JPH01312551A - Phthalocyanine dispersion electrophotographic sensitive body - Google Patents

Phthalocyanine dispersion electrophotographic sensitive body

Info

Publication number
JPH01312551A
JPH01312551A JP14360488A JP14360488A JPH01312551A JP H01312551 A JPH01312551 A JP H01312551A JP 14360488 A JP14360488 A JP 14360488A JP 14360488 A JP14360488 A JP 14360488A JP H01312551 A JPH01312551 A JP H01312551A
Authority
JP
Japan
Prior art keywords
particle size
phthalocyanine
degrees
layer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14360488A
Other languages
Japanese (ja)
Other versions
JP2656796B2 (en
Inventor
Fumitaka Yasujima
安嶋 章隆
Yasuo Izome
靖夫 井染
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14360488A priority Critical patent/JP2656796B2/en
Publication of JPH01312551A publication Critical patent/JPH01312551A/en
Application granted granted Critical
Publication of JP2656796B2 publication Critical patent/JP2656796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve the sensitivity in the luminescent wavelength of a semiconductor laser and to environment characteristic of an image quality by specifying the mean particle size of a chlorinated aluminium phthalocyanine having a specified crystal structure as a charge generating agent to a specified range. CONSTITUTION:In a laminated type photosensitive body which mainly liminates a charge generating layer and a charge transfer layer on a conductive substrate plate, the charge generating agent is composed of the chlorinated aluminium phthalocyanine shown by the formula AlClxPcCly wherein the degree of chlori nation x+y=1.0-2.0, Pc is a phthalocyanine ring. The sensitive body has strong diffraction peaks at Bragg angles (2theta+ or -0.2) of 6.7 deg., 11.2 deg., 16.7 deg. and 25.6 deg. in a X-ray diffraction spectral, and a max. absorption of 750-850nm in a transmission absorption spectra and a mean particle size of 0.05-0.03mum. Thus, the sensitive body has the high sensitivity at the luminescent wavelength of the semiconductor laser, and the environment characteristic of the image performance mainly consisting of an electric performance and a fog is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子写真用感光体に関し、詳しくは半導体レ
ーデ波長までの感光性を有する、塩素化アルミニクムフ
タロシアニンをキャリア発生剤トして含む層を有する電
子写真用感光体に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a photoreceptor for electrophotography, and more specifically, the present invention relates to a photoreceptor for electrophotography, and more specifically, it contains a chlorinated aluminum phthalocyanine having photosensitivity up to the semiconductor Rede wavelength as a carrier generator. The present invention relates to an electrophotographic photoreceptor having a layer.

〈従来の技術〉 従来、電子写真用感光体は、複写機用途として白色光に
感度を持つ感光体が実用化され、最近、半導体レーデ−
の波長領域で感度を持つ、感光体が開発され、半導体レ
ーザープリンタ及びLED(発光ダイオード)プリンタ
ー等の元プリンター用途として実用化されてきた。
<Prior art> Conventionally, photoreceptors for electrophotography have been put into practical use as photoreceptors sensitive to white light for use in copying machines, and recently semiconductor radar
A photoreceptor has been developed that is sensitive in the wavelength region of 200 nm, and has been put into practical use as a base printer such as semiconductor laser printers and LED (light emitting diode) printers.

また、感光体自身も、従来のようなSe系合金を使う無
機系のものから、有機系の材料を使用し巾広い材料設計
が出来るという特徴を生かした、積層型の機能分離型構
造をもつ、高性能な有機系感光体が実用化に供されつつ
ある。半導体レーデ−プリンター等の光プリンター用途
の感光体として、要求される性能としては、当然、レー
ず一元の波長で感度を持つ事のみならず、複写機用途と
異なる敦求性能がある。
In addition, the photoreceptor itself has a layered, functionally separated structure that allows for a wide range of material designs, from the conventional inorganic type using Se-based alloys to organic materials. , high-performance organic photoreceptors are being put into practical use. As a photoreceptor for use in optical printers such as semiconductor radar printers, the required performance is, of course, not only sensitivity at the wavelength of the laser beam, but also different performance from copying machine use.

それは、複写機と元プリンターでは、採用される現像方
式が異なるため、それに伴い感光体で解決すべき課題が
出てくるためである。一般に、複写機では、いわゆる、
正転現像方式、即ち、感光体表面に電荷が存在する部分
、いいかえれば、表面電位の高い部分に、現像剤として
のトナーが、付着する方式である。これは、露光方式と
の関連で、原稿の白い部分からは、光が反射され、感光
体に露光されるため、感光体の表面電位が下がり反対に
字の部分では光が吸収され、感光体に露光されないため
、表面電位が下がらないためである。
This is because copying machines and original printers use different developing methods, which creates problems that need to be solved with the photoreceptor. In general, copying machines use the so-called
This is a normal rotation development method, that is, a method in which toner as a developer adheres to portions of the photoreceptor surface where charges exist, in other words, portions with high surface potential. This is related to the exposure method, as light is reflected from the white part of the document and exposed to the photoconductor, which lowers the surface potential of the photoconductor and conversely, the light is absorbed in the text area, causing the photoconductor to absorb light. This is because the surface potential does not drop because it is not exposed to light.

それに比べて、光プリンターの場合は、一般的に反転現
像方式が採用されている。即ち、反転現像方式は、光に
よって露光され、感光体の表面の電荷が消去された部分
、いいかえれば、表面電位の低い部分に、現像剤として
のトナーを付着させる方式である。これは、光プリンタ
ーの場合、原稿は存在せず、電気信号としての情報を光
に変換して1g!元するためであり、一般的に字に相当
する部分で光源を発光させる、反転露光方式である。
In contrast, optical printers generally use a reversal development method. That is, the reversal development method is a method in which toner as a developer is attached to a portion of the surface of the photoreceptor that has been exposed to light and whose charge has been erased, in other words, a portion of low surface potential. In the case of an optical printer, there is no original document, and the information in the form of electrical signals is converted into light, and 1g! This is to create an original image, and it is generally a reversal exposure method in which a light source emits light in the area corresponding to the characters.

そのため、反転現像方式では、正転現像方式に比べ、電
位の低い部分にトナーが付着するため、白ベタ地の黒点
、及びカブリという画像欠陥が一般的に顕著に発生しや
すく、この画像欠陥を改善する事が一つの大きな課題と
なっている。
Therefore, in the reversal development method, compared to the normal development method, the toner adheres to areas with a lower potential, so image defects such as black spots on solid white backgrounds and fog are generally more likely to occur. One of the major challenges is to improve it.

即ち、未露光の感光体表面で局所的に表面電位が低い部
分があるという感光体の欠陥は、反転現像方式の場合、
トナーの付着及び定着による溶融により印字紙上での面
積の拡大となシ、白ベタ地の黒点、カブリとして増巾さ
れる。一方、複写機の場合は、正転現像方式のため、こ
の感光体の同じ欠陥は、黒ベタ地の白点となるが、定着
時に白点のまわりのトナーが浴融して、面積が拡大され
るため印字紙上では、白点の面積が減少し、目立たなく
なるという減衰効果となる。このため、この印字時の画
像欠陥を皆無とするため、プリンター装置自身の電子写
真としての設定条件からの改善及び感光体そのものから
の改善の2つが行われているのが現状である。
In other words, defects in the photoreceptor where there are locally low surface potential areas on the unexposed photoreceptor surface are caused by the reversal development method.
As the toner adheres and melts due to fixation, the area on the printing paper expands, and the toner becomes thicker as black dots and fog on a solid white background. On the other hand, in the case of copying machines, the same defect on the photoreceptor becomes a white spot on a solid black background because the normal rotation development method is used, but during fixing, the toner around the white spot melts in the bath and the area expands. Therefore, on the printed paper, the area of the white dot decreases and becomes less noticeable, resulting in a damping effect. Therefore, in order to completely eliminate image defects during printing, two improvements are being made: one is to improve the electrophotographic settings of the printer device itself, and the other is to improve the photoreceptor itself.

感光体からの改善として、従来、色々試みられており、
特に積層構成及び組材の検討が2こなわれている。例え
は、感光体の構成として機能分離型積層構成の場合、基
本的には、電極としてのAlドラムの上に、 光により
電荷を発生する電荷発生層とその発生した電荷を移動さ
せる電荷移動層の二層構成でよいわけであるが、実際に
は、別の層を付加している。
Various attempts have been made to improve the photoreceptor,
In particular, two studies have been conducted on the laminated structure and assembly materials. For example, in the case of a functionally separated laminated structure as the structure of the photoreceptor, basically, on an Al drum as an electrode, there is a charge generation layer that generates charges by light and a charge transfer layer that moves the generated charges. Although a two-layer structure is sufficient, in reality, another layer is added.

例えば、Alドラムの上に下地層としである抵抗を持っ
た10〜20μmの膜厚の導電層を設け、その上に、電
極からの電荷の注入を阻止するためのバリア層を設け、
その上に上記の電荷発生1−1電荷移動層を設ける41
−構成の例。または、下地層を省略し、バリアI−1電
荷発生層、電荷輸送層を設ける3 1f4構成がとられ
ている。
For example, a conductive layer with a thickness of 10 to 20 μm with a certain resistance is provided as an underlayer on an Al drum, and a barrier layer is provided on top of the conductive layer to prevent charge injection from the electrode.
The above charge generation 1-1 charge transfer layer is provided thereon41
- Examples of configurations. Alternatively, a 31f4 structure is adopted in which the underlayer is omitted and a barrier I-1 charge generation layer and a charge transport layer are provided.

即ち、その欠陥の原因をそれぞれ想定して、Alドラム
、又電荷発生層、又は電荷移動層の改善、及び、他の層
の付加による対策を行っているのが現状である。
That is, the current situation is to assume the cause of each defect and take countermeasures by improving the Al drum, charge generation layer, or charge transfer layer, or adding other layers.

更に、課題として重要なのは、このような画像欠陥が通
常の常温、當湿という環境で解決されているのみならず
、低温低湿(例えば10℃、25%)及び高温高湿(例
えば65℃、80%〕という環境下においても問題とな
らないかという事である。更にその基本となる電気性能
の環境特性も問題とならないかという事である。何故な
らば、電荷発生層、及び電荷移動層の2層からなる場合
その2層の環境に対する電気特性を最適化するように、
膜厚・組成を設計すれば良いが、画像欠陥改善を一つの
目的として、バリア層の付加による3層構成、更に下地
層を付加した4層構成とした場合、新たにそれらの層の
環境特性も含めて考慮する必要があり、白ベタ地の黒点
、及びカブリ等の画像欠陥の皆無化と環境特性の最適化
を同時に満足する事が非常に困難であるのが現状である
Furthermore, what is important as an issue is that these image defects are not only solved under normal temperature and humidity environments, but also in low temperature, low humidity (e.g. 10°C, 25%) and high temperature and high humidity (e.g. 65°C, 80°C) environments. %].A further question is whether the environmental characteristics of the electrical performance, which is the basis of the electric performance, will be a problem.This is because the charge generation layer and the charge transport layer are In the case of two layers, in order to optimize the electrical characteristics for the environment of the two layers,
All you need to do is design the film thickness and composition, but if you create a 3-layer structure by adding a barrier layer and a 4-layer structure by adding a base layer for the purpose of improving image defects, you will need to design the environmental characteristics of those layers. At present, it is extremely difficult to eliminate image defects such as black spots on a solid white background and fog, and to optimize environmental characteristics at the same time.

〈発明が解決しようとする課題〉 本発明は、主として半導体し・−ず−の発光波長で高感
度であり、電気性能及び反転現像時の白ベタ印字での黒
点、カブリ等の画像性能の環境特性が良好な電子写真感
光体が得られないという問題点を解決しようとするもの
である。
<Problems to be Solved by the Invention> The present invention has high sensitivity mainly at the emission wavelength of semiconductor chips, and has improved electrical performance and image performance environments such as black spots and fog in solid white printing during reversal development. This is an attempt to solve the problem that an electrophotographic photoreceptor with good characteristics cannot be obtained.

我々は、特定の結晶構造をもった塩素化アルミニクムフ
タロシアニンを使用する事により、半導体レーデ−の発
光波長で高感度な電子写真感光体を得る事は出来るので
あるが、実際、電気性能、及び画像性能の環境特性が非
常に大きくバラ付きその特性がなかなか一定しないのが
実状であった。
By using chlorinated aluminum phthalocyanine with a specific crystal structure, we can obtain an electrophotographic photoreceptor with high sensitivity at the emission wavelength of semiconductor radar, but in reality, the electrical performance and The reality is that the environmental characteristics of image performance vary widely and are difficult to maintain.

そのため、実用性のある電子写真用感光体として供する
には、この特性のバラ付き要因を特定し、その要因を制
御する事が解決すべき問題点であった。
Therefore, in order to provide a practical electrophotographic photoreceptor, it is a problem that must be solved by identifying the factors that cause variations in these characteristics and controlling those factors.

く課題を解決するための手段〉 本発明者らは、上記の欠点を改良するため、鋭意検討し
た結果、電荷発生剤として特定の結晶構造を持った塩素
化アルミニウムフタロシアニンの平均粒径を特定の範曲
とする事によシ、再現性の良い電子写真感光体を得られ
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems> In order to improve the above-mentioned drawbacks, the present inventors have made intensive studies and determined that the average particle size of chlorinated aluminum phthalocyanine having a specific crystal structure as a charge generating agent is It was discovered that an electrophotographic photoreceptor with good reproducibility could be obtained by using a standard pattern, and the present invention was completed.

即ち、本発明は、 導電性基板上に電荷発生層および電荷移動層を主として
積層した積層型電子写真用感光体において、電荷発生剤
が塩素化アルミニクムフタロシア二y (AJ(JxP
cCjy (塩素化度:X+Y=1.0〜2.0.Pc
:フタロシアニン環)〕でa)  X線回折スペクトル
においてブラッグ角(2θ±0.2度)が、6.7度、
11.2度、16.7度、25.6度に強い回折ピーク
を有しb)透過吸収スペクトルにおいて750 nmか
ら850市の間に極大吸収を有し、 C)平均粒径が0.05μm −0,03μm以下であ
る事を特徴とする電子写真用感光体である。
That is, the present invention provides a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are mainly laminated on a conductive substrate, wherein the charge generation agent is chlorinated aluminum phthalocyanide (AJ (JxP)).
cCjy (degree of chlorination: X+Y=1.0-2.0.Pc
:phthalocyanine ring)] and the Bragg angle (2θ±0.2 degrees) is 6.7 degrees in the X-ray diffraction spectrum.
It has strong diffraction peaks at 11.2 degrees, 16.7 degrees, and 25.6 degrees, b) It has a maximum absorption between 750 nm and 850 nm in the transmission absorption spectrum, and C) The average particle size is 0.05 μm. This is an electrophotographic photoreceptor characterized by having a particle size of −0.03 μm or less.

本発明に用いられる塩素化アルミニウムフタロシアニン
は、フタロジニトリ化と塩化アルミニウムを無済媒で加
熱下に縮合反応を起こさせることによシ、容易に合成さ
れる。これにょシ得られた塩素化アルミニウム7タロシ
アニンは、有機浴剤及び水によシ洗浄をくり返し、不純
物を除去し、更に昇華精製による微量不純物の除去を行
う事による純度の高いものが得られる。
The chlorinated aluminum phthalocyanine used in the present invention can be easily synthesized by causing a condensation reaction of phthalodinitrification and aluminum chloride under heating in a solvent-free medium. The obtained chlorinated aluminum 7-talocyanine is repeatedly washed with an organic bath agent and water to remove impurities, and further, trace impurities are removed by sublimation purification to obtain a highly pure product.

本発明における、塩素化アルミニクム7タロシアニンを
電子写真用感光体の電荷発生層として使用するには、昇
華精製された塩素化アルミニクムフタロシアニンを特定
の水分j1を含有する有機溶媒と一緒に湿式粉砕・分散
処理をし、結晶型を変化させ粒径を制御する事によシ得
られる。
In order to use the chlorinated aluminum 7-thalocyanine as a charge generation layer of an electrophotographic photoreceptor in the present invention, the sublimation-purified chlorinated aluminum phthalocyanine is wet-pulverized with an organic solvent containing a specific water content j1. It can be obtained by performing dispersion treatment to change the crystal type and control the particle size.

ここで用いられる有機溶媒は、塩素化アルミニウムフタ
ロシアニンに対して親和性はあるが、溶解度かあ″!!
シ高くない溶媒、例えばトルエン、キシvン、酢酸:r
−fル、ジクロルメタン、クロロホルム、クロルブロム
メタン、ニトロエタン等カ良く溶解度が高いメタノール
、エタノール、テトロヒドロフラン等は、塩素化アルミ
ニクム7タロシアニンが溶解し、有効な結晶型とならな
いため好ましくない。さらに、有機溶媒中に溶解した状
態で含ませる水分量は、7タロシアニン1分子に対し水
が2分子以上となる様に調整する必要がある。
The organic solvent used here has an affinity for chlorinated aluminum phthalocyanine, but its solubility is limited.
Solvents that are not expensive, such as toluene, oxygen, acetic acid: r
Methanol, ethanol, tetrahydrofuran, etc., which are strong and have high solubility, such as -fl, dichloromethane, chloroform, chlorobromomethane, and nitroethane, are not preferred because they dissolve the chlorinated aluminum 7-talocyanine and do not form an effective crystal form. Furthermore, the amount of water contained in the dissolved state in the organic solvent needs to be adjusted so that there are two or more molecules of water per one molecule of 7-thalocyanine.

このような水分を営んだ有機溶媒と一緒に、塩素化アル
ミニクムフタロシアニンを湿式粉砕分散処理を行うと、
その結晶型は、X線回折図で見ると第1図の(b)に示
すように、2θ±0.2度が6.7度、11.2度、1
6.7度、25.6度に強い回折t−りが見られるもの
となっている。昇華精製後の7タロシアニンの結晶型の
XIIA回折図は第1図の(a)に示すように20±0
.2度が27.0度に強い回折ぎ−りが見られるもので
あるため、湿式粉砕分散処理の過程で、粒径が小さくな
ると同時に、結晶屋の変化が起こっていることがわかる
。また、その透過吸収スペクトルも、第2図に示すよう
に昇華精製したのみで、処理を施さない場合に比べ特定
め水分Jlを含有させた有機溶媒と一緒に湿式粉砕分散
処理をすると長波長側(750nm〜850nmの間)
に極大吸収はシフトする。そのため、半導体レーザーの
発光波長領域(770nm〜830 nm )  で、
非常に高感度な電子写真感光体の電荷発生剤となる、 後で述べるやシ方に従い、これによって得られた電荷発
生剤を使って電荷発生層を形成し、電子写真感光体を作
製すると、前で述べた様に非常に高い感度を示すが、電
気性能、画像性能の特に環境特性が一定せず、良好なも
のも得られるが再現性に問題が残った。
When chlorinated aluminum phthalocyanine is wet-pulverized and dispersed with an organic solvent containing water,
As shown in Figure 1 (b), the crystal form of the crystal type is 6.7 degrees, 11.2 degrees, 1
Strong diffraction angles are seen at 6.7 degrees and 25.6 degrees. The XIIA diffraction pattern of the crystal form of 7-thalocyanine after sublimation purification is 20±0 as shown in Figure 1(a).
.. Since a strong diffraction angle is seen at 27.0 degrees, it can be seen that the grain size becomes smaller and the crystallization density changes during the wet grinding and dispersion process. In addition, as shown in Figure 2, the transmission absorption spectrum is also on the longer wavelength side when subjected to wet grinding and dispersion treatment together with an organic solvent containing specific water Jl, compared to when no treatment is performed with only sublimation purification. (between 750nm and 850nm)
The maximum absorption shifts to . Therefore, in the emission wavelength range of semiconductor lasers (770 nm to 830 nm),
This becomes a charge generating agent for an extremely sensitive electrophotographic photoreceptor.As will be described later, the charge generating agent thus obtained is used to form a charge generation layer to produce an electrophotographic photoreceptor. As mentioned above, it shows very high sensitivity, but the electrical performance and image performance, especially the environmental characteristics, are not constant, and although good results can be obtained, problems with reproducibility remain.

そのため、電子写真感光体の/?!r層の組成、膜厚積
層構造の構成等を檀々検討した結果、電荷発生層を形成
する塩素化アルミニクムフタロシアニンの平均粒径が、
電気性能及び黒点、カブリ等の画像性能の環境特性に大
きく影響を与える事を見い出した。即ち、分散機及び分
散条件を変えて種々の平均粒度を持った、電荷発生剤を
作成し、性能との相関を評価した所、平均粒径が小さく
なるに従って、常温常湿での暗減衰率が小さくなり、ま
たカブリが減少する事、筐た低温低湿(例えば10°C
160%)及び高温高湿(例えば65°0180%)に
した時の常温常湿に比べての電気性能の変化が少なくな
る事、またそれらの環境におけるカブリの発生が少ない
事が明確となった。特にフタロシアニンの粒径が太ぎい
場合、高温高湿での暗減衰率が大きく、そのため、無露
光時の表面電位■0も常温に比べ、大きく低下し、その
ため、白ベタ時のカブリも大きいことである。このよう
な事から、塩素化アルミニウム7タロシアニンの平均粒
径が0.05μm以下である事が良好な性能を得るには
望ましい。このような粒径を得るためには、粉砕分散能
力の高い分散機の選定分散時間の最適化によシ、実現し
うる。
Therefore, the electrophotographic photoreceptor /? ! As a result of careful consideration of the composition of the r layer, the structure of the layered structure, etc., the average particle size of the chlorinated aluminum phthalocyanine forming the charge generation layer was found to be
It has been found that environmental characteristics such as electrical performance and image performance such as sunspots and fog are greatly affected. In other words, charge generating agents with various average particle sizes were created by changing the dispersion machine and dispersion conditions, and the correlation with performance was evaluated. As the average particle size became smaller, the dark decay rate at room temperature and humidity decreased. The temperature and humidity of the casing (e.g. 10°C
It has become clear that there is less change in electrical performance when exposed to high temperature (160%) and high temperature and high humidity (e.g. 65°0180%) compared to normal temperature and humidity, and that there is less fogging in these environments. . In particular, when the particle size of phthalocyanine is large, the dark decay rate is large at high temperature and high humidity, and as a result, the surface potential (■0) when not exposed to light is significantly lower than at room temperature, and as a result, the fog when solid white is also large. It is. For this reason, it is desirable that the average particle size of the chlorinated aluminum 7-talocyanine be 0.05 μm or less in order to obtain good performance. Obtaining such a particle size can be achieved by selecting a disperser with high crushing and dispersing ability and optimizing the dispersion time.

また、平均粒径の小さい方の限度は、粉砕分散能力の観
点から、0.03μmが望ましい。すなわち上に述べた
特定の水分量を含有する有機溶媒と一緒に湿式粉砕処理
をして、結晶型を変化させると同時に、平均粒径を最適
な範囲に制御する事によシ、従来の問題点を解決する事
が出来るわけである。
Further, the smaller limit of the average particle diameter is preferably 0.03 μm from the viewpoint of pulverization and dispersion ability. In other words, the conventional problem can be solved by performing wet grinding treatment with an organic solvent containing the above-mentioned specific water content to change the crystal type and at the same time control the average particle size within the optimal range. It is possible to resolve the issue.

ここでいう平均粒径とは、英国Joyce−Loeb1
社製の高速遠心沈降連続式粒度分布測定システムDCF
 −4で測定されるものをいう。フタロシアニン等の分
散粒子の粒径の測定方法とじ℃は一般的に種々の方法が
ある。英国Joyce−Loeb1社製の高速遠心沈降
連続式粒度分布測定システムDCF −4は、0.1μ
rIL以下の粒径が精度良く測定出来る評価システムで
ある。この測定法は原理的にはストークスの遠心沈降式
に基くものである。但し、微小粒径t−精度良く測定す
るために高速回転(10000rpm )を行うととも
に、大きな粒子から順に安定した沈降を開始させるため
、被測定分散液を、スピン液及びバッファ液と呼ばれる
ものの中に注入する工夫がなされている。実際にはフタ
ロシアニンの分散液0.211Llをサンプルとした。
The average particle size here refers to the British Joyce-Loeb1
High-speed centrifugal sedimentation continuous particle size distribution measuring system DCF
-4. There are generally various methods for measuring the particle size of dispersed particles such as phthalocyanine. The high-speed centrifugal sedimentation continuous particle size distribution measuring system DCF-4 manufactured by Joyce-Loeb 1 in the UK has a diameter of 0.1μ.
This is an evaluation system that can accurately measure particle diameters below rIL. The principle of this measurement method is based on Stokes' centrifugal sedimentation equation. However, in order to accurately measure the microparticle diameter t, high-speed rotation (10,000 rpm) is performed, and in order to start stable sedimentation starting from the largest particles, the dispersion to be measured is placed in a solution called a spin solution and a buffer solution. Efforts have been made to inject it. Actually, 0.211 L of a phthalocyanine dispersion was used as a sample.

マタ、スぎン液はニトロエタン/クロロブロモメタンの
混合溶媒(110,31wz%)10酩を使用した。バ
ッファ液はニトロエタン2虹を使用した。
A mixed solvent of nitroethane/chlorobromomethane (110.31wz%) was used as the solution. Nitroethane II was used as the buffer solution.

これによって得られた、フタロシアニンの粒度分布よシ
、統計処理がなされて、本特許でいう平均粒径が得られ
る。
The particle size distribution of the phthalocyanine thus obtained is subjected to statistical processing to obtain the average particle size referred to in this patent.

本発明の塩素化アルミニウムフタロシアニンを電荷発生
層とし℃用いるには、導電性基板上に電荷発生層を設け
るが、導電性基板としては、アルミニウム、銅、ニッケ
ル、亜鉛、金、インジウム等の導電性の金属を用いる事
が出来る。ドラムとしての形態をとる場合、アルミニウ
ムが望ましい。
To use the chlorinated aluminum phthalocyanine of the present invention as a charge generation layer at °C, the charge generation layer is provided on a conductive substrate. metals can be used. When in the form of a drum, aluminum is preferred.

また、耐メモリー性、及び、導電性基板からの影響によ
る画像欠陥を改善する目的で、導電性基板上にポリビニ
ルアルコールを結合剤とした酸化亜鉛層またはアルコー
ル可溶性ポリアミドを1μm以下の厚さで設けてもよい
In addition, in order to improve memory resistance and image defects caused by the effects of the conductive substrate, a zinc oxide layer or alcohol-soluble polyamide layer with polyvinyl alcohol as a binder is provided on the conductive substrate to a thickness of 1 μm or less. You can.

また、アルミニウムの場合、表面をアルマイト処理をし
、0.1μm〜10μmのアルマイト層を形成させ℃も
良い。
Moreover, in the case of aluminum, the surface is alumite-treated to form an alumite layer of 0.1 μm to 10 μm, and the temperature is also good.

電荷発生層としての塩素化アルミニウムフタロシアニン
は、昇華精製したものを、湿式粉砕分散機を用い、上で
述べた有機溶媒中で粉砕する事により得られ、そのまま
か、または、アクリル樹脂、スチレン樹脂、アルキッド
樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボ
ネート樹脂などの結着剤を浴剤と共に導電性基板上に溶
液塗布して、電荷発生層とすることができる。この際の
結着剤の使用量は、特に制限はないが、塩素化アルミニ
ウムフタロシアニン100重量部に対し、20重量部な
いし、600重量部で使用する。そして、この際の電荷
発生層の厚さは、溶液塗布の場合、乾燥厚みが0.02
μm〜5μmとなるように塗布するのが望ましい。
The chlorinated aluminum phthalocyanine used as the charge generation layer is obtained by pulverizing the sublimation-purified product in the above-mentioned organic solvent using a wet pulverizing and dispersing machine, and can be used as it is, or with acrylic resin, styrene resin, A binder such as alkyd resin, polyester resin, polyamide resin, or polycarbonate resin can be solution-coated onto a conductive substrate together with a bath agent to form a charge generation layer. The amount of the binder used in this case is not particularly limited, but it is used in an amount of 20 parts by weight to 600 parts by weight per 100 parts by weight of chlorinated aluminum phthalocyanine. The thickness of the charge generation layer at this time is 0.02 in the case of solution coating.
It is desirable to apply the film to a thickness of μm to 5 μm.

矢に、1配のように作成した塩素化アルミニタムフタロ
シアニン電荷発生層の上に、電荷移動層を積層して感光
体とするが、積層する電荷移動増は、電荷発生層で発生
した電荷を感光体表面へ移動させる層であって、電荷発
生層の感光波長領域の光に対して透過性であることが必
要であり、さらに、最適な感光体を得るには、電荷移動
層、電荷発生層間のエネルギーレベル(イオン化ポテン
シャル、電子親和力など)を適切に適合させる必要があ
り、電荷移動剤単体またはこれを結合剤樹脂中に浴解、
分散させた形で用いられる。
A charge transfer layer is laminated on top of the chlorinated aluminum phthalocyanine charge generation layer prepared as shown in arrow 1 to form a photoreceptor. The layer that is transferred to the surface of the photoconductor must be transparent to light in the photosensitive wavelength range of the charge generation layer. It is necessary to appropriately match the energy levels (ionization potential, electron affinity, etc.) between the layers, and the charge transfer agent alone or dissolved in a binder resin,
Used in dispersed form.

単独の移動剤としては、2,6−ゾメトキンー9.10
−ジヒドロキシアントラセンとジカルボン酸から得られ
たポリエステル、2.6−シメトキシー9,10−ジヒ
ドロキシアントラセンとゾハログン化合物から得られた
ポリエーテル、ポリビニルカルバゾールが使用できる。
As a sole transfer agent, 2,6-zomethquine-9.10
Polyesters obtained from -dihydroxyanthracene and dicarboxylic acids, polyethers obtained from 2,6-simethoxy9,10-dihydroxyanthracene and zohalogone compounds, and polyvinylcarbazole can be used.

結合剤樹脂中に分散して用いる移動剤としては2、S、
9.10−テトラインゾロホキシアントラセンのような
ア/トラセン誘導体、2.5−ビス(4−ジエチルアミ
ノフェニル)−1,3,4−オキサジアゾールなどのオ
キサゾアゾール類、1−フェニル−3−CP−シエチル
アミノスチリ/’)−5−CP−ジエチルアミノフェニ
ル)−キラゾリン等のピラゾリン誘導体、4−(ジエチ
ルアミノ)スチリル−2−アントラセン等のスチリル化
合物、P−ジエチルアミノベンズアルデヒド−(ジフェ
ニルヒドラゾン)等のヒドラゾン系化合物を用いること
ができる。
Transfer agents used dispersed in the binder resin include 2, S,
9. A/thracene derivatives such as 10-tetrainzolophoxyanthracene, oxazoazoles such as 2.5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole, 1-phenyl-3- Pyrazoline derivatives such as CP-diethylaminostyryl/')-5-CP-diethylaminophenyl)-chirazoline, styryl compounds such as 4-(diethylamino)styryl-2-anthracene, P-diethylaminobenzaldehyde-(diphenylhydrazone), etc. The following hydrazone compounds can be used.

また、移動剤の結合剤樹脂としては、ポリ塩化ビニル、
ポリカーボネート、ポリスチレン、ポリエステル、スチ
レン−ブタジェン共重合体、ポリフレタン、エポキシ樹
脂、ポリエーテルケトン等が挙げられる。結合剤樹脂の
爺は、移動剤100xii部に対し60〜200重量部
で使用する。そして、この際の電荷移動層の厚さは特に
制限はないが、受容を位との関係から10〜25μmが
適当である。
In addition, as the binder resin of the transfer agent, polyvinyl chloride,
Examples include polycarbonate, polystyrene, polyester, styrene-butadiene copolymer, polyurethane, epoxy resin, polyether ketone, and the like. The binder resin is used in an amount of 60 to 200 parts by weight per 100 xii parts of the transfer agent. The thickness of the charge transfer layer at this time is not particularly limited, but is suitably 10 to 25 .mu.m in view of the reception level.

〈実施例〉 以下実施例により、本発明を更に詳細に説明するととも
に、比較例を掲げる。
<Examples> The present invention will be explained in more detail with reference to Examples below, and comparative examples will be listed.

実施例1 昇華精製して得られた塩素化アルミニクムフタロシアニ
ン(CLの分析値より塩素化度:X+Y=1.4)5重
量部を純水0.38重量部がクロルブロムメタン120
重量部及びニトロエタン60重量部の混合有機溶媒中に
溶解している液とともにサンドミル分散機に仕込み、室
温で6時間及び9時間湿式粉砕分散した。湿式粉砕分散
を6時間及び9時間行ったものの、フタロシアニン粒子
の平均粒径は、それぞれ、0.05μff1.0.03
μmであった。フタロシアニン粒子の粒径測定は、英国
JOYCE LOEBL社製高速遠心沈降連続粒度分布
測定システムDCF −4を使用して行った。
Example 1 5 parts by weight of chlorinated aluminum phthalocyanine obtained by sublimation purification (degree of chlorination according to CL analysis value:
The mixture was charged into a sand mill disperser together with a liquid dissolved in a mixed organic solvent containing parts by weight and 60 parts by weight of nitroethane, and wet-pulverized and dispersed at room temperature for 6 hours and 9 hours. Although the wet grinding and dispersion was carried out for 6 hours and 9 hours, the average particle size of the phthalocyanine particles was 0.05μff1.0.03, respectively.
It was μm. The particle size of the phthalocyanine particles was measured using a high-speed centrifugal sedimentation continuous particle size distribution measurement system DCF-4 manufactured by JOYCE LOEBL, UK.

また、フタロシアニンの結晶状態をX線回折装置によっ
て肝価した。X線回折スペクトルにおいて、CuKa線
を線源とした時、ブラッグ角(20±0.2度)で6.
7度、11.2度、16.7度、25.6度に強い回折
e−りを示した。また、この塗液をガラス上で乾燥させ
たものは透過吸収スペクトルで、830nmに透過吸収
極大を示した。
In addition, the crystalline state of the phthalocyanine was determined using an X-ray diffraction device. In the X-ray diffraction spectrum, the Bragg angle (20±0.2 degrees) is 6.
Strong diffraction e-reflection was observed at 7 degrees, 11.2 degrees, 16.7 degrees, and 25.6 degrees. Further, the transmission absorption spectrum of this coating liquid dried on glass showed a transmission absorption maximum at 830 nm.

丈にアクリル樹脂(メタクリル酸n−ブチル/メタクリ
ル酸1−ブチル/メタクリル酸2−ヒFロキシエチル=
45/45/10の共重合体)0.6重量部を純水0.
16重量部がクロルブロムメタン180重葉部とニトツ
ユタン90重景部の混合有機溶媒中に溶解している液に
浴解させて作成した液を、分散によって得られた分散液
60!量部に投入し、希釈し、塗工液を得た。電子写真
感光体を得るために、アルミドラム上に共重合ナイロン
(東し製 cM8000)802iJ1部、スチレン/
マレイン酸ハーフエステル共重合体樹脂(BASF製 
スプラパールAP−20)20!量部を混合し、2重量
%となるように、メタノールに浴解し、乾燥厚みが0.
8μmの塗膜を作製しバリア層とした。その上に先に得
られた電荷発生剤を含む塗液を浸漬塗工し、100℃、
1時間乾燥し乾燥膜厚が肌1μmの電荷発生層とした。
Acrylic resin (n-butyl methacrylate/1-butyl methacrylate/2-hydroxyethyl methacrylate =
45/45/10 copolymer) and 0.6 parts by weight of pure water.
A dispersion of 60 parts by weight was obtained by dispersing a solution prepared by dissolving 16 parts by weight in a mixed organic solvent of 180 parts by weight of chlorbromomethane and 90 parts by weight of nitotsuyutan. A coating solution was obtained by diluting the solution. In order to obtain an electrophotographic photoreceptor, 1 part of copolymerized nylon (cM8000 manufactured by Toshi) 802iJ, styrene/
Maleic acid half ester copolymer resin (manufactured by BASF)
Supra Pearl AP-20) 20! Mix several parts and dissolve in methanol to give a concentration of 2% by weight, until the dry thickness is 0.
A coating film of 8 μm was prepared and used as a barrier layer. On top of that, the coating liquid containing the charge generating agent obtained earlier was applied by dip coating at 100°C.
After drying for 1 hour, a charge generation layer having a dry film thickness of 1 μm was obtained.

この上にポリエーテルケトン10!量部、P−ジエチル
アミノベンズアルデヒド−(ジフェニルヒドラゾン)1
0TL量部、1.2−ジクフルエタン100重景部から
なる浴液を浸漬塗工し、80℃、1時間乾燥し、乾燥膜
厚15μmの電荷移動#を形成し電子写真感光体とした
。電気性能評価及び画像性能評価は、市販の半導体レー
ず一プリフター金使用して行った。帯電として、負帯電
で、グリッド電圧830vのスコロトロンチャージャー
を使用し、帯電条件としては、感光層がぬられていない
アルミニウムドラムに対して、単位長さ当たり4.6μ
A/G:!!Lの流れ込み電流が流れる様に設定した。
On top of this is polyetherketone 10! Quantity part, P-diethylaminobenzaldehyde-(diphenylhydrazone) 1
A bath liquid consisting of 0 parts of TL and 100 parts of 1,2-dicfluethane was applied by dip coating, and dried at 80° C. for 1 hour to form a charge transfer # having a dry film thickness of 15 μm, which was used as an electrophotographic photoreceptor. Electrical performance evaluation and image performance evaluation were carried out using a commercially available semiconductor laser. A scorotron charger with a negative charge and a grid voltage of 830 V was used for charging, and the charging conditions were 4.6 μ per unit length for an aluminum drum without a photosensitive layer.
A/G:! ! It was set so that an inflow current of L flows.

また、ドラム回転速度は90B/ sec T:イレー
サ党のエネルギーとし℃は、赤色光20μJ / nm
2とした。レーザー露光のない時の表面電位を■0とし
、また、レーデ−露光J! 2.1 μJ / c7I
L2の露光(発光波長 780 nm )を行って、イ
メージ電位Viを測定した。また、暗減衰は、無露光時
の5秒間の電位低下率として測定した。また、画像性能
評価は、反転2成分現像方式により印字を行い印字サン
プルの目視評価で行った。評価の結果を比較例と共に第
1衣に示す。電気性能、画像性能の環境特性は共に良好
で有る。
In addition, the drum rotation speed is 90B/sec T:Eraser energy and °C is red light 20μJ/nm
It was set as 2. The surface potential when there is no laser exposure is ■0, and the laser exposure J! 2.1 μJ/c7I
L2 exposure (emission wavelength: 780 nm) was performed, and the image potential Vi was measured. Further, dark decay was measured as a rate of potential decrease for 5 seconds during no exposure. Further, the image performance was evaluated by visual evaluation of a printed sample printed using a reversal two-component development method. The results of the evaluation are shown in the first garment along with comparative examples. The environmental characteristics of both electrical performance and image performance are good.

比較例1 実施例1に2いて、サンドミル分散機での分散時間を1
時間とする以外は、同一の条件で行い、分散塗液を得た
。平均粒径は0.06μmであり、X線回折スペクトル
及び、吸収スペクトルは実施例1と変わらなかった。実
施例1と同様の条件で電子写真感光体を得て、その特性
を評価した。評価の結果は第1衣に示す通りで、電気性
能、画像性能の環境特性は共に、実施例1に比べ悪い。
Comparative Example 1 Same as Example 1, but the dispersion time in the sand mill dispersion machine was 1.
A dispersion coating liquid was obtained under the same conditions except for the time. The average particle size was 0.06 μm, and the X-ray diffraction spectrum and absorption spectrum were the same as in Example 1. An electrophotographic photoreceptor was obtained under the same conditions as in Example 1, and its characteristics were evaluated. The evaluation results are as shown in the first example, and both the electrical performance and the environmental characteristics of the image performance are worse than in Example 1.

比較例2 実施例1にかいてサンドミル分散機の替わりにボールミ
ル分散機を用い、室温で120時間粉砕を行う以外は実
施例1と同様に行い、分散塗液を得た。平均粒径は0.
07μmでありX線回折スペクトル及び、吸収スペクト
ルは実施例1と変わらなかった。実施例1と同様の条件
で電子写真感光体を得て、その特性を評価した。評価の
結果は第1表に示す通りで、電気性能、画像性能の環境
特性は共に、実施例1に比べ悪い。
Comparative Example 2 A dispersion coating liquid was obtained in the same manner as in Example 1 except that a ball mill disperser was used instead of the sand mill disperser and pulverization was carried out at room temperature for 120 hours. The average particle size is 0.
07 μm, and the X-ray diffraction spectrum and absorption spectrum were the same as in Example 1. An electrophotographic photoreceptor was obtained under the same conditions as in Example 1, and its characteristics were evaluated. The evaluation results are shown in Table 1, and both the electrical performance and the environmental characteristics of the image performance are worse than in Example 1.

実施例2 実施例1と同一組成の材料をサンドミル分散機に仕込み
、内液温度が一20°Gとなる温度条件で6時間及び、
9時間、湿式粉砕分散を行った。フタロシアニンの平均
粒径を実施例1と同様の測定方法で測定した所、分散時
間6時間、9時間行ったものの平均粒径は、それぞれ、
0.05μm10.03μmであったoxH回折スペク
トル及び、吸収スペクトルは、実施例1と同じであった
。−方、可溶性ポリエステル(東洋紡製、バイロン20
0)1.6重量部、純水0.16m11部をクロムブロ
ムメタン180:i置部とニトロエタン90重量部よ゛
りなる混合有機溶媒中に溶解嘔せ℃作製した液を、上で
得られた分散液60重菫部に投入し、希釈することによ
り、塗工液を得た。電子写真感光体を得るために、アル
ミドラム上に共1合ナイロン(東し製、0M4001 
)80亘黛部、スチレン/マレイン酸ノ・−7工ステル
共重合体樹脂(BASF裂、スゾラパールAp−20)
20mit部を混合し、2]L量%となるように、メタ
ノールに耐解した塗液を塗布することによシ、乾燥厚み
が0.07μmの塗膜を形成しバリア層とした。その上
に、先に得られた電荷発生材を富む重液を浸漬塗工する
ことにより、乾燥膜厚が0゜1μmの電荷発生層を得た
。この上にポリカーざネイト樹脂(三菱がス化学製、Z
−200)10重量部、P−ジエチルアミノベンズアル
デヒド−(ジフェニルヒドラゾン)10重量部、1.2
−ジクロルエタン100311部からなる塗液を浸漬塗
布し、80℃、1時間乾燥することにより、乾燥膜厚2
0 ttmの電荷移動層を形成し、電子写真感光体とし
た。その特性を評価した結果は第2表に示す通りで電気
性能、画像性能の環境%性は共に良好である。
Example 2 Materials having the same composition as in Example 1 were charged into a sand mill disperser, and the temperature condition was such that the internal liquid temperature was -20°G for 6 hours.
Wet pulverization and dispersion was carried out for 9 hours. When the average particle size of phthalocyanine was measured using the same method as in Example 1, the average particle size when dispersing for 6 hours and 9 hours was as follows:
The oxH diffraction spectrum and absorption spectrum, which were 0.05 μm and 10.03 μm, were the same as in Example 1. - Soluble polyester (manufactured by Toyobo, Byron 20)
0) Dissolve 1.6 parts by weight of 11 parts of pure water and 0.16ml of pure water in a mixed organic solvent consisting of 180 parts of chromium bromomethane and 90 parts by weight of nitroethane. A coating liquid was obtained by pouring the dispersion into 60 parts of violet and diluting it. In order to obtain an electrophotographic photoreceptor, 1-go nylon (manufactured by Toshi, 0M4001) was placed on an aluminum drum.
) 80 parts, styrene/maleic acid 7-ester copolymer resin (BASF split, Suzola Pearl Ap-20)
By mixing 20 mit parts and applying a coating solution resistant to methanol so that the amount was 2]L, a coating film having a dry thickness of 0.07 μm was formed, which was used as a barrier layer. A charge generating layer having a dry thickness of 0.degree. to 1 .mu.m was obtained by dip coating the previously obtained heavy liquid rich in the charge generating material thereon. Polycarbonate resin (manufactured by Mitsubishi Gas Chemical, Z
-200) 10 parts by weight, P-diethylaminobenzaldehyde-(diphenylhydrazone) 10 parts by weight, 1.2
- By dipping coating a coating solution consisting of 100,311 parts of dichloroethane and drying at 80°C for 1 hour, a dry film thickness of 2
A charge transfer layer of 0 ttm was formed to prepare an electrophotographic photoreceptor. The results of evaluating the characteristics are shown in Table 2, and both the electrical performance and the environmental % environmental performance of the image performance are good.

比較例6 実施例2において、サンドミル分散機での分散時間を1
時間とする以外は、同一の条件で行い、分散塗液を得た
。平均粒径は0.06μmであり、XlfM回折スペク
トル及び、吸収スペクトルは実施例2と変わら人かった
。実施例2と同様の条件で電子写真感光体を得て、その
特性を評価した。評価の結果は第2茨に示す通りで、電
気性能、画像性能の環境特性は共に実施?jJ 2にく
らべ悪い。
Comparative Example 6 In Example 2, the dispersion time in the sand mill disperser was reduced to 1
A dispersion coating liquid was obtained under the same conditions except for the time. The average particle size was 0.06 μm, and the XlfM diffraction spectrum and absorption spectrum were similar to those in Example 2. An electrophotographic photoreceptor was obtained under the same conditions as in Example 2, and its characteristics were evaluated. The evaluation results are as shown in the second thorn, and are the environmental characteristics of electrical performance and image performance both tested? It's worse than jJ 2.

比較例4 実施例2において、サンドミル分散機の替わりにざ−ル
ミル分散機を用い、液温−15℃で120時間粉砕を行
う以外は実施例2と同様に行い、分散塗液を得た。平均
粒径は0.07μmであり、X線回折スペクトル及び、
吸収スペクトルは実施例2とかわらなかった。実施例2
と同様の条件で電子写真感光体を得て、その特性を評価
した。評価の結果は第2弐に示す通りで、電気性能、画
像性能の環境特性は共に実施例2にくらべ悪い。
Comparative Example 4 A dispersion coating liquid was obtained in the same manner as in Example 2 except that a sand mill disperser was used instead of the sand mill disperser and pulverization was carried out for 120 hours at a liquid temperature of -15°C. The average particle size is 0.07 μm, and the X-ray diffraction spectrum and
The absorption spectrum was the same as in Example 2. Example 2
An electrophotographic photoreceptor was obtained under the same conditions as above, and its characteristics were evaluated. The evaluation results are as shown in Part 2, and both the electrical performance and the environmental characteristics of the image performance are worse than in Example 2.

実施例6 実施例2と同一の材料及び分散条件で湿式粉砕分散を行
った。得られたフタロシアニンの平均粒径、X線回折ス
ペクトル及び、吸収スペクトルは実施例2と変わらなか
った。塗工液を得るに際し可溶性ポリエステルを使用す
る替わシに、アクリル樹脂(大日本インキ製、アクリデ
ィック A−808)を使う以外は、実施例2と同一の
条件で電子写真感光体を得た。得られた感光体の特性を
評価した結果は第3茨に示す通りで、電気性能、画像性
能の環境特性は共に良好である。
Example 6 Wet grinding and dispersion was performed using the same materials and dispersion conditions as in Example 2. The average particle diameter, X-ray diffraction spectrum, and absorption spectrum of the obtained phthalocyanine were the same as in Example 2. An electrophotographic photoreceptor was obtained under the same conditions as in Example 2, except that an acrylic resin (Acridic A-808, manufactured by Dainippon Ink) was used instead of the soluble polyester when obtaining the coating solution. The results of evaluating the characteristics of the obtained photoreceptor are as shown in the third thorn, and the environmental characteristics of both electrical performance and image performance are good.

比較例5 実施例3において、湿式粉砕分散を行うに際し比較例3
と同一の材料及び分散条件で行った。得られた7タロシ
アニンの平均粒径、x1fM回折スペクトル及び、吸収
スペクトルは、比較例6と変わらなかった。この分散塗
液を得る以外は実施例3と同様の条件で電子写真感光体
を得て、その性能を評価した。評価の結果は第3衣に示
す通シで、電気性能、画像性能の環境特性は共に、実施
例3にくらべ悪い。
Comparative Example 5 In Example 3, Comparative Example 3 was used when performing wet pulverization and dispersion.
The same materials and dispersion conditions were used. The average particle size, x1fM diffraction spectrum, and absorption spectrum of the obtained 7-talocyanine were the same as those in Comparative Example 6. An electrophotographic photoreceptor was obtained under the same conditions as in Example 3 except for obtaining this dispersion coating liquid, and its performance was evaluated. The evaluation results are as shown in the third example, and both the electrical performance and the environmental characteristics of the image performance are worse than in Example 3.

比較例6 実施例6において、湿式粉砕分散を行うに際し比較例4
と同一の材料及び分散条件で行った。得られたフタロシ
アニンの平均粒径、X線回折スペクトル及び、吸収スペ
クトルは、比較例4と変わらなかった。この分散塗液を
得る以外は実施例3と同様の条件で電子写真感光体を得
て、その性能を評価した。評価の結果は第6衣に示す通
シで、電気性能、画像性能の環境特性は共に、実施例6
にくらべ悪い。
Comparative Example 6 In Example 6, when performing wet pulverization dispersion, Comparative Example 4
The same materials and dispersion conditions were used. The average particle size, X-ray diffraction spectrum, and absorption spectrum of the obtained phthalocyanine were the same as those in Comparative Example 4. An electrophotographic photoreceptor was obtained under the same conditions as in Example 3 except for obtaining this dispersion coating liquid, and its performance was evaluated. The evaluation results are as shown in Section 6, and the environmental characteristics of both electrical performance and image performance are as shown in Example 6.
It's worse than.

〈発明の効果〉 本発明の塩素化アルミニウムフタロシアニンを電荷発生
剤として電荷発生層の主成分とする電子写真感光体は、
半導体レーデ−の発光波長で高感度を示し、且つ、電気
性能及びカブリを主とする画像性能の環境特性が極めて
秀れておシ、半導体レーザープリンタ用の実用感光体に
適している。
<Effects of the Invention> The electrophotographic photoreceptor of the present invention has a charge generation layer containing chlorinated aluminum phthalocyanine as a charge generation agent.
It exhibits high sensitivity at the emission wavelength of semiconductor lasers, and has excellent environmental characteristics in terms of electrical performance and image performance, mainly in terms of fog, making it suitable as a practical photoreceptor for semiconductor laser printers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塩素化アルミニクムフタロシアニンのCuKa
線を線源として用いた時のX線回折スペクトル。第2図
は透過吸収スペクトルで図中、(a)は昇華n製した場
合で、湿式粉砕分散前。 (b)は特定量の水を宮んだ有機溶媒と伴に湿式粉砕分
散した後の場合を示す。 特許出願人 旭化成工業株式会社 噸@ゼ−A漫@*h−1 手続補正書 1.事件の表示 昭和63年特許願第143604号 2、発明の名称 フタロシアニン分散電子写真用感光体 3、補正をする者 事件との関係   特許出願人 大阪府大阪市北区堂島浜1丁目2番6号4、補正の対象 5、補正の内容 1)特許請求の範囲を別紙の通り補正する。 2) 明細書第8項第7行の「以下」を特徴する特許請
求の範囲 導電性基盤上に電荷発生層および電荷移動層を主として
積層した積層型電子写真用感光体において、電荷発生剤
が塩素化アルミニウムフタロシアニン(AIClxPc
Cly (塩素化度:X+Y=1.0〜2.0.Pc:
フタロシアニン環)〕で、a)  X線回折スペクトル
においてブラッグ角(2θ±0.2度)が6.7度、1
1.2度、16.7度、25.6度に強い回折ピークを
有し、b)透過吸収スペクトルにおいて750nmから
850nmの間に極大吸収を有し、 C)平均粒径が0.05μm〜0.03L工T−あるこ
とを特徴とする電子写真用玉光体。 e
Figure 1 shows CuKa of chlorinated aluminum phthalocyanine.
X-ray diffraction spectrum when a line is used as a radiation source. Figure 2 shows the transmission absorption spectrum. In the figure, (a) shows the case of sublimation n-manufacturing, before wet pulverization and dispersion. (b) shows the case after wet pulverization and dispersion of a specific amount of water with an organic solvent. Patent Applicant: Asahi Kasei Kogyo Co., Ltd. 噸@ze-Aman@*h-1 Procedural Amendment 1. Description of the case 1986 Patent Application No. 143604 2 Name of the invention Phthalocyanine dispersed electrophotographic photoreceptor 3 Person making the amendment Relationship to the case Patent applicant 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture , Subject of amendment 5, Contents of amendment 1) The claims are amended as shown in the attached sheet. 2) Claim characterized in "the following" in Item 8, Line 7 of the specification: A laminated electrophotographic photoreceptor in which a charge generation layer and a charge transfer layer are mainly laminated on a conductive substrate, wherein the charge generation agent is Chlorinated aluminum phthalocyanine (AIClxPc)
Cly (degree of chlorination: X+Y=1.0-2.0.Pc:
phthalocyanine ring)], a) In the X-ray diffraction spectrum, the Bragg angle (2θ ± 0.2 degrees) is 6.7 degrees, 1
It has strong diffraction peaks at 1.2 degrees, 16.7 degrees, and 25.6 degrees, b) has a maximum absorption between 750 nm and 850 nm in the transmission absorption spectrum, and C) has an average particle size of 0.05 μm ~ A globular body for electrophotography characterized by having a 0.03L engineering T-. e

Claims (1)

【特許請求の範囲】  導電性基板上に電荷発生層および電荷移動層を主とし
て積層した積層型電子写真用感光体において、電荷発生
剤が塩素化アルミニウムフタロシアニン〔AlCl_x
PcCl_y(塩素化度:X+Y=1.0〜2.0、P
c:フタロシアニン環)〕で、 a)X線回折スペクトルにおいてブラッグ角(2θ±0
.2度)が6.7度、11.2度、16.7度、25.
6度に強い回折ピークを有し b)透過吸収スペクトルにおいて750nmから850
nmの間に極大吸収を有し、 c)平均粒径が0.05μm〜0.03μm以下である
ことを特徴とする電子写真用寒光体。
[Claims] A laminated electrophotographic photoreceptor in which a charge generation layer and a charge transfer layer are mainly laminated on a conductive substrate, wherein the charge generation agent is chlorinated aluminum phthalocyanine [AlCl_x
PcCl_y (degree of chlorination: X+Y=1.0-2.0, P
c: phthalocyanine ring)], a) Bragg angle (2θ±0
.. 2 degrees) are 6.7 degrees, 11.2 degrees, 16.7 degrees, and 25.
It has a strong diffraction peak at 6 degrees b) from 750 nm to 850 nm in the transmission absorption spectrum.
1. A cold photothermant for electrophotography, characterized in that: c) it has an average particle size of 0.05 μm to 0.03 μm or less;
JP14360488A 1988-06-13 1988-06-13 Photoreceptor for phthalocyanine dispersed electrophotography Expired - Lifetime JP2656796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14360488A JP2656796B2 (en) 1988-06-13 1988-06-13 Photoreceptor for phthalocyanine dispersed electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14360488A JP2656796B2 (en) 1988-06-13 1988-06-13 Photoreceptor for phthalocyanine dispersed electrophotography

Publications (2)

Publication Number Publication Date
JPH01312551A true JPH01312551A (en) 1989-12-18
JP2656796B2 JP2656796B2 (en) 1997-09-24

Family

ID=15342591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14360488A Expired - Lifetime JP2656796B2 (en) 1988-06-13 1988-06-13 Photoreceptor for phthalocyanine dispersed electrophotography

Country Status (1)

Country Link
JP (1) JP2656796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154713A (en) * 2003-11-06 2005-06-16 Fuji Xerox Co Ltd Hydroxygallium phthalocyanine pigment and process for production thereof, process for production of photosensitive layer-forming coating solution, electrophotographic photoreceptor, process cartridge, electrophotographic device and image formation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154713A (en) * 2003-11-06 2005-06-16 Fuji Xerox Co Ltd Hydroxygallium phthalocyanine pigment and process for production thereof, process for production of photosensitive layer-forming coating solution, electrophotographic photoreceptor, process cartridge, electrophotographic device and image formation method

Also Published As

Publication number Publication date
JP2656796B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JP2007148293A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2007179031A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
US4195990A (en) Electrophotographic papers employing organic photoconductors
JPS6012551A (en) Composite type electrophotographic sensitive material
US4145214A (en) Co-crystalline organic photoconductors and heterogeneous compositions thereof
JPH01312551A (en) Phthalocyanine dispersion electrophotographic sensitive body
US4082550A (en) Hexachlorocyclopentene chemical sensitizers for heterogeneous organic photoconductive compositions
JP2006251487A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
US4160666A (en) Polymeric chemical sensitizers for organic photoconductive compositions
JPH10213912A (en) Electrophotographic photoreceptor
GB1603278A (en) Photoconductive insulating layers
JPH05100458A (en) Electrophotographic sensitive body
JP3277285B2 (en) Image forming method
JPH01161253A (en) Electrophotographic sensitive body for laser light
US4250237A (en) P-Terphenyl organic photoconductors and heterogeneous compositions thereof
JP2004045991A (en) Method for preparing photosensitive layer coating solution and monolayer electrophotographic photoreceptor
JPH0675438A (en) Electrophotographic planographic printing plate for laser light
JPH02156247A (en) Electrophotographic sensitive body
JPH0254271A (en) Electrophotographic sensitive body
JPH0555036B2 (en)
JP2949953B2 (en) Electrophotographic photoreceptor
JPH07209883A (en) Image forming method
JPH044264A (en) Production of x form metal free phthalocyanine
JPH02282277A (en) Image forming device
JP2002258502A (en) Image forming method using positive-charged single layer electrophotographic sensitive body