JPH01311565A - Electrode and manufacture thereof - Google Patents

Electrode and manufacture thereof

Info

Publication number
JPH01311565A
JPH01311565A JP63141374A JP14137488A JPH01311565A JP H01311565 A JPH01311565 A JP H01311565A JP 63141374 A JP63141374 A JP 63141374A JP 14137488 A JP14137488 A JP 14137488A JP H01311565 A JPH01311565 A JP H01311565A
Authority
JP
Japan
Prior art keywords
graphite
electrode
spacing
range
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63141374A
Other languages
Japanese (ja)
Other versions
JP2718696B2 (en
Inventor
Tomonari Suzuki
鈴木 友成
Hiroshi Wada
弘 和田
Yoshikazu Yoshimoto
好本 芳和
Masaru Yoshida
勝 吉田
Shigeo Nakajima
中島 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15290510&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01311565(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63141374A priority Critical patent/JP2718696B2/en
Priority to EP95202529A priority patent/EP0717456A3/en
Priority to US07/362,505 priority patent/US4978600A/en
Priority to EP89305731A priority patent/EP0346088B1/en
Priority to EP00200483A priority patent/EP1014462A3/en
Priority to DE68928437T priority patent/DE68928437T2/en
Publication of JPH01311565A publication Critical patent/JPH01311565A/en
Priority to US07/580,608 priority patent/US5080930A/en
Publication of JP2718696B2 publication Critical patent/JP2718696B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a high-capacity graphite electrode by using a mixture of high-crystallization graphite and low-crystallization graphite with the spacing of the graphite structure in specific ranges respectively for an electrode active material. CONSTITUTION:A mixture of high-crystallization with the spacing of the graphite structure in the range of 0.3354 to 0.3400nm and low-crystallization with the spacing in the range of 0.343 to 0.355nm is used for an electrode active material. For the manufacture of graphite with different spacings, a hydrocarbon compound which is a starting material is heat-decomposed on a substrate made of iron group elements (iron, cobalt, nickel) or alloys containing them by the chemical vapor phase accumulation method, graphite is accumulated under the preset conditions using the hydrocarbon compound with the molecular weight of 150 or below. Graphite can be efficiently formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は電極及びその製造方法に関し、特にリチウム
やカリウム等のアルカリ金属をドーパント物質とする電
池の電極活物質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an electrode and a method for manufacturing the same, and particularly to an electrode active material for a battery using an alkali metal such as lithium or potassium as a dopant material.

(ロ)従来の技術 従来、アルカリ金属をドーパントとする二次電池の電極
としては、面間隔+cbが0,337nmから0.35
5nmの範囲内にある単一の結晶性を有する黒鉛を活物
質とした電極が知られている(特開昭61−513号公
報及び特開昭61−1072号公報)。
(b) Conventional technology Conventionally, as an electrode for a secondary battery using an alkali metal as a dopant, the interplanar spacing +cb ranges from 0.337 nm to 0.35 nm.
Electrodes using graphite as an active material having a single crystallinity within the range of 5 nm are known (Japanese Patent Laid-Open No. 61-513 and Japanese Patent Laid-open No. 61-1072).

ここで、黒鉛は、炭素六員環の網平面の広がりと重なり
によって形成された構造を有するが、とくにこの六員環
網平面が非常に規則正しく重なったとき、その面間隔が
0.3354nmとなり、一方、これよりも不規則に重
なったとき、その不規則性の増加と共に面間隔は徐々に
大きくなる。上記従来用いられた電極用黒鉛はその面間
隔が上記のうちの狭い範囲内に分布するものであった。
Here, graphite has a structure formed by the spread and overlapping of network planes of six-membered carbon rings, and especially when these six-membered ring network planes overlap very regularly, the interplanar spacing becomes 0.3354 nm, On the other hand, when they overlap more irregularly than this, the interplanar spacing gradually increases as the irregularity increases. The above-mentioned conventional graphite for electrodes had interplanar spacings distributed within the narrow range mentioned above.

(ハ)発明が解決しようとする課題 しかし、このような従来の面間隔が狭い範囲に分布する
結晶性が単一の黒鉛を活物質とした電極は、その電気化
学的充放電容置が小さいという問題点を有していた。と
くに適当な正極と組み合わせて電池として作動させる場
合に重要となる低電位領域での充放電容量が小さく、リ
チウム金属の電位を基準としてOVから+〇、5Vまで
の低電位領域での容量は、黒鉛1110当り18h+A
 h以下と小さなものであった。
(c) Problems to be solved by the invention However, such conventional electrodes using graphite as an active material, which has a single crystallinity and whose interplanar spacing is distributed in a narrow range, have a small electrochemical charge/discharge capacity. There was a problem. In particular, the charge/discharge capacity in the low potential region is small, which is important when operating as a battery in combination with a suitable positive electrode. 18h+A per graphite 1110
It was small, less than h.

この発明は、上記問題を解決するためになされたもので
あり、ことに充放電容量の大きい電極を提供しようとす
るものである。
The present invention was made to solve the above-mentioned problems, and particularly aims to provide an electrode with a large charge/discharge capacity.

(ニ)課題を解決するための手段 本発明者らはかかる黒鉛電極の高容量化を図るべく鋭意
検討を行った結果、面間隔に基づく結晶性の異なる特定
の黒鉛の混合物が良好な電極特性を示すことを見出した
。即ち、面間隔(cbが0.3354r+m 〜0.3
400rvの範囲内にある高結晶性黒鉛と、(山が0.
343ni 〜0,355rvの範囲内にある低結晶性
黒鉛との混合物が低電位部分での単位重量当りの充放電
容量において従来のものよりも優れていることを見出し
、この発明に到達した。
(d) Means for Solving the Problems The present inventors have conducted intensive studies to increase the capacity of such graphite electrodes, and have found that a mixture of specific graphites with different crystallinity based on the interplanar spacing has good electrode properties. We found that this shows that That is, the surface spacing (cb is 0.3354r+m ~ 0.3
Highly crystalline graphite within the range of 400rv and (with a peak of 0.
The inventors have discovered that a mixture with low crystalline graphite in the range of 343ni to 0,355rv is superior to conventional ones in charge/discharge capacity per unit weight in a low potential portion, and has thus arrived at the present invention.

かくしてこの発明によれば、黒鉛構造における面間隔(
d)が0.3354niから0,3400nmの範囲内
にある黒鉛と、同じく面間隔(d+が0,343na+
から0.355rvの範囲内にある黒鉛との混合、物を
電極活物質として用いてなる電極が提供される。
Thus, according to the present invention, the lattice spacing (
d) is within the range of 0.3354ni to 0.3400nm, and the same plane spacing (d+ is 0.343na+
An electrode is provided which uses as an electrode active material a mixture with graphite within the range of 0.355 rv from 0.355 rv.

この発明において、上記各々の面間隔は、通常、X線回
折分析により測定され、具体的には回折ピーク範囲の2
θ値に基づいて決定される。ここで面間隔が0.335
4〜0.3400nmの範囲内にあるとは、この全範囲
に面間隔分布を有していることを必ずしも意味せず、少
なくともこの範囲内に属する面間隔を有しておればよい
。一方の面r1隔が0.343〜0.355no+の範
囲についても同様である。
In this invention, each of the above-mentioned interplanar spacings is usually measured by X-ray diffraction analysis, and specifically,
Determined based on the θ value. Here, the surface spacing is 0.335
Being within the range of 4 to 0.3400 nm does not necessarily mean that the interplanar spacing is distributed over this entire range, but it is sufficient that the interplanar spacing is at least within this range. The same holds true for the range of one surface r1 distance from 0.343 to 0.355no+.

即ち、高結晶性に属する範囲内(0,3354〜0.3
400ni )と低結晶性に属す゛る範囲内(0,34
3〜0,355nm)の面間隔を少なくとも有しておれ
ばよく、例えばこれら両範囲がX線回折ピーク上で連続
状に分布するものであってもよい。
That is, within the range belonging to high crystallinity (0.3354 to 0.3
400ni) and within the range belonging to low crystallinity (0,34ni)
For example, both of these ranges may be continuously distributed on the X-ray diffraction peak.

これらの黒鉛のうち、CuKα線を線源とするX線回折
計を用いた測定において、面間隔の小さい方の黒鉛の(
002)反射の回折極大ピークの回折線強度に対する2
θ(回折角)−25,0’での回折強度の比が0.03
から0.90 、好ましくは0.03から0.50の範
囲内とした場合、例えばリチウム金属の電位を基準とし
てOvから+0.5vまでの低電位部分での充放電容量
が従来の黒鉛電極に比して約1.4〜1.7倍に増加す
る点で好ましい。この比率が0.9を越えると低結晶性
の黒鉛種の比率が高まり、高電位部分までを含めた充放
電容量は増大するものの、充放電曲線の平坦性が失われ
、また、この比率が0.03未満であると高結晶性の黒
鉛種の比率が高まり、逆に、充放電曲線の平坦性は良好
になるものの、高電位部分までを含めた充放電容量が減
少するため、いずれにおいても低電位部分での充放電容
量は減少する点で好ましくない。なお、ここで面間隔の
大きな黒鉛種の(002)反射の回折極大ピーク強度の
代わりに2θ・(回折角)−25,0°での回折強度を
用いるのは2種の黒鉛の(002)反射回折線が近接し
て両ピークの分離が困難な場合を考慮したものである。
Among these graphites, in measurements using an X-ray diffractometer using CuKα radiation as a radiation source, the graphite with the smaller interplanar spacing (
002) 2 for the diffraction line intensity of the diffraction maximum peak of reflection
The ratio of diffraction intensity at θ (diffraction angle) -25,0' is 0.03
to 0.90, preferably within the range of 0.03 to 0.50, for example, the charge/discharge capacity at a low potential from Ov to +0.5V with respect to the potential of lithium metal is higher than that of a conventional graphite electrode. It is preferable that it increases by about 1.4 to 1.7 times. When this ratio exceeds 0.9, the ratio of low-crystalline graphite species increases, and although the charge-discharge capacity including the high potential portion increases, the flatness of the charge-discharge curve is lost, and this ratio increases. If it is less than 0.03, the ratio of highly crystalline graphite species will increase, and conversely, although the flatness of the charge-discharge curve will improve, the charge-discharge capacity including the high potential portion will decrease, so in either case This is also undesirable in that the charge/discharge capacity at the low potential portion decreases. Note that the diffraction intensity at 2θ・(diffraction angle) -25,0° is used here instead of the diffraction maximum peak intensity of (002) reflection of the graphite species with a large interplanar spacing. This takes into account the case where the reflection diffraction lines are close to each other and it is difficult to separate both peaks.

また黒鉛の場合、その面間隔は結晶性の良好な指標とな
ることが知られており、実際、X線回折法での回折ピー
クの半値巾は、面間隔が小さくなるに従って狭くなる。
In the case of graphite, it is known that the interplanar spacing is a good indicator of crystallinity, and in fact, the half-width of a diffraction peak in X-ray diffraction becomes narrower as the interplanar spacing becomes smaller.

従って黒鉛の結晶性の高低は上記のごとき面間隔の大小
で充分に判断することができる。
Therefore, the level of crystallinity of graphite can be sufficiently judged by the size of the interplanar spacing as described above.

この発明における異なった面間隔を有する黒鉛の調製方
法には種々の方法がある。
There are various methods for preparing graphite having different interplanar spacings in the present invention.

ことに、鉄族元素(鉄、コバルト、ニッケル)または、
それを含む合金よりなる基板上に、出発、物質である炭
化水素化合物を化学気相堆積法によって熱分解すること
により合成する方法を利用し、分子量150以下の炭化
水素化合物を用いかつ下記条件: ・供給速度  0.05モル/時間〜15モル/時間・
分子数密度 2X10”分子/Q〜2,6X10”分子
/ρ 、流 速   0.53/分〜10個/分・熱分解温度
 450℃〜1300℃(好ましくは700℃〜120
0℃) で黒鉛の堆積を行うことにより、効率良く上記黒鉛を形
成させることができる。なお、これらから逸脱した条件
においては、前記した面間隔を有する黒鉛、ことに高結
晶性と低結晶性のバランスがとれた黒鉛を形成すること
は困難である。
In particular, iron group elements (iron, cobalt, nickel) or
On a substrate made of an alloy containing the same, a hydrocarbon compound as a starting material is synthesized by thermally decomposing it by chemical vapor deposition, using a hydrocarbon compound with a molecular weight of 150 or less, and under the following conditions:・Feed rate 0.05 mol/hour ~ 15 mol/hour・
Molecular number density: 2 x 10" molecules/Q - 2,6 x 10" molecules/ρ, flow rate: 0.53/min - 10 molecules/min, thermal decomposition temperature: 450°C - 1300°C (preferably 700°C - 120°C)
By depositing graphite at a temperature of 0° C., the graphite can be efficiently formed. Note that under conditions deviating from these, it is difficult to form graphite having the above-described interplanar spacing, especially graphite with a good balance between high crystallinity and low crystallinity.

なお、この除用いる炭化水素化合物としては、脂肪族炭
化水素、芳香族炭化水素、脂環族炭化水素等のいずれで
あってもよく、その具体例としては、例えば、ベンゼン
、トルエン、キシレン、ナフタレン、アントラセン、ヘ
キサメチルベンゼン、1.2−ジブロモエチレン、2−
ブチン、プロパン、アセチレン、ビフェニル、ジフェニ
ルアセチレン及びその置換誘導体等が挙げられる。また
堆積厚みは1〜300A程度が適している。
The hydrocarbon compound to be removed may be any of aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, etc. Specific examples include benzene, toluene, xylene, naphthalene, etc. , anthracene, hexamethylbenzene, 1,2-dibromoethylene, 2-
Examples include butyne, propane, acetylene, biphenyl, diphenylacetylene and substituted derivatives thereof. Further, a suitable deposition thickness is about 1 to 300 Å.

かかる熱分解法に用いる鉄族元素またはそれを含む合金
からなる基板は、その導電性の故に黒鉛電極の集電体と
して用いることができる。従ってこの方法によれば、前
記黒鉛からなる黒鉛活物質の合成と黒鉛電極の形成とを
同時に行うことができ、実用上置も好ましい。なお、こ
の際の基板は、平板状のみならず、発泡状、網状等のい
ずれの形態のものであってもよい。
A substrate made of an iron group element or an alloy containing it used in such a thermal decomposition method can be used as a current collector for a graphite electrode because of its conductivity. Therefore, according to this method, the synthesis of the graphite active material made of the graphite and the formation of the graphite electrode can be performed simultaneously, and it is also preferable for practical use. Note that the substrate in this case is not limited to a flat plate shape, and may be in any form such as a foamed shape or a net shape.

ただしこの発明の黒鉛はたとえばピッチ系炭素等の低結
晶性黒鉛と、高温熱処理を施した炭素繊維等の高結晶性
黒鉛とを粉砕し混合し、焼成することによっても作製す
ることができる。
However, the graphite of the present invention can also be produced by, for example, pulverizing and mixing low-crystalline graphite such as pitch-based carbon and high-crystalline graphite such as carbon fiber subjected to high-temperature heat treatment, and firing the mixture.

このようにして得られた電極は、種々の電池用電極とし
て使用でき、ことにアルカリ金属をドーパントとする二
次電池用の負極として好適に用いることができる。
The electrode thus obtained can be used as an electrode for various batteries, and particularly can be suitably used as a negative electrode for a secondary battery using an alkali metal as a dopant.

(ホ)作 用 面間隔の異なりで特徴づけられる高結晶性黒鉛と低結晶
性黒鉛とが混在しているため、黒鉛電極の低電位部分で
の充放電容量は、従来の単一の結晶性の黒鉛からなるも
のに比して、著しく(例えば約1.4〜1.7倍)増加
する。この低電位部分での充放電容量は、黒鉛電極を適
当な正極と組み合わせて、電池として作動させる場合に
電池容量1電池寿命等の電池性能の向上に役立つもので
ある。
(e) Since high-crystalline graphite and low-crystalline graphite, which are characterized by different working surface spacings, coexist, the charge/discharge capacity at the low potential part of the graphite electrode is different from that of the conventional single crystalline graphite. This increases significantly (for example, about 1.4 to 1.7 times) compared to that made of graphite. The charge/discharge capacity at this low potential portion is useful for improving battery performance such as battery capacity per battery life when the graphite electrode is combined with a suitable positive electrode and operated as a battery.

一方、鉄族元素または、それを含む合金よりなる基板上
に、出発物質である炭化水素化合物を、化学気相堆積法
によって熱分解することによって黒鉛を合成する方法に
より、上記の電極を制御性良く製造することができる。
On the other hand, the above-mentioned electrode can be manufactured in a controlled manner by a method of synthesizing graphite by thermally decomposing a hydrocarbon compound as a starting material on a substrate made of an iron group element or an alloy containing it. Can be manufactured well.

(へ)実施例 実施例1 CVD装置の中にニッケル基材を配置し、化学気相堆積
法によりベンゼンを供給して熱分解することによって、
該基材上に黒鉛を成長(90/J)させ、黒鉛電極を形
成した。このときの化学気相堆積法の反応条件は、供給
速度1.5mol /時間、分子数密度1.OX 10
”分子/ρ、流速1.5C11/分、熱分解温度950
℃である。
(F) Examples Example 1 A nickel base material is placed in a CVD apparatus, and benzene is supplied and thermally decomposed using a chemical vapor deposition method.
Graphite was grown on the base material (90/J) to form a graphite electrode. The reaction conditions for the chemical vapor deposition method at this time were a supply rate of 1.5 mol/hour and a molecular number density of 1.5 mol/hour. OX10
"Molecular/ρ, flow rate 1.5C11/min, thermal decomposition temperature 950
It is ℃.

このように合成された黒鉛は、第1図に示すCuKa線
を線源に用いたX線回折パターンによれば、2θ−26
,3° (面間隔0,339nmに相当する)に(00
2)反射のピークをもつ高結晶性黒鉛と、それより低角
度側の2θ=25° (面間隔0.356rvに相当す
る)にピークをもつ低結晶性黒鉛の混合物であり、該高
結晶性黒鉛の回折強度に対する該低結晶性黒鉛の回折強
度の比は0.18であった。
According to the X-ray diffraction pattern using CuKa rays as a radiation source, the graphite synthesized in this way has a 2θ-26
, 3° (corresponding to a lattice spacing of 0,339 nm) (00
2) It is a mixture of highly crystalline graphite that has a reflection peak and low crystalline graphite that has a peak at 2θ = 25° (corresponding to a lattice spacing of 0.356 rv) on the lower angle side; The ratio of the diffraction intensity of the low crystalline graphite to that of graphite was 0.18.

次にこの黒鉛電極を電解槽内に配設しリチウム金属を対
極とし、リチウムをドーパント物質とし、電解液には1
モル/ρの過塩素酸リチウムを溶解したプロピレンカー
ボネート、参照極にはリチウムを用いて、リチウム原子
のドープ、脱ドープによる充放電試験を行った。この結
果、リチウム参照極に対する放電時の電位変化を第2図
の曲線Aに示すが、後述する比較例に比して約1v以下
の低電位領域で電池容量が著しく向上した。
Next, this graphite electrode is placed in an electrolytic cell, lithium metal is used as a counter electrode, lithium is used as a dopant material, and 1
Using propylene carbonate in which mol/ρ of lithium perchlorate was dissolved and lithium as a reference electrode, a charge/discharge test was conducted by doping and dedoping with lithium atoms. As a result, the potential change during discharge with respect to the lithium reference electrode is shown by curve A in FIG. 2, and the battery capacity was significantly improved in the low potential region of about 1 V or less compared to the comparative example described later.

実施例2 実施例1において、ベンゼンの代りにプロパンを用い、
供給速度を2.2モル/時間に、分子数密度を1.5x
10”分子/gに、流速を0.7cm/分に、熱分解温
度を900℃とする以外、実施例1と同様にして黒鉛を
合成した。
Example 2 In Example 1, using propane instead of benzene,
Feed rate 2.2 mol/hour, molecular number density 1.5x
Graphite was synthesized in the same manner as in Example 1, except that the flow rate was 0.7 cm/min, and the thermal decomposition temperature was 900°C.

合成された黒鉛は、第3図に示すCu Ka線を線源に
用いたX線回折パターンによれば高結晶性黒鉛と低結晶
性黒鉛の混合物であり、2θ=26.3°に対する2θ
−25,0°の回折強度の比は0.23であった。
The synthesized graphite is a mixture of highly crystalline graphite and low crystalline graphite, according to the X-ray diffraction pattern shown in Figure 3 using Cu Ka rays as a radiation source, and the 2θ ratio for 2θ = 26.3°
The ratio of diffraction intensities at −25 and 0 degrees was 0.23.

次にこれを実施例1と同様に黒鉛電極として用い、充放
電試験を行った。この結果は第2図の曲1iABに示す
が、低電位領域での容量が著しく太きかりた。
Next, this was used as a graphite electrode in the same manner as in Example 1, and a charge/discharge test was conducted. The results are shown in track 1iAB of FIG. 2, and the capacitance in the low potential region was significantly large.

比較例 CuKa線を線源に用いたX線回折パターンにおいて、
第4図に示すような2θ−26,3″(面間隔0.33
9nmに相当する)の高結晶性の黒鉛のみからなる黒鉛
電極を用いてリチウム原子のドープ、脱ドープによる充
放電試験を実施例1と同様な方法で行った。この結集第
2因の曲線Cが得られ、低電位領域での容量が小さかっ
た。
Comparative Example In the X-ray diffraction pattern using CuKa radiation as the radiation source,
2θ-26,3″ (plane spacing 0.33″) as shown in Figure 4.
A charge/discharge test by doping and dedoping with lithium atoms was conducted in the same manner as in Example 1 using a graphite electrode made only of highly crystalline graphite (equivalent to 9 nm). Curve C for this second concentration factor was obtained, and the capacitance in the low potential region was small.

(ト)発明の効果 この発明の電極は、低電位部分での充放電容量が通常の
結晶性の単一な黒鉛に比して増大化されたものである。
(G) Effects of the Invention The electrode of the present invention has increased charging and discharging capacity in the low potential portion compared to ordinary crystalline single graphite.

従ってこの発明の電極は適当な正極と組み合わせて、例
えば電池として作動させた場合に電、油性能の向上に役
立つものである。そしてその製造も簡便に行えるため、
その有用性は極めて大なるものである。
Therefore, when the electrode of the present invention is combined with a suitable positive electrode and operated, for example, as a battery, it is useful for improving the performance of electricity and oil. And since it is easy to manufacture,
Its usefulness is extremely great.

【図面の簡単な説明】 第1図及び第3図は、各々この発明の実施例で合成した
黒鉛のX線回折チャートの要部を示すグラフ図、第2図
はこの発明の電極を用いた際の充放電試験結果を比較例
と共に示すグラフ図、第4゛図は従来の黒鉛電極のX線
回折チャートの要部を例示するグラフ図である。 71 図 第 2r21 tit/mAhg−’ 第 3 図 第4図 2Q/7i
[Brief Description of the Drawings] Figures 1 and 3 are graphs showing the main parts of the X-ray diffraction chart of graphite synthesized in Examples of the present invention, and Figure 2 is a graph showing the main part of the X-ray diffraction chart of graphite synthesized in Examples of the present invention. FIG. 4 is a graph illustrating the main part of an X-ray diffraction chart of a conventional graphite electrode. 71 Figure 2r21 tit/mAhg-' Figure 3 Figure 4 2Q/7i

Claims (2)

【特許請求の範囲】[Claims] (1)黒鉛構造における面間隔(d)が0.3354n
mから0.3400nmの範囲内にある黒鉛と、同じく
面間隔(d)が0.343んmから0.355nmの範
囲内にある黒鉛との混合物を電極活物質として用いてな
る電極。
(1) Plane spacing (d) in graphite structure is 0.3354n
An electrode using, as an electrode active material, a mixture of graphite having a surface spacing (d) within a range of 0.3400 nm from 0.3400 nm and graphite having a surface spacing (d) within a range of 0.343 nm to 0.355 nm.
(2)鉄族元素又はそれを含む合金よりなる基板上に炭
化水素化合物を出発原料とする化学気相堆積法によつて
熱分解して黒鉛を形成させることにより請求項(1)記
載の電極を作製することを特徴とする電極の製造方法。
(2) The electrode according to claim (1), wherein graphite is formed by thermal decomposition using a chemical vapor deposition method using a hydrocarbon compound as a starting material on a substrate made of an iron group element or an alloy containing the same. A method for manufacturing an electrode, comprising: manufacturing an electrode.
JP63141374A 1988-06-08 1988-06-08 Electrode Expired - Lifetime JP2718696B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63141374A JP2718696B2 (en) 1988-06-08 1988-06-08 Electrode
EP00200483A EP1014462A3 (en) 1988-06-08 1989-06-07 A method of producing a graphite material for use as a negative electrode of a non-aqueous secondary battery
US07/362,505 US4978600A (en) 1988-06-08 1989-06-07 Electrode and a method for the production of the same
EP89305731A EP0346088B1 (en) 1988-06-08 1989-06-07 Electrode and method for its production
EP95202529A EP0717456A3 (en) 1988-06-08 1989-06-07 Electrode and method for its production
DE68928437T DE68928437T2 (en) 1988-06-08 1989-06-07 Electrode and process for its manufacture
US07/580,608 US5080930A (en) 1988-06-08 1990-09-11 Thermal cvd for the production of an electrode comprising a graphite composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141374A JP2718696B2 (en) 1988-06-08 1988-06-08 Electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP07995896A Division JP3158047B2 (en) 1988-06-08 1996-04-02 Electrode and method of manufacturing electrode

Publications (2)

Publication Number Publication Date
JPH01311565A true JPH01311565A (en) 1989-12-15
JP2718696B2 JP2718696B2 (en) 1998-02-25

Family

ID=15290510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141374A Expired - Lifetime JP2718696B2 (en) 1988-06-08 1988-06-08 Electrode

Country Status (4)

Country Link
US (2) US4978600A (en)
EP (3) EP0346088B1 (en)
JP (1) JP2718696B2 (en)
DE (1) DE68928437T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091624A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
JP2592152B2 (en) * 1989-12-19 1997-03-19 シャープ株式会社 Method for producing carbon electrode for non-aqueous lithium secondary battery
JP3019421B2 (en) * 1990-12-28 2000-03-13 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH04308670A (en) * 1991-04-05 1992-10-30 Sanyo Electric Co Ltd Secondary battery
US5686138A (en) * 1991-11-12 1997-11-11 Sanyo Electric Co., Ltd. Lithium secondary battery
EP0541889B1 (en) * 1991-11-12 1998-09-09 Sanyo Electric Co., Limited. Lithium secondary battery
JP2999085B2 (en) * 1992-02-04 2000-01-17 シャープ株式会社 Carbon composite electrode material and method for producing the carbon composite electrode material
DE4310321C2 (en) * 1992-03-31 1995-07-06 Ricoh Kk Non-aqueous secondary battery
JP3276983B2 (en) * 1992-05-25 2002-04-22 新日本製鐵株式会社 Anode material for lithium secondary battery and method for producing the same
DE69327196T2 (en) * 1992-06-01 2000-05-25 Toshiba Kawasaki Kk Process for the production of carbon-containing material for negative electrodes and lithium secondary batteries containing the same
US5776610A (en) * 1993-02-03 1998-07-07 Sharp Kabushiki Kaisha Carbon composite electrode material and method of making thereof
JP2991884B2 (en) * 1993-02-16 1999-12-20 シャープ株式会社 Non-aqueous secondary battery
JP3129087B2 (en) * 1994-07-06 2001-01-29 松下電器産業株式会社 Graphite layer
US5900336A (en) * 1995-01-25 1999-05-04 Ricoh Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP3239671B2 (en) * 1995-03-08 2001-12-17 松下電器産業株式会社 Film heaters, heated seats, evaporation boats and heating furnaces
US5750288A (en) * 1995-10-03 1998-05-12 Rayovac Corporation Modified lithium nickel oxide compounds for electrochemical cathodes and cells
EP0810680B1 (en) * 1996-05-27 2005-05-18 SANYO ELECTRIC Co., Ltd. Non-aqueous electrolyte battery with carbon electrode
KR100269923B1 (en) * 1998-03-10 2000-10-16 김순택 Method for manufacturing active material for negative electrode of lithium series secondary battery
JP2000228187A (en) * 1999-02-08 2000-08-15 Wilson Greatbatch Ltd Chemically deposited electrode component and its manufacture
KR20060022230A (en) * 2003-07-22 2006-03-09 비와이디 컴퍼니 리미티드 Improved graphite granules and their method of fabrication
CN100448328C (en) * 2005-06-20 2008-12-31 磐石市闽星炭素有限责任公司 Production method of ultrohigh power graphite electrode
JP5401035B2 (en) * 2007-12-25 2014-01-29 日立ビークルエナジー株式会社 Lithium ion secondary battery
KR101084069B1 (en) 2010-06-17 2011-11-16 삼성에스디아이 주식회사 Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324555A (en) * 1986-03-27 1988-02-01 Sharp Corp Electrode and its manufacture

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088687A (en) 1959-08-25 1963-05-07 Lockheed Aircraft Corp Endless loop tape magazine
US3725110A (en) * 1969-11-13 1973-04-03 Ducommun Inc Process of coating articles with pyrolytic graphite and coated articles made in accordance with the process
US3844837A (en) * 1972-07-07 1974-10-29 Us Navy Nonaqueous battery
US4048953A (en) * 1974-06-19 1977-09-20 Pfizer Inc. Apparatus for vapor depositing pyrolytic carbon on porous sheets of carbon material
US4264686A (en) * 1978-09-01 1981-04-28 Texas Instruments Incorporated Graphite felt flowthrough electrode for fuel cell use
US4707423A (en) * 1982-06-10 1987-11-17 Celanese Corporation Electric storage battery and process for the manufacture thereof
JPS6016806A (en) * 1983-07-06 1985-01-28 Koa Sekiyu Kk Manufacture of formed carbon
EP0165047B1 (en) * 1984-06-12 1997-10-15 Mitsubishi Chemical Corporation Secondary batteries containing electrode material obtained by pyrolysis
US4645713A (en) * 1985-01-25 1987-02-24 Agency Of Industrial Science & Technology Method for forming conductive graphite film and film formed thereby
DE3678030D1 (en) * 1985-03-20 1991-04-18 Sharp Kk MANUFACTURE OF CARBON LAYERS.
US4702977A (en) * 1985-04-30 1987-10-27 Toshiba Battery Co., Ltd. Secondary battery using non-aqueous solvent
EP0205856B1 (en) * 1985-05-10 1991-07-17 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
US4863814A (en) * 1986-03-27 1989-09-05 Sharp Kabushiki Kaisha Electrode and a battery with the same
CA1296766C (en) * 1986-05-13 1992-03-03 Yuzuru Takahashi Secondary battery
US4908198A (en) * 1986-06-02 1990-03-13 The Electrosynthesis Company, Inc. Fluorinated carbons and methods of manufacture
US4863818A (en) * 1986-06-24 1989-09-05 Sharp Kabushiki Kaisha Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
JPH0815074B2 (en) * 1986-11-11 1996-02-14 シャープ株式会社 Method for manufacturing carbon body electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324555A (en) * 1986-03-27 1988-02-01 Sharp Corp Electrode and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091624A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
EP1014462A2 (en) 2000-06-28
EP0717456A2 (en) 1996-06-19
EP0346088B1 (en) 1997-11-12
DE68928437T2 (en) 1998-03-12
US4978600A (en) 1990-12-18
EP0717456A3 (en) 1996-10-16
DE68928437D1 (en) 1997-12-18
JP2718696B2 (en) 1998-02-25
EP1014462A3 (en) 2002-06-26
US5080930A (en) 1992-01-14
EP0346088A1 (en) 1989-12-13

Similar Documents

Publication Publication Date Title
JPH01311565A (en) Electrode and manufacture thereof
JP3444786B2 (en) Lithium secondary battery
EP0251677B1 (en) Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
Zhang et al. Construction of 1T‐MoSe2/TiC@ C Branch–Core Arrays as Advanced Anodes for Enhanced Sodium Ion Storage
CN112357907A (en) Amorphous boron-nitrogen co-doped carbon nanotube and preparation method and application thereof
JP2592152B2 (en) Method for producing carbon electrode for non-aqueous lithium secondary battery
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JPH063745B2 (en) Non-aqueous electrolyte secondary battery
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
JP3532115B2 (en) Non-aqueous secondary battery
JP3158047B2 (en) Electrode and method of manufacturing electrode
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JP2656003B2 (en) Non-aqueous secondary battery
JP2733402B2 (en) Rechargeable battery
JP3172669B2 (en) Non-aqueous lithium secondary battery
JP2702829B2 (en) Negative electrode for battery and manufacturing method thereof
JP2019192462A (en) LITHIUM ION SECONDARY BATTERY INCLUDING Si-CONTAINING NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2643035C (en)
JP3229847B2 (en) Non-aqueous electrolyte secondary battery
JPH11135154A (en) Nonaqueous electrolyte type secondary battery
JP2020129496A (en) Electrolyte solution and secondary battery
JPH01281673A (en) Graphite electrode and secondary battery
JP2556840C (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11