. 5 is a block diagram and Fig. 6 is a diagram showing a conventional elevator load detection device. FIG. 2 is a block diagram of a speed control calculation device.

図中、(1)はエレベータ−駆動用の電動機、(2)は
電動機(1)に直結又は減速機(図示しない)を介して
結合された駆動綱車、(3)はそらせ車、(4)はかご
、(5)はつり合おもり、(6)は駆動綱車(2)及び
そらせ車(3)に巻き掛けられかご(4)及びつり合お
もり(5)を結合する主索、(7)は駆動綱車(2)に
より駆動され電動機(1)の回転速度に応じた周波数の
パルスからなる速度信号(7a)を発する速度検出器、
(8)はかと(4)内の荷重を検出しその荷重に対応す
る負荷検出信号(8a)を出力する負荷検出器、(9)
は速度指令信号(9a)を発する速度指令発生装置、(
10)は後述するようにマイクロコンピュータ(以下マ
イコンという)で構成され、速度指令信号(9a)、速
度信号(7a)及び負荷検出信号(8a)を入力して電
流指令信号(10a)を発する速度制御演算装置で、(
11)は加算器、(12)は演算増幅器、 (13)は
加算器、(14)は滑り周波数指令を電流指令に変換す
る滑り/電流変換器、(15)は電流指令信号(10a
)に応じた電力を電動機(1)に供給する電力変換装置
である。
In the figure, (1) is an electric motor for driving the elevator, (2) is a drive sheave connected directly to the electric motor (1) or via a reducer (not shown), (3) is a deflection sheave, and (4) ) is the car, (5) is the counterweight, (6) is the main rope that is wound around the driving sheave (2) and the deflection sheave (3) and connects the car (4) and the counterweight (5), (7) ) is a speed detector which is driven by the drive sheave (2) and emits a speed signal (7a) consisting of pulses with a frequency corresponding to the rotational speed of the electric motor (1);
(8) A load detector that detects the load in the heel (4) and outputs a load detection signal (8a) corresponding to the load; (9)
is a speed command generation device that emits a speed command signal (9a), (
10) is composed of a microcomputer (hereinafter referred to as microcomputer) as described later, and inputs a speed command signal (9a), a speed signal (7a), and a load detection signal (8a) and outputs a current command signal (10a). In the control calculation unit, (
11) is an adder, (12) is an operational amplifier, (13) is an adder, (14) is a slip/current converter that converts the slip frequency command into a current command, and (15) is a current command signal (10a
) is a power converter that supplies electric power to the electric motor (1).

従来のエレベータ−の負荷検出装置は上記のように構成
され、かご(4)内の荷重は負荷検出器(8)により検
出され、負荷検出信号(8a)が速度制御演算装置(1
0)へ送られる。速度制御演算装置(lO)では、速度
指令信号(9a)と速度信号(7a)を加算器(11)
で比較し、その偏差信号を演算増幅器(12)で増幅し
た後、加算器(13)で負荷検出信号(8a)を加算し
、滑り/電流変換器(14)で電流指令信号(10a)
に変換する。電流指令信号(10a)は電力変換装置(
15)へ送られ、電動機(1)に必要な電力が供給され
る。
A conventional elevator load detection device is configured as described above, the load in the car (4) is detected by the load detector (8), and the load detection signal (8a) is sent to the speed control calculation device (1).
0). In the speed control calculation device (lO), the speed command signal (9a) and the speed signal (7a) are added to the adder (11).
After amplifying the deviation signal with the operational amplifier (12), the adder (13) adds the load detection signal (8a), and the slip/current converter (14) adds the current command signal (10a).
Convert to The current command signal (10a) is transmitted from the power converter (
15), and the necessary power is supplied to the electric motor (1).

すなわち、起動時にかと(4)の重量とつり合おもり(
5)の重量との不平衡により発生する飛び出し又は逆走
、いわゆる起動衝撃を、負荷検出信号(8a)を制御系
に導入して、電動機(1)のトルクを補正することによ
り防いでいる。なお1本来負荷検出信号(8a)は、か
ご(4)とつり合おもり(5)がつり合う点を零とし、
更に所定の利得を乗じて加算器(13)に送られるが、
上記説明では簡略化のため省略した。
In other words, at startup, the weight of the heel (4) and the counterweight (
5) Jumping out or running backwards, so-called starting impact, caused by imbalance with the weight of item 5) is prevented by introducing a load detection signal (8a) into the control system and correcting the torque of the electric motor (1). Note that the load detection signal (8a) is originally set to zero at the point where the car (4) and the counterweight (5) are balanced.
It is further multiplied by a predetermined gain and sent to the adder (13).
This has been omitted in the above description for the sake of brevity.

[発明が解決しようとする課題] 上記のような従来のエレベータ−の負荷検出装置では、
負荷検出信号(8a)を速度制御演算袋!(10)へ入
力するようにしているため、負荷検出器(8)の故障等
により負荷検出信号(8a)が異常となると不正な補償
が行われることになり、起動衝撃を軽減させるどころか
、場合によっては起動衝撃を増加させてしまう可能性が
あるという問題点がある。これに対し、負荷検出信号(
8a)の取り得る値を限定することも考えられるが、限
定した範囲内では同様の問題点が生じる。
[Problem to be solved by the invention] In the conventional elevator load detection device as described above,
Speed control calculation bag for load detection signal (8a)! (10), if the load detection signal (8a) becomes abnormal due to a failure of the load detector (8), an incorrect compensation will be performed, and instead of reducing the startup shock, the Depending on the situation, there is a problem in that the starting impact may increase. In contrast, the load detection signal (
Although it is possible to limit the possible values of 8a), similar problems arise within the limited range.

この発明は上記問題点を解決するためになされたもので
、負荷検出信号が異常となったときでも、起動衝撃の増
大を防止できるようにしたエレベータ−の異常検出装置
を提供することを目的とする。
This invention was made in order to solve the above problems, and an object thereof is to provide an abnormality detection device for an elevator that can prevent an increase in starting shock even when a load detection signal becomes abnormal. do.

[課題を解決するための手段] この発明に係るエレベータ−の異常検出装置は、走行中
の負荷検出信号の変動分の最大値を検出し、停止中の負
荷検出信号とあらかじめ設定された最大加減速度とによ
り走行中の負荷検出信号の変動分の最大値を子側演算し
、実際の負荷変動分の最大値と予測の負荷変動分の最大
値の差に応じて、速度制御演算装置へ入力する負荷検出
信号を補正するようにしたものである。
[Means for Solving the Problems] An abnormality detection device for an elevator according to the present invention detects the maximum value of the variation of the load detection signal during running, and compares it with the load detection signal during stoppage by a preset maximum adjustment. The maximum value of the variation of the load detection signal during driving is calculated based on the speed, and input to the speed control calculation device according to the difference between the maximum value of the actual load variation and the predicted maximum value of the load variation. This system corrects the load detection signal.

[作 用] この発明においては、走行中に検出された実際の負荷変
動分の最大値と、予測された負荷変動分の最大値の差に
応じて負荷検出信号を補正するようにしたため。
[Function] In the present invention, the load detection signal is corrected according to the difference between the maximum value of the actual load fluctuation detected during driving and the maximum value of the predicted load fluctuation.

負荷検出信号が走行中に所定の変化をしなかったときを
異常と検出して負荷検出信号を補正する。
When the load detection signal does not make a predetermined change during driving, it is detected as an abnormality and the load detection signal is corrected.

[実施例] 第1図〜第3図はこの発明の一実施例を示す図で、第1
図は全体構成図、第2図は速度制御演算装置のブロック
図、第3図は負荷検出信号補正動作を示すフローチャー
トであり、従来装置と同様の部分は同一符号により示す
る。なお、第5図はこの実施例にも共用される。
[Example] Figures 1 to 3 are diagrams showing an example of the present invention.
2 is a block diagram of the speed control arithmetic device, and FIG. 3 is a flowchart showing the load detection signal correction operation. Portions similar to those of the conventional device are designated by the same reference numerals. Note that FIG. 5 is also used in this embodiment.

この実施例は第1図に示すように構成されている。This embodiment is constructed as shown in FIG.

図中、(21)は負荷検出信号(8a)を入力してかご
(4)の走行中の負荷検出信号(8a)の変動分の最大
値を検出する負荷変動検出手段、(22)はかご(4)
の停止中の負荷検出信号(8a)とあらかじめ設定され
た最大加減速度とにより走行中の負荷検出信号(8a)
の変動分の最大値を予測演算する負荷変動予測演算手段
、(23)は負荷変動検出手段(21)の出力と負荷変
動予測演算手段(22)の出力の差に応じて負荷検出信
号(8a)を補正する補正手段、 (24)は既述のと
おり速度指令信号(9a)と速度信号(7a)により電
流指令信号(10a)を発する速度制御演算手段である
In the figure, (21) is a load fluctuation detection means that inputs the load detection signal (8a) and detects the maximum value of the fluctuation of the load detection signal (8a) while the car (4) is running; (4)
The load detection signal (8a) while running is based on the load detection signal (8a) while stopped and the preset maximum acceleration/deceleration.
The load fluctuation prediction calculation means (23) predicts and calculates the maximum value of the fluctuation of the load fluctuation prediction calculation means (23), which outputs the load detection signal (8a) according to the difference between the output of the load fluctuation detection means (21) and the output of the load fluctuation prediction calculation means (22). ), and (24) is a speed control calculation means that generates a current command signal (10a) based on the speed command signal (9a) and the speed signal (7a), as described above.

第2図中、 (10)はマイコンで構成された速度制御
演算装置で、 CP U (IOA)、ROM(IOB
)、 RAM(IOC)。
In Figure 2, (10) is a speed control calculation unit composed of a microcomputer, which includes CPU (IOA), ROM (IOB
), RAM (IOC).

D/A(ディジタル/アナログ)変換器(100)、カ
ウンタ(IOE)、A/D(アナログ/ディジタル)変
換器(IOF)及びI/F(インタフェース)(IOC
)を有しており。
D/A (digital/analog) converter (100), counter (IOE), A/D (analog/digital) converter (IOF) and I/F (interface) (IOC
).

D/A変換器(100)は電力変換袋!(15)に、カ
ウンタ(10[E)は速度検出器(7)に、AID変換
器(IOF)は負荷検出器(8)に、I/F(LOG)
は速度指令発生装置(9)にそれぞれ接続されている。
The D/A converter (100) is a power conversion bag! (15), the counter (10[E) is connected to the speed detector (7), the AID converter (IOF) is connected to the load detector (8), and the I/F (LOG)
are respectively connected to a speed command generator (9).

さて、かご(4)が静止状態では負荷検出信号(8a)
は。
Now, when the car (4) is stationary, the load detection signal (8a)
teeth.

V8a= k−W [V] ここに、V8a:負荷検出信号[V] W:かご(4)内の荷重[kgl k:重量[kglを電圧[、V]に変換する利得となる
。このときの不平衡荷重補償値τは、2  1d−kg 二二に、 D=駆動綱車(2)の直径[m1kQ:主索
(6)のロービング系数で。
V8a=k-W [V] Here, V8a: Load detection signal [V] W: Load [kgl] in the car (4) k: Weight [kgl is a gain for converting into voltage [, V]. The unbalanced load compensation value τ at this time is 2 1d-kg.

1:10−ピングのとき社=1. 2:10−ピングのとき一=2 kg=減速比 Wb:つり合おもり(5)とつり合う点のかと(4)内
荷重[kg] となる。
1:10-Ping no Tokisha=1. 2: When 10-ping, 1 = 2 kg = Reduction ratio Wb: Internal load [kg] at the heel (4) at the point of balance with the counterweight (5).

かご(4)の走行中は、重力加速度g[m/S21が作
用するため、一定速走行中であれば、 N=WX9.8  [kg墓/S2] となる。ここで、αは加減速度[m/S2]である。
While the car (4) is running, gravitational acceleration g [m/S21 is applied, so if the car is running at a constant speed, N=WX9.8 [kg/S2]. Here, α is acceleration/deceleration [m/S2].

その結果、走行中の負荷検出信号(8a)をWlとする
と、 となる。
As a result, if the load detection signal (8a) during running is Wl, then the following equation is obtained.

まず、ステップ(31)でかと(4)が走行中かどうか
を判定し、走行中であれば、ステップ(31)〜(34
)で走行中の負荷検出信号(8a)の変動分Aの絶対値
の最大値Amaxを設定する負荷変動検出動作が行われ
る。すなわち、ステップ(32)で負荷検出信号(8a
)の変動分の結分の絶対値Aが最大値A■axを越えた
かを判定し、越えればステップ(34)で変動分の絶対
値Aを最大値Amaxに設定する。最大値Amax以下
であれば、ステップ(39)へ飛ぶ。
First, in step (31) it is determined whether or not the heel (4) is running, and if it is, steps (31) to (34)
), a load fluctuation detection operation is performed to set the maximum value Amax of the absolute value of the fluctuation amount A of the load detection signal (8a) during running. That is, in step (32) the load detection signal (8a
It is determined whether the absolute value A of the fluctuation component of ) exceeds the maximum value A.sub.ax, and if it exceeds the absolute value A of the fluctuation component, the absolute value A of the fluctuation component is set to the maximum value Amax in step (34). If it is less than the maximum value Amax, the process jumps to step (39).

ステップ(31)で停止中と判定されると、ステップ(
35)へ進み、負荷変動演算動作が行われ、所定値Bが
算出される。所定値Bは0式を基にして。
If it is determined in step (31) that it is stopped, step (
The process proceeds to step 35), where a load fluctuation calculation operation is performed and a predetermined value B is calculated. The predetermined value B is based on formula 0.

で求められる。ここで、βは誤検出を防ぐための余裕値
である。ステップ(36)で走行中に設定された最大値
A閣aXと所定値Bを比較する。
is required. Here, β is a margin value to prevent false detection. In step (36), the maximum value A, aX set while the vehicle is running, and a predetermined value B are compared.

そして、ステップ(37) (3g)で補正動作が行お
れる。
Then, the correction operation is performed in step (37) (3g).

すなわち、ステップ(36)でAmax<Bと判定され
ると。
That is, if it is determined in step (36) that Amax<B.

これは予測された変動がなかったことを意味し、異常を
表しているので、ステップ(37)で不平衡荷重信号C
を強制的にwbに設定する。また、 Amax≧Bと判
定されると、これは予測された変動があったことを意味
し、正常を表しているので、ステップ(38)でw−w
bを不平衡荷重信号Cとして設定する。そして、ステッ
プ(39)で不平衡荷重信号Cを用いて速度制御演算を
行い。
This means that there was no predicted variation and represents an abnormality, so in step (37) the unbalanced load signal C
Forcibly set to wb. Also, if it is determined that Amax≧B, this means that there was a predicted fluctuation, and it represents normality, so in step (38)
b is set as the unbalanced load signal C. Then, in step (39), speed control calculation is performed using the unbalanced load signal C.

ステップ(40)で電流指令信号(10a)を出力する
In step (40), a current command signal (10a) is output.

第4図はこの発明の他の実施例を示す負荷検出信号補正
動作を示すフローチャートで、負荷検出器(8)が2個
設置された場合のものである。
FIG. 4 is a flowchart showing a load detection signal correction operation according to another embodiment of the present invention, in which two load detectors (8) are installed.

2個の負荷検出器(8)の出力をそれぞれW、いWl。The outputs of the two load detectors (8) are W and Wl, respectively.

とすると、静止中の負荷検出信号(8a)はW= −(
W、工+Wユ2) となる。この値を基に、走行中の負荷検出信号(8a)
を求めると、上記のように、 となる。
Then, the load detection signal (8a) while stationary is W = −(
W, Eng + W Yu2). Based on this value, the load detection signal (8a) during driving is
When we find , we get , as shown above.

今、2個の負荷検出器(8)の内1個が故障して一定値
を保ったとすると、走行中に検出される負荷検出信号(
8a)は。
Now, if one of the two load detectors (8) fails and maintains a constant value, the load detection signal (
8a).

2       9.8    2 となる。つまり、加減速度による変動分が本来の1/2
になる。
2 9.8 2 . In other words, the variation due to acceleration/deceleration is 1/2 of the original value.
become.

■式と0式から。■From formula and 0 formula.

w、2= 2 W−W、。w, 2 = 2 W-W,.

9.8 として、正しい方の値W11を求めることができるため
、この場合、負荷検出信号(8a)を2W、□とすれば
、1個が故障していても、正しい補償が行える。
9.8, the correct value W11 can be found, so in this case, if the load detection signal (8a) is set to 2W, □, correct compensation can be performed even if one is out of order.

そこで、ステップ(41)で1個が正常かどうかを判断
し、正常の場合、すなわち走行中の変動分が本来の1/
2であったとき、ステップ(42)で上記により2W□
1を求め、不平衡荷重信号Cを設定する。2個共異常と
判断されたときは、ステップ(37)で第3図と同様に
不平衡荷重信号Cを強制的にwbに設定する。
Therefore, in step (41), it is determined whether one of them is normal or not.
2, in step (42), 2W□
1 and set the unbalanced load signal C. When it is determined that both of them are abnormal, in step (37), the unbalanced load signal C is forcibly set to wb as in FIG. 3.

上記各実施例では、負荷検出器(8)が1個又は2個の
場合について説明したが、それ以上設置された場合にも
適用可能である。
In each of the above embodiments, the case where one or two load detectors (8) are installed has been described, but it is also applicable to the case where more than one load detector (8) is installed.

[発明の効果] 以上説明したとおりこの発明では、走行中に検出された
実際の負荷変動分の最大値と、予測された負荷変動分の
最大値の差に応じて負荷検出信号を補正するようにした
ので、負荷検出信号が異常となったときでも。
[Effects of the Invention] As explained above, in this invention, the load detection signal is corrected according to the difference between the maximum value of the actual load fluctuation detected during driving and the maximum value of the predicted load fluctuation. , even when the load detection signal becomes abnormal.

起動衝撃の増大を防止することができ、安心かつ乗心地
の良いエレベータ−とすることができる効果がある。
This has the effect of being able to prevent an increase in starting shock and providing an elevator with a safe and comfortable ride.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明にエレベータ−の異常検出装
置の一実施例を示す図で、第1図は全体構成図。 第2図は速度制御演算装置のブロック図、第3図は負荷
検出信号補正動作を示すフローチャート、第4図はこの
発明の他の実施例を示す負荷検出信号補正動作を示すフ
ローチャート、第5図はこの発明及び従来のエレベータ
−の負荷検出装置を示す構成図、第6図は従来のエレベ
ータ−の負荷検出信号の速度制御演算装置のブロック図
である。 図中、(4)はかご、(8)は負荷検出器、(8a)は
負荷検出信号、(10)は速度制御演算装置、(21)
は負荷変動検出手段、(22)は負荷変動予測演算手段
、(23)は補正手段である。 なお、図中同一符号は同−又は相当部分を示す。
1 to 3 are diagrams showing an embodiment of an elevator abnormality detection device according to the present invention, and FIG. 1 is an overall configuration diagram. FIG. 2 is a block diagram of the speed control calculation device, FIG. 3 is a flowchart showing load detection signal correction operation, FIG. 4 is a flowchart showing load detection signal correction operation showing another embodiment of the present invention, and FIG. 6 is a block diagram showing the structure of the present invention and a conventional elevator load detection device, and FIG. 6 is a block diagram of a conventional elevator load detection signal speed control calculation device. In the figure, (4) is the cage, (8) is the load detector, (8a) is the load detection signal, (10) is the speed control calculation device, (21)
(22) is a load fluctuation prediction calculation means, and (23) is a correction means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] かご内荷重を検出する負荷検出器を設置し、この負荷検
出器から出力される負荷検出信号を、上記かごの速度を
制御する速度制御演算装置へ入力するようにしたエレベ
ーターにおいて、上記かごの走行中の上記負荷検出信号
の変動分の最大値を検出する負荷変動検出手段と、上記
かごの停止中の上記負荷検出信号とあらかじめ設定され
た最大加減速度とにより上記かごの走行中の上記負荷検
出信号変動分の最大値を予測演算する負荷変動予測演算
手段と、上記負荷変動検出手段の出力と上記負荷変動予
測演算手段の出力の差に応じて上記負荷検出信号を補正
する補正手段とを備えたことを特徴とするエレベーター
の異常検出装置。
In an elevator, a load detector is installed to detect the load inside the car, and a load detection signal outputted from the load detector is inputted to a speed control calculation device that controls the speed of the car. load fluctuation detection means for detecting the maximum value of the variation of the load detection signal during the car's operation; and load fluctuation detection means for detecting the load while the car is running based on the load detection signal while the car is stopped and a preset maximum acceleration/deceleration. Load fluctuation prediction calculation means for predicting and calculating the maximum value of the signal fluctuation, and correction means for correcting the load detection signal according to the difference between the output of the load fluctuation detection means and the output of the load fluctuation prediction calculation means. An elevator abnormality detection device characterized by:
JP14626988A 1988-06-14 1988-06-14 Malfunction detector for elevator Pending JPH01313285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14626988A JPH01313285A (en) 1988-06-14 1988-06-14 Malfunction detector for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14626988A JPH01313285A (en) 1988-06-14 1988-06-14 Malfunction detector for elevator

Publications (1)

Publication Number Publication Date
JPH01313285A true JPH01313285A (en) 1989-12-18

Family

ID=15403917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14626988A Pending JPH01313285A (en) 1988-06-14 1988-06-14 Malfunction detector for elevator

Country Status (1)

Country Link
JP (1) JPH01313285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441127A (en) * 1990-06-11 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
CN108423506A (en) * 2018-03-09 2018-08-21 日立电梯(中国)有限公司 Elevator weighing apparatus detection method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441127A (en) * 1990-06-11 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
CN108423506A (en) * 2018-03-09 2018-08-21 日立电梯(中国)有限公司 Elevator weighing apparatus detection method and system

Similar Documents

Publication Publication Date Title
JP2007217101A (en) Start compensating device of elevator
EP0306922B1 (en) Control system for controlling revolution speed of electric motor
JPH01313285A (en) Malfunction detector for elevator
JPS6356187A (en) Speed control unit of induction motor
JP4731922B2 (en) Elevator control device
KR970006584B1 (en) Elevator controller
JPH0733342A (en) Control device for elevator
JP3255552B2 (en) Elevator control device
JPH0769557A (en) Elevator speed control device
JP4208317B2 (en) Elevator load calculation device
JP3908323B2 (en) Elevator speed control device
KR101402395B1 (en) Elevator control device
JPH11209011A (en) Controlling device for elevator
JPH1081452A (en) Control device of elevator
JP2007238231A (en) Elevator control device
JP2735365B2 (en) Elevator control device
JP3304438B2 (en) Elevator speed control
JPS58110110A (en) Controlling device for drive of rolling mill
JPH07125945A (en) Control device for elevator
JPH0592874A (en) Elevator control device
JP3153604B2 (en) Elevator control device
JPH0351275A (en) Elevator controller
JP2001122536A (en) Control device for elevator
JPS6215467B2 (en)
JPH0326673A (en) Elevator control device