JPH01312302A - Rectangular shell-and-tube once-through boiler - Google Patents

Rectangular shell-and-tube once-through boiler

Info

Publication number
JPH01312302A
JPH01312302A JP14388488A JP14388488A JPH01312302A JP H01312302 A JPH01312302 A JP H01312302A JP 14388488 A JP14388488 A JP 14388488A JP 14388488 A JP14388488 A JP 14388488A JP H01312302 A JPH01312302 A JP H01312302A
Authority
JP
Japan
Prior art keywords
combustion gas
stream side
water
water pipe
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14388488A
Other languages
Japanese (ja)
Other versions
JP2673306B2 (en
Inventor
Seiji Tai
誠二 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP14388488A priority Critical patent/JP2673306B2/en
Publication of JPH01312302A publication Critical patent/JPH01312302A/en
Application granted granted Critical
Publication of JP2673306B2 publication Critical patent/JP2673306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniform the velocity of combustion gas passing through the groups of water pipes ranging from the upper stream side to the lower stream side by setting the water pipe span on the lower stream side of the combustion gas passage wider than the water pipe span on the upper stream side. CONSTITUTION:Water pipe groups A, B, and C in a once through boiler are laid out so that water pipes 10, 11, and 12 are arranged respectively based on specified dimensions linearly. The pipe span of the water pipes 10, 11, and 12 comprising the water pipe groups A, B, and C is designed to be narrowed from the upper stream side in the direction of the combustion gas flow to the down stream side, which makes it possible to equalize the flow of the combustion gas substantially at a specified velocity from the lower stream side or the side of a burner 1 up to the down stream side or the side of a gas duct 2. In other words, although the volume of the combustion gas is large on the upper stream side, the combustion gas can flow without a marked pressure loss, since the water pipe span is wide, while on the down stream side the volume of the combustion gas is reduced, but the water pipe span is narrow, which increase the velocity of the combustion gas. Therefore, the pressure loss is minimized in a boiler drum and the recovery of heat from the combustion gas on the down stream side is higher. Furthermore, the heat transmission efficiency is higher,which makes it possible to provide higher heat transmission efficiency from the combustion throughout the entire passage as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、角型多管式貫流ボイラーに関し、詳しくは
、燃焼ガスを水平方向に流通させる形式の角型多管式貫
流ボイラーに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a square multi-tubular once-through boiler, and more particularly to a square multi-tubular once-through boiler in which combustion gas is distributed horizontally. be.

〔従来技術〕[Prior art]

一般に小型の多管式貫流ボイラーは、円筒形の缶体構造
をベースとして製作されている。これは、バーナ等の加
熱手段の燃焼効率を良くするため、水管を環状に配置し
、その内部を燃焼室とするのが望ましいと考えられてい
ることによる。
Generally, small multi-tubular once-through boilers are manufactured based on a cylindrical can structure. This is because, in order to improve the combustion efficiency of a heating means such as a burner, it is considered desirable to arrange the water pipes in an annular shape and use the inside thereof as a combustion chamber.

しかし、このような缶体構造とすると、ボイラーの設置
場所や配置状態によっては、占有スペースが大きくなり
易いため、近年では所謂角型缶体構造をベースとした種
々の多管式貫流ボイラーが提案されている。
However, such a can structure tends to occupy a large amount of space depending on the location and arrangement of the boiler, so in recent years various multi-tube once-through boilers based on the so-called square can structure have been proposed. has been done.

ここで、角型缶体構造とは、多数の水管を直列配置して
なる木管群を対向配置してその間に燃焼室を形成したも
のをいい、バーナの燃焼ガスは、上記木管群の間を交叉
方向に通過する。
Here, the square can structure refers to a structure in which groups of wood pipes made up of a large number of water pipes arranged in series are arranged opposite each other to form a combustion chamber between them, and the combustion gas of the burner flows between the groups of wood pipes. Pass in cross directions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、ボイラー用バーナの燃焼ガスは、上流側では温
度が高く、体積も大きいが、下流になるに従って水管に
伝熱することにより温度が低下すると共に体積が減少す
る。
Generally, the combustion gas of a boiler burner has a high temperature and a large volume on the upstream side, but as it moves downstream, the temperature decreases and the volume decreases due to heat transfer to the water pipes.

しかし、従来の角型構造の質流ボイラーは、各水管群を
互いに平行あるいは下流側を僅かに広くして配置しであ
るため、燃焼室内を流れる燃焼ガス流は、上流と下流と
で大きく流速が低下する。
However, in conventional quality-flow boilers with a square structure, each water tube group is arranged parallel to each other or slightly wider on the downstream side, so the combustion gas flow inside the combustion chamber has a large flow velocity between the upstream and downstream sides. decreases.

更に、上記の貫流ボイラーの各水管群は、水管を等間隔
で配置しであるため、水管同志の隙間を流れる燃焼ガス
は、上流側はど速く、下流側はど遅くなっている。
Furthermore, since each water tube group of the above-mentioned once-through boiler has water tubes arranged at equal intervals, the combustion gas flowing through the gaps between the water tubes is faster on the upstream side and slower on the downstream side.

従って、従来の貫流ボイラーにおける燃焼ガスは、上流
側では圧力損失が太き(、下流側では低流速のために伝
熱効率が低下する。
Therefore, the combustion gas in a conventional once-through boiler has a large pressure loss on the upstream side (and a low flow rate on the downstream side, resulting in a decrease in heat transfer efficiency).

このことは、貫流ボイラーに対する送風能力の不足、並
びにボイラー効率の低下を意味しており、ボイラーのイ
ニシャルコスト並びにランニングコストの低減化に対す
る阻害要因となっている。
This means that the once-through boiler has insufficient air blowing capacity and a reduction in boiler efficiency, which is an impediment to reducing the initial cost and running cost of the boiler.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記問題点に鑑み、燃焼ガスの流速を上流
側から下流側まで、実質的に均一にするためになされた
もので、複数本の水管を互いに平行に配置し、これら水
管群に対して交叉方向に燃焼ガスを流通させる形式の多
管式貫流ボイラーにおいて、 相対する上記水管群を、燃焼ガス流通方向上流側より、
下流側に向けて先細り状に配置したことを要旨とする角
型多管式貫流ボイラーである。
In view of the above-mentioned problems, this invention was made to make the flow velocity of combustion gas substantially uniform from the upstream side to the downstream side. On the other hand, in a multi-tube once-through boiler that allows combustion gas to flow in cross directions, the opposing water tube groups are connected from the upstream side in the combustion gas flow direction.
This is a square multi-tube once-through boiler that is arranged in a tapered manner toward the downstream side.

〔作用〕[Effect]

この発明に係る角型多管式貫流ボイラーは、燃焼ガス流
路方向の下流側における水管同志の間隔を上流側におけ
る水管同志の間隔より広く設定したことにより、木管同
志の間を通過する燃焼ガス流速を」二流側から下流側ま
で均一ならしめることができる。
In the square multi-tube once-through boiler according to the present invention, the interval between the water tubes on the downstream side in the direction of the combustion gas flow path is set wider than the interval between the water tubes on the upstream side, so that the combustion gas passes between the wood tubes. The flow velocity can be made uniform from the second flow side to the downstream side.

〔実施例〕〔Example〕

第1図は、この発明に係る角型多管式貫流ボイラーの一
実施例を示すものである。尚、この実施例の貫流ボイラ
ーにおける木管群は、片側に3列ずつ計6列を略左右対
象になるように配置したものである。
FIG. 1 shows an embodiment of a square multi-tubular once-through boiler according to the present invention. The wood tubes in the once-through boiler of this embodiment are arranged in six rows, three rows on each side, so as to be substantially symmetrical.

図面において、(八)、(B)、(C)は夫々水管群、
(1)はバーナ、(2)は煙道、(5)は各水管群の上
下端に接続したヘソグーを示す。
In the drawing, (8), (B), and (C) are water pipe groups, respectively.
(1) shows the burner, (2) shows the flue, and (5) shows the bellows connected to the upper and lower ends of each water tube group.

上記水管群(A) 、 (B) 、 (C)は夫々所定
寸法の水管00)、 (Ill、 02)を直線状に配
列したものである。
The water tube groups (A), (B), and (C) are water tubes 00), (Ill, 02) of predetermined dimensions arranged in a straight line, respectively.

水管群(A)は、ボイラーの水冷壁として機能するもの
で、同一直径の水管00)を等間隔で配列すると共に、
各木管00間の隙間を同一高さの板状部材03)で閉鎖
して構成しである。そして、この水管群(A)は、ボイ
ラー缶体の最も外側に位置し、バーナ(1)からの燃焼
ガスの流れ方向(図中上から下方向)に向けて、対応す
る相手側の水管群(八゛)との間隔が狭(なるようにし
である。
The water tube group (A) functions as a water cooling wall of the boiler, and has water tubes 00) of the same diameter arranged at equal intervals.
It is constructed by closing the gaps between each woodwind 00 with plate-like members 03) having the same height. This water tube group (A) is located at the outermost side of the boiler case, and is connected to the corresponding water tube group in the direction of flow of combustion gas from the burner (1) (from top to bottom in the figure). The distance between (8゛) and (8゛) is narrow.

又、上記水管群(B)は、上記水管群(A)と略同−径
の水管(11)を用い、下流側の間隔d2が上流側の間
隔d、より狭くなるように配列しである。そして、水管
群(B)は、上記の水管群(八)の内側に対応するもう
一方の側の水管群(Bo)に対して略平行に配置しであ
る。
Further, the water tube group (B) uses water tubes (11) having approximately the same diameter as the water tube group (A), and is arranged so that the interval d2 on the downstream side is narrower than the interval d on the upstream side. . The water tube group (B) is arranged substantially parallel to the water tube group (Bo) on the other side corresponding to the inner side of the water tube group (8).

従って、上記水管群(八)とこの水管群(B)との間に
形成される燃焼ガス流路は、流れ方向上流側から下流側
にかけて漸次狭くなっている。
Therefore, the combustion gas flow path formed between the water tube group (8) and this water tube group (B) becomes gradually narrower from the upstream side to the downstream side in the flow direction.

更に、上記水管群(B)の各水管(II)と木管群(A
)の各水管0ωとは左右方向に一致しないように互いに
千鳥状に配置しである。
Furthermore, each water pipe (II) of the water pipe group (B) and the wood pipe group (A
) are arranged in a staggered manner so as not to coincide with each other in the left-right direction.

それらの水管群(B)及びそれに対応する水管群(Bo
)の中央部の水管(11)同志の間には耐火性隔壁(3
)を設けている。
Those water pipe groups (B) and the corresponding water pipe groups (Bo
) between the water pipes (11) in the center is a fire-resistant bulkhead (3
) has been established.

一方、上記水管群(C)は、上記水管群(A) 、 (
B) 。
On the other hand, the water tube group (C) is the water tube group (A), (
B).

(C)の水管00)、 (11)よりも小径の水管02
)を直線状に配列したもので、上記水管群(B)の内側
で、かつ、上記耐火性隔壁(3)よりも下流側に配置し
である。
(C) water pipe 00), water pipe 02 with a smaller diameter than (11)
) are arranged in a straight line, and are arranged inside the water tube group (B) and on the downstream side of the fireproof partition wall (3).

それら水管群(C)の各水管02)と近接する上記水管
群(13)の各水管(11)との間隔d、は、上記の間
隔d2よりも狭く設定しである。
The distance d between each water tube 02) of the water tube group (C) and each water tube (11) of the adjacent water tube group (13) is set narrower than the above-mentioned distance d2.

E記ヘッダー(5)は、上述のような相対する水管列の
上部と下部に接続したものであり、給水系統は共通であ
るが、蒸気配管系統は分離することができるようになっ
ている。
The E header (5) is connected to the upper and lower parts of the opposing water pipe rows as described above, and the water supply system is common, but the steam piping system can be separated.

上記構成の角型多管式貫流ボイラーにおいて、バ、−す
に点火すると、燃焼ガスは燃焼室内に主として輻射伝熱
によって水管群(B)の上流側の水管(11)と熱交換
を行う。そして、水管群(B)の上流側における各木管
(11)間の隙間を通って木管群(A)と水管群(B)
との間の空間に流入し、水管群(八)並びに水管群(B
)との熱交換を行う。ここで、上記水管群(B)の上流
側の各水管OOは、水管群(A)の上流側の各水管0ω
に対して千鳥状配置であるため、上記水管群(八)の上
流側の各水管0ωは、水管θ1)間の隙間からの輻射に
よって熱交換を受ける。この燃焼ガスは、更に水管群(
B)の下流側の各水管(11)間の隙間、水管群(B)
の各水管θ1)と水管群(C)の各水管Q21との間の
隙間、並びに、各水管(12)同志の隙間を経て煙道(
2)から系外に排出される。尚、隔壁(3)は、その際
に、燃焼室上流側前半部の燃焼ガスの流れの方向を図中
の矢印のごとくに屈折させるごとく働く。
In the square multi-tube once-through boiler having the above configuration, when the combustion chambers are ignited, the combustion gas exchanges heat with the water tubes (11) on the upstream side of the water tube group (B) mainly by radiation heat transfer within the combustion chamber. Then, through the gaps between the wood pipes (11) on the upstream side of the water pipe group (B), the wood pipe group (A) and the water pipe group (B) are connected.
It flows into the space between the water pipe group (8) and the water pipe group (B).
). Here, each water pipe OO on the upstream side of the water pipe group (B) is equal to each water pipe 0ω on the upstream side of the water pipe group (A).
Since the water pipes 0ω on the upstream side of the water pipe group (8) are arranged in a staggered manner, each water pipe 0ω on the upstream side receives heat exchange by radiation from the gap between the water pipes θ1). This combustion gas is further transferred to the water tube group (
Gap between each water pipe (11) on the downstream side of B), water pipe group (B)
The flue (
2) is discharged from the system. At this time, the partition wall (3) acts to bend the direction of the flow of combustion gas in the first half of the upstream side of the combustion chamber, as shown by the arrow in the figure.

上記燃焼ガスは、前述したように、バーナ(1)側から
煙道(2)側に移動するにつれて、温度が低下し、体積
減少する。
As described above, as the combustion gas moves from the burner (1) side to the flue (2) side, its temperature decreases and its volume decreases.

しかしこの発明に係る角型多管式貫流ボイラーニオイテ
ハ、各水を群(A)、(B)、(C) (7)水管QQ
I、(11)。
However, in the square multi-tube once-through boiler according to this invention, each water is divided into groups (A), (B), (C) (7) Water tubes QQ
I, (11).

02)の間隔を燃焼ガスの流れ方向上流側から下流側に
かけて狭くしであるため、燃焼ガスは、バーナ(1)側
(即ち上流側)から煙道(2)側(即ち下流側)まで略
一定の流速で流れる。即ち、上流側では燃焼ガスの体積
は大きいが、水管の間隔が広いため、圧力損失なく通過
することができ、下流側では、燃焼ガスの体積は減少す
るが、水管間隙が狭いため、速い流速で通過することに
なる。
02) is narrowed from the upstream side to the downstream side in the flow direction of the combustion gas, the combustion gas flows approximately from the burner (1) side (i.e. upstream side) to the flue (2) side (i.e. downstream side). Flows at a constant velocity. In other words, although the volume of combustion gas is large on the upstream side, the gap between the water tubes is wide, so it can pass through without pressure loss.On the downstream side, the volume of combustion gas is reduced, but the gap between the water tubes is narrow, so the flow rate is high. It will pass through.

従って、この発明によれば、缶体における圧力損失が少
なく、下流側の燃焼ガスからの熱回収率が高く、更に、
燃焼ガスからの熱伝達効率が、全流路にわたって高い多
管式貫流ボイラーを提供することができる。
Therefore, according to the present invention, the pressure loss in the can body is small, the heat recovery rate from downstream combustion gas is high, and further,
It is possible to provide a multi-tubular once-through boiler with high heat transfer efficiency from combustion gas throughout the entire flow path.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係る角型多管式貫流ボ
イラーは、燃焼ガスが上流から下流まで略均−な流速で
流れるから、局所的な圧力損失や熱伝達効率の低下を防
止することができる。
As explained above, in the square multi-tubular once-through boiler according to the present invention, combustion gas flows at a substantially uniform flow velocity from upstream to downstream, so that local pressure loss and reduction in heat transfer efficiency can be prevented. I can do it.

従って、炉圧の低減化を図れるため送風手段の低出力化
、小型化が実現可能となり、缶体自体の熱伝達効率の向
上が図れるため、ボイラー効率の更なる向上が実現可能
となるからイニシャルコスト並びにランニングコストの
低い多管式貫流ボイラーを供給することができる。
Therefore, since the furnace pressure can be reduced, the blowing means can be made lower in output and smaller in size, and the heat transfer efficiency of the can body itself can be improved, making it possible to further improve boiler efficiency. A multi-tubular once-through boiler with low cost and running cost can be provided.

更に、この発明は、新たに生産ラインを組まずとも、在
来の生産ラインに小改造を施すことにより容易に通用で
きるため、その実施コストを極めて低く抑えることがで
きるものである。
Furthermore, the present invention can be easily applied by making minor modifications to a conventional production line without constructing a new production line, so that the implementation cost can be kept extremely low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る角型多管式貫流ボイラーの一
実施例を示す横断平面図である。 00)、 (Ill、 02)・・・水管特許出願人 
 三浦工業株式会社 第1図
FIG. 1 is a cross-sectional plan view showing an embodiment of a square multi-tubular once-through boiler according to the present invention. 00), (Ill, 02)...Water tube patent applicant
Miura Kogyo Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 複数本の水管を互いに平行に配置し、これら水管群に対
して交叉方向に燃焼ガスを流通させる形式の多管式貫流
ボイラーにおいて、 相対する上記水管群を、燃焼ガス流通方向上流側より、
下流側に向けて先細り状に配置したことを特徴とする角
型多管式貫流ボイラー。
[Claims] In a multi-tube once-through boiler in which a plurality of water tubes are arranged parallel to each other and combustion gas is allowed to flow in cross directions through these water tube groups, From the direction upstream,
A square multi-tubular once-through boiler characterized by its arrangement tapering toward the downstream side.
JP14388488A 1988-06-10 1988-06-10 Square multi-tube once-through boiler Expired - Lifetime JP2673306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14388488A JP2673306B2 (en) 1988-06-10 1988-06-10 Square multi-tube once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14388488A JP2673306B2 (en) 1988-06-10 1988-06-10 Square multi-tube once-through boiler

Publications (2)

Publication Number Publication Date
JPH01312302A true JPH01312302A (en) 1989-12-18
JP2673306B2 JP2673306B2 (en) 1997-11-05

Family

ID=15349264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14388488A Expired - Lifetime JP2673306B2 (en) 1988-06-10 1988-06-10 Square multi-tube once-through boiler

Country Status (1)

Country Link
JP (1) JP2673306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441134B1 (en) * 2002-08-14 2004-07-21 최진민 A Downward type Gas Boiler
KR101223372B1 (en) * 2010-03-03 2013-01-16 김덕진 Water tube boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441134B1 (en) * 2002-08-14 2004-07-21 최진민 A Downward type Gas Boiler
KR101223372B1 (en) * 2010-03-03 2013-01-16 김덕진 Water tube boiler

Also Published As

Publication number Publication date
JP2673306B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US5839505A (en) Dimpled heat exchange tube
US3483920A (en) Heat exchangers
JP6911295B2 (en) boiler
US3414052A (en) Tubular heat exchangers
KR100808417B1 (en) Arrangement in a circulating fluidized bed reactor system
US3756202A (en) Heat exchange tube for use in a boiler and boiler incorporating the same
US2375702A (en) Surface type heat exchanger
JPH01312302A (en) Rectangular shell-and-tube once-through boiler
US2535047A (en) Air preheater for steam generating plants
JPS61191803A (en) Boiler
JPH0631284Y2 (en) Square multi-tube once-through boiler
JPH0112160Y2 (en)
JPH0631283Y2 (en) In-line type multi-tube once-through boiler
JPH0436281B2 (en)
JP2507407Y2 (en) Square multi-tube once-through boiler
JPS6017971B2 (en) water tube boiler
JP3196892U (en) Multi-pass multi-tube once-through boiler
JPS59112197A (en) Heat exchanger
WO2020095572A1 (en) Heat exchanger, boiler equipped with heat exchanger, and heat exchanging method
US3242983A (en) Heat exchanger apparatus
JPH01314802A (en) Square multitubular once-through boiler
SU1010405A1 (en) Tubular recuperator
JPH0424244Y2 (en)
JP3621711B2 (en) Gas fired exhaust gas boiler
JP2898748B2 (en) Multi-tube once-through boiler