JPH01310526A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JPH01310526A
JPH01310526A JP63142152A JP14215288A JPH01310526A JP H01310526 A JPH01310526 A JP H01310526A JP 63142152 A JP63142152 A JP 63142152A JP 14215288 A JP14215288 A JP 14215288A JP H01310526 A JPH01310526 A JP H01310526A
Authority
JP
Japan
Prior art keywords
butyrolactone
electric double
gamma
methyl
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63142152A
Other languages
Japanese (ja)
Inventor
Masashi Okamoto
岡本 正史
Tomoko Yamagishi
山岸 友子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63142152A priority Critical patent/JPH01310526A/en
Publication of JPH01310526A publication Critical patent/JPH01310526A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To make it possible to obtain an electric double-layer capacitor which will be maintained stable for a long period even in a high temperature atmosphere by using a specific butyrolactone as the solvent of an electrolyte. CONSTITUTION:Conductivity electrodes 2, consisting of a metal layer of aluminum, is formed and constituted on one surface of an activated carbon fiber as a polarized electrode 1, an electronic short circuit is prevented by interposing a separator 3, consisting of polypropylene, between said polarized electrodes 1, and after an electrolyte has been injected, component materials are put in a stainless steel case 4, both poles are insulated with a gasket 5, and a hole- sealing work is conducted. The deliverive shown by the formula I is used as the solvent of the electrolyte. Said deliverive is made of alpha-methyl-gamma- butyrolactone, or beta-methyl-gamma-butyrolactone, or gamma-methyl-gamma-butyrolactone, or gamma- methyl-gamma-butyrolactone. As a result, the electric double-layer capacitor, which can be used for a long period in a high temperature atmosphere, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電機器にメモリーバックアップ用等として
用いられる電気二重層コンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electric double layer capacitor used for memory backup in various electrical appliances.

従来の技術 従来におけるこの種の電気二重層コンデンサは活性炭粒
子をプレス成型したり、適届なバインダーとして練合し
たものを集電体金属上に塗布したり、活性炭繊維上にア
ルミニウムの溶射層を形成して分極性電極とし、この分
極性電極をそれぞれステンレススチールからなる金属ケ
ースに収納し、2つの分極性電極を間に電解液とセパレ
ータを介して対向させ、両金属ケースの開口周縁部をガ
スケットを介して封口して構成していた。
Conventional technology Conventionally, this type of electric double layer capacitor is manufactured by press-molding activated carbon particles, kneading a suitable binder and coating it on a metal current collector, or spraying a layer of aluminum on activated carbon fibers. These polarizable electrodes are each housed in a metal case made of stainless steel, and the two polarizable electrodes are placed facing each other with an electrolyte and a separator interposed between them, and the opening periphery of both metal cases is It was constructed by sealing it with a gasket.

ここで電解液は、水溶液系と非水系の2つの系に分類さ
れる。前者は硫酸あるいは水竣化カリウムの水浴液系電
解液である。後者はプロピレンカーボネートやγ−ブチ
ロラクトン等の有機溶媒にテトラエチルアンモニウムの
ホウフッ化塩や過塩素酸塩を溶質とした非水系電解液で
ある。この非水系電解液は、水溶液系のものと比較して
単セル当り2倍以上の耐電圧が得られるために、小形。
Here, electrolytes are classified into two types: aqueous and non-aqueous. The former is a water bath type electrolyte of sulfuric acid or hydrated potassium. The latter is a non-aqueous electrolytic solution containing tetraethylammonium fluoroborate or perchlorate as a solute in an organic solvent such as propylene carbonate or γ-butyrolactone. This non-aqueous electrolyte has more than twice the withstand voltage per single cell compared to an aqueous solution, so it is compact.

軽量化が可能である。It is possible to reduce the weight.

代表的な非水系の電解液組成としては、テトラエチルア
ンモニウムテトラフルオロボレートとプロピレンカーボ
ネートが挙げられ、この電解液を使用した場合70’C
の高温下で約2000時間の連続通電電圧印加が可能で
ある。
Typical non-aqueous electrolyte compositions include tetraethylammonium tetrafluoroborate and propylene carbonate, and when this electrolyte is used, 70'C
Continuous voltage application for about 2,000 hours is possible at a high temperature of .

しかし上記と同一構成で85°C中で使用した場合、内
部直流抵抗の増加あるいは静電容量の減少が短時間で発
生する。現行の組成で85°C中で使用するためには単
セル当りの印加電圧を下げる必要があり、単セルを積層
して使用しなければならならなかった。
However, if the same configuration as above is used at 85° C., an increase in internal DC resistance or a decrease in capacitance will occur in a short period of time. In order to use the current composition at 85°C, it was necessary to lower the applied voltage per single cell, and the single cells had to be stacked.

発明が解決しようとする課題 従来の電気二重層コンデンサ用の非水系電解液の、溶媒
として用いられていたγ−ブチロラクトンやプロピレン
カーボネートは、85°Cの高温下で分解電圧が低下す
るために連続電圧印加によって、ガス発生あるいは分極
性電極表面上への反応生成物の付着が発生していた。こ
れが原因となって、著しい内部直流抵抗の増加あるいは
容1の減少を招くという欠点を有していた。
Problems to be Solved by the Invention γ-Butyrolactone and propylene carbonate, which have been used as solvents in conventional non-aqueous electrolytes for electric double layer capacitors, cannot be used continuously because their decomposition voltage decreases at high temperatures of 85°C. The application of voltage caused gas generation or adhesion of reaction products onto the polarizable electrode surface. This has the disadvantage of causing a significant increase in internal DC resistance or a decrease in capacitance 1.

本発明は従来技術における上記問題点を解決しようとす
るもので、電解液組成の溶媒の分解電圧を向上させるこ
とにより、高温度下で長時間使用できる電気二重層コン
デンサの提供を目的とする。
The present invention aims to solve the above-mentioned problems in the prior art, and aims to provide an electric double layer capacitor that can be used for a long time at high temperatures by improving the decomposition voltage of the solvent in the electrolyte composition.

課題を解決するための手段 この問題点を解決するために本発明は、電解液の溶媒に
γ−ブチロラクトンの誘導体を用いるものであり、その
誘導体はα−メチル−γ−ブチロラクトンもしくは、β
−メチル−γ−ブチロラクトンもしくはγ−メチルーγ
−ブチロラクトンである。そして電気二重層コンデンサ
を構成する電極は、分極性電極で対をなしているか、も
しくは、分極性電極と非分極性電極で対をなしているも
のである。
Means for Solving the Problems In order to solve this problem, the present invention uses a γ-butyrolactone derivative as a solvent for the electrolyte, and the derivative is α-methyl-γ-butyrolactone or β-methyl-γ-butyrolactone.
-Methyl-γ-butyrolactone or γ-methyl-γ
-Butyrolactone. The electrodes constituting the electric double layer capacitor are polarizable electrodes in pairs, or polarizable electrodes and non-polarizable electrodes in pairs.

作用 従来の電気二重層コンデンサ用の非水系電解液の溶媒と
して用いられていた、γ−ブチロラクトンやプロピレン
カーボネートのもつカルホ′ニル基の酸素と炭素原子は
、酸化環元反応にあずかυ易い。そこで本発明では、ブ
チロラクトンのα位。
Function The oxygen and carbon atoms of the carbonyl groups of γ-butyrolactone and propylene carbonate, which have been used as solvents for conventional non-aqueous electrolytes for electric double layer capacitors, are susceptible to oxidative ring reactions. Therefore, in the present invention, the α-position of butyrolactone is used.

β位もしくはγ位に電子供与性のメチル基を導入するこ
とにより、カルボン基の炭素上の電子密度を高くして、
還元されに〈〈シており、このことで分解電圧の同上が
図れる。
By introducing an electron donating methyl group into the β or γ position, the electron density on the carbon of the carboxyl group is increased,
Since it is not reduced, the decomposition voltage can be increased.

実施例 (実施例1) 以下、本発明の一英施例による電気二重層コンデンサの
構成を第1図に示す。第1図において分極性電極1とし
て、活性炭繊維の片側表面にアルミニウムの金属層をプ
ラズマ溶射法により導電性電極2を形成して構成し、こ
の分極性電極1を間にポリプロピレン製のセパレータ3
を介して電子的煙路を防止し、電解液を注入した後、コ
イン型のステンレスケース4に上記構成物を入れ、ガス
ケット6で両極を絶縁するとともに封口した。
Embodiment (Example 1) The structure of an electric double layer capacitor according to an embodiment of the present invention is shown in FIG. 1 below. In FIG. 1, a polarizable electrode 1 is constructed by forming a conductive electrode 2 on one surface of an activated carbon fiber with a metal layer of aluminum by plasma spraying, and this polarizable electrode 1 is sandwiched between a polypropylene separator 3
After preventing an electronic smoke path through a gasket and injecting an electrolytic solution, the above structure was placed in a coin-shaped stainless steel case 4, and both electrodes were insulated and sealed with a gasket 6.

このような構成をしたコンデンサの電解液として表1に
示すものを検討した。表中&1.2,3が本発明のコン
デンサ、應4,5が従来のものである。
The electrolytes shown in Table 1 were investigated as electrolytes for capacitors having such a configuration. In the table, &1, 2 and 3 are capacitors of the present invention, and 4 and 5 are conventional capacitors.

またA1〜5において、初期内部直流抵抗値と、86°
Cにて定格電圧(単セルに2.8 V )を印加し20
00時間を経過したコンデンサの内部直流抵抗値及び初
期静電容量値を基準とする静電容量変化率を同じく表1
に示した。
In addition, in A1 to A5, the initial internal DC resistance value and 86°
Apply the rated voltage (2.8 V to a single cell) at 20
The capacitance change rate based on the internal DC resistance value and initial capacitance value of the capacitor after 00 hours is also shown in Table 1.
It was shown to.

表1からA4+  5の従来の電解液を使用したものよ
りもA1,2.3のγ−ブチロラクトンの誘導体を溶媒
とする電解液を用いた本発明のコンデンサの特性が良好
であることがわかる。これはγ−ブチロラクトンに電子
供与性のメチル基を導入することにより電気化学的に安
定化したことによる。
It can be seen from Table 1 that the characteristics of the capacitor of the present invention using the electrolytic solution using the γ-butyrolactone derivative of A1, 2.3 as a solvent are better than those using the conventional electrolytic solution of A4+5. This is because γ-butyrolactone is electrochemically stabilized by introducing an electron donating methyl group.

(以下余白) (実施例2) 第2図に示すように分極性電極1として、活性炭繊維の
片側表面にアルミニウムの金属層をプラズマ溶射法によ
り導電性電極2を形成し陽極電極体を得る。この電極体
に陰極電極体としての非分極性電極体6(例えばリチウ
ム)を対向させ、両者の間にポリプロピレン製のセパレ
ータ3を介して電子的短絡を防止し、電解液を注入した
後、コイン型のステンレスケース4に上記構成分を入れ
ガスケット5で両極を絶縁するとともに封口した。
(The following is a blank space) (Example 2) As shown in FIG. 2, a conductive electrode 2 is formed as a polarizable electrode 1 on one surface of an activated carbon fiber by a plasma spraying method to form an aluminum metal layer to obtain an anode electrode body. A non-polarizable electrode body 6 (for example, lithium) as a cathode electrode body is placed opposite to this electrode body, a polypropylene separator 3 is interposed between the two to prevent electronic short circuit, and after the electrolyte is injected, a coin is placed. The above-mentioned components were placed in a molded stainless steel case 4, and both electrodes were insulated and sealed with a gasket 5.

この様な構成音したコンデンサの電解液として表2に示
すものを検討した。表2に本発明によるコンデンサの諸
特性を示す。
The electrolytes shown in Table 2 were investigated as electrolytes for capacitors with such a sound structure. Table 2 shows various characteristics of the capacitor according to the present invention.

(以下余白) 発明の効果 以上の様に本発明によれば、電解液の溶媒として、α−
メチル−γ−ブチロラクトンもしくは、β−メチル−γ
−ブチロラクトンもしくは、γ−メチルーγ−ブチロラ
クトンを用いると、85℃の高温中でも長期に渡って安
定な電気二重層コンデンサを得ることができる。
(Hereinafter, blank space) Effects of the Invention As described above, according to the present invention, α-
Methyl-γ-butyrolactone or β-methyl-γ
When -butyrolactone or γ-methyl-γ-butyrolactone is used, an electric double layer capacitor that is stable for a long period of time even at a high temperature of 85°C can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の一実施例による
電気二重層コンデンサの断面図である。 1・・・・・・分極性電極、2・・・・・・導電性電極
、3・・・・・・セパレータ、4・・・・・・ステンレ
スケース、5・・・・・・ガスケット、6・・・・・・
非合極性電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
一一亦慰役を本 ど−導危宅慰 J−でハ0レーダー 4〜 ステンシズケース 5−一一方゛ズケー7へ 第1図 第2図
1 and 2 are sectional views of an electric double layer capacitor according to an embodiment of the present invention, respectively. 1... Polarizable electrode, 2... Conductive electrode, 3... Separator, 4... Stainless steel case, 5... Gasket, 6...
Non-polarized electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
11. The consolation role is actually led to the home consolation J-.

Claims (6)

【特許請求の範囲】[Claims] (1)分極性電極と電解液との界面で形成される電気二
重層を利用し、かつ電解液の溶媒としてγ−ブチロラク
トン▲数式、化学式、表等があります▼の誘導体を用い
たことを特徴とする電気二重層コンデンサ。
(1) It is characterized by the use of the electric double layer formed at the interface between the polarizable electrode and the electrolyte, and the use of a derivative of γ-butyrolactone (there are mathematical formulas, chemical formulas, tables, etc.) as the solvent for the electrolyte. Electric double layer capacitor.
(2)γ−ブチロラクトンの誘導体は、α−メチル−γ
−ブチロラクトン▲数式、化学式、表等があります▼で
ある請求項1記載の電気二重層コンデンサ。
(2) The derivative of γ-butyrolactone is α-methyl-γ
The electric double layer capacitor according to claim 1, which is -butyrolactone.
(3)γ−ブチロラクトンの誘導体は、β−メチル−γ
−ブチロラクトン▲数式、化学式、表等があります▼で
ある請求項 1記載の電気二重層コンデンサ。
(3) The derivative of γ-butyrolactone is β-methyl-γ
The electric double layer capacitor according to claim 1, which is -butyrolactone.
(4)γ−ブチロラクトンの誘導体は、γ−メチル−γ
−ブチロラクトン▲数式、化学式、表等があります▼で
ある請求項 1記載の電気二重層コンデンサ。
(4) The derivative of γ-butyrolactone is γ-methyl-γ
The electric double layer capacitor according to claim 1, which is -butyrolactone.
(5)分極性電極を活性炭で構成した請求項1記載の電
気二重層コンデンサ。
(5) The electric double layer capacitor according to claim 1, wherein the polarizable electrode is made of activated carbon.
(6)少なくとも一方の電極が非分極性電極である請求
項1記載の電気二重層コンデンサ。
(6) The electric double layer capacitor according to claim 1, wherein at least one electrode is a non-polarizable electrode.
JP63142152A 1988-06-09 1988-06-09 Electric double-layer capacitor Pending JPH01310526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142152A JPH01310526A (en) 1988-06-09 1988-06-09 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142152A JPH01310526A (en) 1988-06-09 1988-06-09 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JPH01310526A true JPH01310526A (en) 1989-12-14

Family

ID=15308571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142152A Pending JPH01310526A (en) 1988-06-09 1988-06-09 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPH01310526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132165A (en) * 1992-10-15 1994-05-13 Toho Chem Ind Co Ltd Electrolyte for driving electrolytic capacitor
JP2018164009A (en) * 2017-03-27 2018-10-18 ニチコン株式会社 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132165A (en) * 1992-10-15 1994-05-13 Toho Chem Ind Co Ltd Electrolyte for driving electrolytic capacitor
JP2018164009A (en) * 2017-03-27 2018-10-18 ニチコン株式会社 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Similar Documents

Publication Publication Date Title
JP2000150316A (en) Electrolyte for use in a capacitor
JPH088147A (en) Electric capacitor
JP2015005785A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JP3648176B2 (en) Metal oxide electrochemical pseudocapacitor using organic electrolyte
JPH01310526A (en) Electric double-layer capacitor
JP3812098B2 (en) Electric double layer capacitor
Lewandowski et al. N-Methyl-N-propylpiperidinium bis (trifluoromethanesulphonyl) imide as an electrolyte for carbon-based double-layer capacitors
JPS63215031A (en) Electric double-layer capacitor
JPH0332203B2 (en)
JP3837866B2 (en) Electric double layer capacitor
RU93002647A (en) DOUBLE ELECTRIC LAYER CAPACITOR
JPH02135719A (en) Electrolyte for electrical-double-layer capacitor
Pollock et al. Electrochemical properties of a new electrode material, Ti4O7
JPH01220424A (en) Electric double layer capacitor
JP2816039B2 (en) Manufacturing method of electric double layer capacitor
JP3433444B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
JP3792528B2 (en) Manufacturing method of electric double layer capacitor
JP4158412B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JP2002367860A (en) Electrolyte used for electrochemical rechargeable device, and electrochemical rechargeable device using the electrolyte
JP2003109861A (en) Electrical double layer capacitor and electrolyte therefor
JP2000331887A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
JPS63215032A (en) Electric double-layer capacitor
JPS61203620A (en) Electric double-layer capacitor
Suhirtharani et al. Effect of Electrolyte Additives for Cadmium Battery Electrodes
JPS61203626A (en) Electric double-layer capacitor