JPH01310502A - Thin film resistor - Google Patents

Thin film resistor

Info

Publication number
JPH01310502A
JPH01310502A JP63142104A JP14210488A JPH01310502A JP H01310502 A JPH01310502 A JP H01310502A JP 63142104 A JP63142104 A JP 63142104A JP 14210488 A JP14210488 A JP 14210488A JP H01310502 A JPH01310502 A JP H01310502A
Authority
JP
Japan
Prior art keywords
ruthenium
manganese
resistance
thin film
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63142104A
Other languages
Japanese (ja)
Inventor
Shinji Saito
斎藤 紳治
Keizaburo Kuramasu
敬三郎 倉増
Kiyoharu Yamashita
清春 山下
Kazuyuki Okano
和之 岡野
Chiharu Hayashi
千春 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63142104A priority Critical patent/JPH01310502A/en
Publication of JPH01310502A publication Critical patent/JPH01310502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve excellent contact by making a thin film resistor composed of a sintered body of fine particles of ruthenium oxide and manganese oxide. CONSTITUTION:A coating composition containing both a compound having ruthenium in its structure and a compound having manganese in its structure is applied to a board and then the coated board is sintered. In addition to the metal-based electroconductive mechanism, the electroconductive mechanism derived from a thermal activation process caused by manganese oxide entering the grain boundary of ruthenium oxide and serving as a barrier or that derived from the tunnel effect contribute to giving a very smell temperature coefficient of resistance to the resistor. Further, selected sintering temperatures allow few particles to grow, whereby the sophisticated structure of a sintered body remains intact. In this way, addition of manganese has the effect of suppressing both growth of particles and gasification of ruthenium, thereby allowing modest variations in resistance value with increasing sintering temperatures. Accordingly, the temperature coefficient of resistance is reduced, which then all excellent contact to be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器に利用される薄膜抵抗体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film resistor used in various electronic devices.

従来の技術 従来より各種抵抗体は電子機器に於て必須の部品である
。その中でも酸化ルテニウム糸抵抗体はハイブリッドI
C、サーマルヘッド、チップ抵抗器などに広く利用され
ている。これら抵抗体は、一般に厚膜型と薄膜型に分か
れる。厚膜型は、酸化ルテニウムの粉末をガラスフリッ
ト等の無機バインダーと混合し、ペースト化したものを
塗布・焼成することにより作製されている。製造設備、
工程とも簡単なものですみ、安価に製造できるが、無機
バインダーとの分散系であるため抵抗値、抵抗温度係数
のバラ付きが大きく再現性に乏しい。
2. Description of the Related Art Various resistors have been essential components in electronic equipment. Among them, the ruthenium oxide thread resistor is Hybrid I
It is widely used in C, thermal heads, chip resistors, etc. These resistors are generally classified into thick film type and thin film type. The thick-film type is produced by mixing ruthenium oxide powder with an inorganic binder such as glass frit, making a paste, and then applying and baking it. production equipment,
The process is simple and it can be manufactured at low cost, but because it is a dispersion system with an inorganic binder, the resistance value and temperature coefficient of resistance vary widely and have poor reproducibility.

また、厚膜であるため放熱性が悪<、1Ti4電力性が
薄膜型に比べ劣っている、 一方、薄膜型は通常、PVD 、 CVI)等の真空装
置を用いるプロセスにより作製されるため、製造設備が
高価になり、工程も複雑になるためコストが高くなる。
In addition, because it is a thick film, its heat dissipation properties are poor, and its power properties are inferior to those of thin film types.On the other hand, thin film types are usually manufactured by processes that use vacuum equipment such as PVD and CVI), so they are difficult to manufacture. The equipment becomes expensive and the process becomes complicated, leading to higher costs.

本発明者らは上記問題点を解決するだめに、ルテニウム
を構造中に有する化合物を含む塗布液を塗布・焼成する
ことにより作製される薄膜抵抗体について開発した。こ
の抵抗体は真空装置を用いずに、厚膜抵抗体と同様の塗
布・焼成プロセスによシ作製でき、性能とコストを両立
している。
In order to solve the above-mentioned problems, the present inventors developed a thin film resistor manufactured by coating and baking a coating liquid containing a compound having ruthenium in its structure. This resistor can be manufactured by the same coating and firing process as a thick film resistor without using a vacuum device, achieving both performance and cost.

発明が解決しようとする課題 上記方法により、薄膜抵抗体を製造しようとする場合2
つの問題点があった。1つは抵抗温度係数が大きいこと
である。酸化ルテニウム単独の膜の場合+700p p
 m7℃、抵抗値を上げる為にアルカリ土類金属、シリ
コン、アルシミニウム等ヲ添加物として使った場合、±
300−1000p p m7℃となる。高精度の測定
機、電子機器においては±6−10ppm/℃の抵抗温
度係数が要求されており、汎用機器においても抵抗温度
係数が小さい方が好ましいことは言うまでもないCまた
、サーマルヘッドのように抵抗体を発熱体として使う場
合も抵抗温度係数が小さくなくてはならない。
Problems to be Solved by the Invention Case 2 When attempting to manufacture a thin film resistor by the above method
There were two problems. One is that the temperature coefficient of resistance is large. +700pp for a film made of ruthenium oxide alone
m7℃, if alkaline earth metals, silicon, aluminum, etc. are used as additives to increase resistance, ±
300-1000pp m7℃. High-precision measuring instruments and electronic devices require a temperature coefficient of resistance of ±6-10 ppm/℃, and it goes without saying that a smaller temperature coefficient of resistance is preferable for general-purpose equipment as well. When using a resistor as a heating element, the temperature coefficient of resistance must be small.

抵抗温度係数が負に大きい場合は、発熱体を定電圧駆動
しているため発熱体に過電流が流れ、破断の原因となる
。正に大きい場合は発熱量の不足で正確な動作ができな
い。許容範囲は−500−1000ppm/℃であるが
、小さいほど正確な動作ができる。
If the temperature coefficient of resistance is negatively large, the heating element is driven at a constant voltage, so an overcurrent flows through the heating element, causing breakage. If it is positively large, accurate operation cannot be performed due to insufficient heat generation. The allowable range is -500-1000 ppm/°C, but the smaller the range, the more accurate the operation.

もう一つの問題点は、抵抗塗布液を塗布したのちの焼成
工程で生じる。膜の密着力を充分なものにするために、
焼成は500−1000℃(基板により異なる)で行う
。一般的に熱分解は400℃以下で終了し、形成された
薄膜は100A程度の粒径を持つ微粒子による焼結体構
造を取る。焼成温度を上げると粒成長が起こり、700
℃前後からルテニウムの気化も始まるため、空隙が多く
なり膜の均質性が損なわれる。アルカリ土類金属等を加
えた場合それが更に顕著になり、400−600℃で多
元系酸化物が形成されると特定温度で樺嬬な粒成長が起
こって粒径は1000Å以上になり密着力も弱くなる。
Another problem arises in the firing process after applying the resistive coating liquid. In order to ensure sufficient adhesion of the film,
Firing is performed at 500-1000°C (depending on the substrate). Generally, thermal decomposition is completed at 400° C. or lower, and the formed thin film has a sintered structure made of fine particles having a particle size of about 100A. Grain growth occurs when the firing temperature is increased, and 700
Since the vaporization of ruthenium begins around ℃, the number of voids increases and the homogeneity of the film is impaired. This becomes even more noticeable when alkaline earth metals are added, and when multi-component oxides are formed at 400-600°C, slow grain growth occurs at a certain temperature, resulting in grain sizes of 1000 Å or more and poor adhesion. become weak.

それ故に、本発明の目的は上記酸化ルテニウム系抵抗体
の問題点を解決した、抵抗温度係数が小さく充分な密着
性を持ち、膜質に優れた薄膜抵抗体を提供しようとする
ものである。
Therefore, an object of the present invention is to provide a thin film resistor having a small resistance temperature coefficient, sufficient adhesion, and excellent film quality, which solves the problems of the ruthenium oxide resistor described above.

課題を解決するための手段 上記問題点を解決する為、本発明は薄膜抵抗体を酸化ル
テニウムと酸化マンガンの微粒子の焼結体からなる構造
としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a thin film resistor with a structure consisting of a sintered body of fine particles of ruthenium oxide and manganese oxide.

作用 上記構成とすることにより、抵抗温度係数が小さく、充
分な密着性を持つ薄膜抵抗体とすることができる。
Effects By having the above structure, a thin film resistor having a small resistance temperature coefficient and sufficient adhesion can be obtained.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

即ち、本発明はルテニウムを構造中に有する化合物とマ
ンガンを構造中に有する化合物を含む塗布液を基板上に
塗布・焼成することによシ抵抗体膜を得ることを特徴と
する。この本発明による塗布液を用いてsoo℃で焼成
した薄膜を走査型電子顕微鏡で観察したところ、5o八
へ度の微粒子と200−400A程度の微粒子との緻密
な焼結体構造を取っていた。これを10m01%塩酸水
溶液につけて再び走査型電子顕微鏡で観察したところ2
00−400人の粒子のみが残っていた。酸化ルテニウ
ムは酸に対して殆ど不溶であることから、この微粒子は
酸化ルテニウムを主成分にしていると考えられる。X線
回折により結晶構造を調べた結果、Mn2O3,Mn、
04とRuO2の混晶系が形成されており、200−4
00人の酸化ルテニウムの微粒子の粒界を酸化マンガン
がうめて、緻密な構造を持つ膜になっていると考えられ
る。
That is, the present invention is characterized in that a resistor film is obtained by applying a coating liquid containing a compound having ruthenium in its structure and a compound having manganese in its structure onto a substrate and baking it. When a thin film baked at sooC using the coating solution according to the present invention was observed with a scanning electron microscope, it had a dense sintered structure with fine particles of 5o8 degrees and fine particles of about 200-400A. . When this was immersed in a 10m01% hydrochloric acid aqueous solution and observed again with a scanning electron microscope, 2
Only 00-400 particles remained. Since ruthenium oxide is almost insoluble in acids, it is considered that the fine particles contain ruthenium oxide as a main component. As a result of examining the crystal structure by X-ray diffraction, Mn2O3, Mn,
A mixed crystal system of 04 and RuO2 is formed, and 200-4
It is thought that manganese oxide fills the grain boundaries of the fine particles of ruthenium oxide, creating a film with a dense structure.

以上のことから、酸化ルテニウムの金属的電気伝導機構
に、酸化ルテニウムの粒界に入った酸化マンガンがバリ
ヤーとなることで熱活性化過程による電気伝導機構やト
ンネル効果による電気伝導機構が加わり非常に小さい抵
抗温度係数を示すと考えられる。
From the above, we can see that the manganese oxide that has entered the grain boundaries of ruthenium oxide acts as a barrier to the metallic electrical conduction mechanism of ruthenium oxide, which adds an electrical conduction mechanism due to the thermal activation process and an electrical conduction mechanism due to the tunnel effect. It is considered to exhibit a small resistance temperature coefficient.

また、焼成温度を800−900℃にした場合も粒成長
は殆ど起こらず、緻密な焼結体構造はそのままであった
。このことから、マンガンの添加は粒成長と酸化ルテニ
ウムの気化を抑える効果があり、焼成温度を上げても抵
抗値のバラツキは小さい。
Further, even when the firing temperature was set to 800-900°C, almost no grain growth occurred, and the dense sintered structure remained unchanged. From this, the addition of manganese has the effect of suppressing grain growth and vaporization of ruthenium oxide, and even if the firing temperature is increased, the variation in resistance value is small.

上記抵抗体を製造するために使用される構造中にマンガ
ンまたはルテニウムを有する化合物としては、従来から
知られている公知の化合物を使用することができる。例
を上げれば、塩化物等無機化合物、各種アルコキシド、
ナフテン酸塩、オクチル酸a 等各Fltカルボン酸塩
、アセチルアセトナート、クラウンエーテ/v1チオク
ラウンエーテル、またはナイフラム錯体等各種錯体、上
記金属と炭素との直接接合を有する有機金属化合物など
がある。
As the compound having manganese or ruthenium in its structure used to manufacture the resistor, conventionally known compounds can be used. Examples include inorganic compounds such as chlorides, various alkoxides,
Examples include various Flt carboxylic acid salts such as naphthenate and octylic acid a, acetylacetonate, crown ether/v1 thiocrown ether, various complexes such as nifram complex, and organometallic compounds having a direct bond between the above-mentioned metal and carbon.

本発明にかかる酸化ルテニウム系抵抗体と同様に酸化ル
テニウムの添加材料としてMnO2がしられている( 
Klactrocomponant 5cience人
nd  TachnoloHy、Vo19,2os、(
19s2))が、従来のガラスフリットと酸化ルテニウ
ム粉末を混合しペースト化して、塗布・焼成して作る厚
膜抵抗体であり、放熱性、再現性、抵抗値、抵抗温度係
数のバラツキ等の特性で、本発明による薄膜抵抗体の方
が数10=数1oO人の微粒子の焼結体構造による緻密
で均一な構造をもつ薄膜であるため本質的に優れている
Similar to the ruthenium oxide resistor according to the present invention, MnO2 is known as an additive material for ruthenium oxide (
Klactrocomponent 5science people and TachnoloHy, Vo19, 2os, (
19s2)) is a thick film resistor made by mixing conventional glass frit and ruthenium oxide powder into a paste, coating and baking it, and has characteristics such as heat dissipation, reproducibility, resistance value, and variation in temperature coefficient of resistance. Therefore, the thin film resistor according to the present invention is essentially superior because it is a thin film having a dense and uniform structure due to the sintered body structure of several tens of microparticles.

以上のように本発明にかかる手段をこうしることによっ
て従来得ることのできなかった非常に抵抗温度計数が小
さいマンガン−ルテニウム系酸化物の薄膜抵抗体が製造
される。本発明に掛かる薄膜抵抗体は、酸化ルテニウム
、酸化マンガンの微粒子の焼結体なので安定して製造さ
れるものであし 以下具体的実施例について説明する。
As described above, by applying the means according to the present invention, a thin film resistor of manganese-ruthenium oxide having an extremely small resistance temperature coefficient, which could not be obtained conventionally, can be manufactured. Since the thin film resistor according to the present invention is a sintered body of fine particles of ruthenium oxide and manganese oxide, it can be stably manufactured.Specific examples will be described below.

なお、具体的な実施例においては工法上低沸点溶媒のみ
使用しているが、塗布、印刷工法上の変化により溶媒を
適宜選択することは当然である。
In addition, in the specific examples, only a low boiling point solvent is used due to the construction method, but it goes without saying that the solvent may be appropriately selected depending on changes in the coating and printing methods.

実施例1 市販のソーダ石灰ガラス基板上に2エチルへキサン酸ル
テニウムと2エチルヘキサン酸マンガンヲルテニウムと
マンガンが1了:3になるように炭化水素系溶媒に溶解
させて作った塗布液を3000rpto  でヌビンコ
ートした。これを70℃で、乾燥させたのち大気中で6
50℃30分間で焼成して薄膜抵抗体を作った。
Example 1 A coating solution prepared by dissolving ruthenium 2-ethylhexanoate, manganese worthenium 2-ethylhexanoate, and manganese in a hydrocarbon solvent at a ratio of 1:3 was applied to a commercially available soda-lime glass substrate at 3000 rpm. I coated it with nubin. After drying this at 70℃,
A thin film resistor was produced by baking at 50° C. for 30 minutes.

ここで得られた抵抗体は面積抵抗1にΩ/ユ抵抗温度係
数+10ppm/℃であった。耐久性を調べるために、
パルス幅1m5ec、パルス周期1omsecで連続パ
ルス印加を行ってみた。6*104回パルスを印加した
際、抵抗値変動10パーセントを与える薄膜抵抗体の面
積当りの電力(W/mm2)(=破断電力)は65 W
/m m 2であった。上記条件で30個作製した抵抗
体の抵抗値のバラつきは±3パーセント以内であった。
The resistor obtained here had a sheet resistance of 1 and a temperature coefficient of Ω/resistance of +10 ppm/°C. To check the durability,
Continuous pulse application was performed with a pulse width of 1m5ec and a pulse period of 1omsec. When a pulse is applied 6 * 104 times, the power per area (W/mm2) (=breaking power) of the thin film resistor that gives a resistance value variation of 10% is 65 W
/mm2. The variation in resistance value of 30 resistors produced under the above conditions was within ±3%.

密着力は充分で黄銅針でこすっても取れることはなかっ
た。
The adhesion was strong enough that it did not come off even when rubbed with a brass needle.

実施例2 実施例1において抵抗体の成分比をルテニウムとマンガ
ンがア:3になるようにした場合は面積抵抗6にΩ4ユ
抵抗温度係数−309pm/’C破断電力60W/mm
  の特性を持つ抵抗体が得られた。
Example 2 In Example 1, if the component ratio of the resistor is set to A:3 of ruthenium and manganese, the area resistance is 6 and the resistance temperature coefficient is Ω4.
A resistor with the following characteristics was obtained.

30個製作した抵抗体の抵抗値のバラツキは±3パーセ
ント以内であった。
The variation in resistance value of the 30 manufactured resistors was within ±3%.

比較例1 実施例1に於て2エチルヘキサン酸マンガンにかえて2
エチルヘキサン酸バリウムを使用した場合1面積抵抗値
2にΩ7ユ 抵抗温度係数+600p p m/℃破断
電力40W/mm  であった。30個作製した抵抗体
の抵抗値のバラツキは±2020パーセントであった。
Comparative Example 1 In Example 1, instead of manganese 2-ethylhexanoate, 2
When barium ethylhexanoate was used, the resistance per area was 2, the temperature coefficient of resistance was +600 pp m/°C, and the breaking power was 40 W/mm. The variation in resistance value of the 30 manufactured resistors was ±2020%.

比較例2 酸化ルテニウム12.5 g、酸化マンjy−72,6
g、ガラスフリット(PbO,SiO□、B2O3系)
cso、。
Comparative Example 2 Ruthenium oxide 12.5 g, manganese oxide JY-72,6
g, glass frit (PbO, SiO□, B2O3 type)
cso,.

g5エチルセロース3.Ogを炭化水素系溶媒27.0
gと混合して塗布液を調整し、これをアルミナ基板上に
スクリーン印刷して、了o℃で乾燥させ、大気中で80
0℃、30分間焼成した。得られた抵抗体は面積抵抗1
にΩ/ユ 抵抗温度係数−260p p m/℃、破断
電力40W/mm  であった。30個製作した抵抗体
の抵抗値のバラツキは±3Qパーセント以内であった。
g5 ethylcellose 3. Og to hydrocarbon solvent 27.0
A coating solution was prepared by mixing with
It was baked at 0°C for 30 minutes. The obtained resistor has a sheet resistance of 1
The resistance temperature coefficient was -260 ppm/°C, and the breaking power was 40 W/mm. The variation in resistance value of the 30 manufactured resistors was within ±3Q percent.

発明の効果 以上実施例及び比較例から明らかなように、本発明によ
る薄膜抵抗体は従来の酸化ルテニウム系抵抗体に比べ、
安価に製造でき、抵抗湿温特性、耐電力性に優れている
ことから、その産業上のf)1果は大なるものである。
Effects of the Invention As is clear from the Examples and Comparative Examples, the thin film resistor according to the present invention has advantages over the conventional ruthenium oxide resistor.
Since it can be manufactured at low cost and has excellent resistance, humidity and temperature characteristics, and power durability, its f)1 advantages in industry are great.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化ルテニウムの微粒子と酸化マンガンの微粒子
の焼結体からなる薄膜抵抗体。
(1) A thin film resistor made of a sintered body of fine particles of ruthenium oxide and fine particles of manganese oxide.
(2)構造中にルテニウムを有する化合物と構造中にマ
ンガンを有する化合物を含む塗布液をスピンコート、デ
ィップ、印刷等の方法で基板上に塗布・焼成して作製さ
れた特許請求の範囲第1項記載の薄膜抵抗体。
(2) Claim 1, which is produced by applying and baking a coating liquid containing a compound having ruthenium in its structure and a compound having manganese in its structure onto a substrate by a method such as spin coating, dipping, printing, etc. Thin film resistor described in section.
JP63142104A 1988-06-09 1988-06-09 Thin film resistor Pending JPH01310502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142104A JPH01310502A (en) 1988-06-09 1988-06-09 Thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142104A JPH01310502A (en) 1988-06-09 1988-06-09 Thin film resistor

Publications (1)

Publication Number Publication Date
JPH01310502A true JPH01310502A (en) 1989-12-14

Family

ID=15307523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142104A Pending JPH01310502A (en) 1988-06-09 1988-06-09 Thin film resistor

Country Status (1)

Country Link
JP (1) JPH01310502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248815A (en) * 2005-03-09 2006-09-21 Sumitomo Metal Mining Co Ltd Ru-Mn-O FINE POWDER, ITS MANUFACTURING METHOD AND THICK FILM RESISTOR COMPOSITION USING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248815A (en) * 2005-03-09 2006-09-21 Sumitomo Metal Mining Co Ltd Ru-Mn-O FINE POWDER, ITS MANUFACTURING METHOD AND THICK FILM RESISTOR COMPOSITION USING THE SAME
JP4692028B2 (en) * 2005-03-09 2011-06-01 住友金属鉱山株式会社 Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same

Similar Documents

Publication Publication Date Title
JP3907725B2 (en) Thick film paste composition containing no cadmium and lead
US2950996A (en) Electrical resistance material and method of making same
JPS5931201B2 (en) resistance material
JPH0231445B2 (en)
JPS6035405A (en) Copper conductor composition
IE53688B1 (en) Thick film resistor compositions
JPS6130365B2 (en)
JPH03170347A (en) Thermister compound
JP5988123B2 (en) Resistance composition
CN111739675B (en) Thick film resistor paste
TW201823380A (en) Resistive paste and resistor produced by firing same
JP2006294589A (en) Resistance paste and resistor
JP6931455B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
CN115461825A (en) Thick film resistor paste, thick film resistor, and electronic component
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JP5754090B2 (en) Glass frit, conductive paste using the same, and electronic device
JPH01310502A (en) Thin film resistor
JPH11120821A (en) Thick-film silver terminated composition
JP2854577B2 (en) Finely ground particles and thick film electronic material composition containing the same
JPH0822714A (en) Conductive paste and semiconductor ceramic component using the same
US4655965A (en) Base metal resistive paints
JP2550630B2 (en) Copper paste for conductive film formation
JPH01310504A (en) Thin film resistor
JPH08186006A (en) Thick film resistor composition
JP2007227114A (en) Resistor paste and thick membrane resistor using it