JPH01310304A - Optical component - Google Patents

Optical component

Info

Publication number
JPH01310304A
JPH01310304A JP14267588A JP14267588A JPH01310304A JP H01310304 A JPH01310304 A JP H01310304A JP 14267588 A JP14267588 A JP 14267588A JP 14267588 A JP14267588 A JP 14267588A JP H01310304 A JPH01310304 A JP H01310304A
Authority
JP
Japan
Prior art keywords
incident
prism
light
incidence
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14267588A
Other languages
Japanese (ja)
Inventor
Isuke Hirano
平野 伊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP14267588A priority Critical patent/JPH01310304A/en
Publication of JPH01310304A publication Critical patent/JPH01310304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To eliminate the need for fine adjustment by providing a 2nd surface which is parallel to an incidence direction and at 45 deg. to a plane parallel to both the incidence direction and a 1st direction and reflects reflected light of incident light from a 1st reflecting surface. CONSTITUTION:A polarizing azimuth rotary prism 2 is constituted by sticking 1st and 2nd right-angled prisms 3 and 4. When polarized light is made incident in an incidence direction (x) shown by an arrow A1, the external surface of a prism 3 which crosses this direction at right angles becomes a 1st incidence surface 31 and the external surface of the prism 3 which is parallel to a direction (y) crossing the incidence direction at right angles and at 45 deg. to the incidence surface 31 becomes a 1st reflecting surface 32. The external surface of the prism which is at right angles to the incidence surface 31 and at 45 deg. to the reflecting surface 32 becomes a 1st projection surface 33. The external surface of a prism 4 which faces this projection surface 33, on the other hand, becomes a 2nd incidence surface 41, the external surface of the prism which is parallel to the incidence direction (x) and at 45 deg. to the incidence surface 41 becomes a 2nd reflecting surface 42, and the external surface of the prism 4 which is perpendicular to the incidence surface 41 and at 45 deg. to the reflecting surface 42 becomes a 2nd projection surface 43.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプリ゛ズム等の光学部品に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to optical components such as prisms.

〔従来の技術〕[Conventional technology]

従来、第7図に示すようなフレネルロムプリズムと呼ば
れるものが知られている。このフレネルロムプリズム1
に、反射面に対して方位45°の直線偏光が矢印A1の
如く入射されると、フレネルロムプリズム1の内面で4
回反射されて矢印A の如く出射される。このとき、出
射光A2の方位(図中の符号a )は入射光A1の方位
(図中の符号a 1)と直交している。これは、入射光
A と出射光A2の間で1/2波長の位相差が生l  
Conventionally, a so-called Fresnel-Rhom prism as shown in FIG. 7 has been known. This fresnel rom prism 1
When linearly polarized light with an azimuth of 45° is incident on the reflecting surface as shown by arrow A1, the inner surface of Fresnel-Rom prism 1
It is reflected twice and emitted as shown by arrow A. At this time, the direction of the emitted light A2 (symbol a in the figure) is orthogonal to the direction of the incident light A1 (symbol a1 in the figure). This means that a phase difference of 1/2 wavelength occurs between the incident light A and the output light A2.
.

じるためである。This is for the purpose of

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような従来技術では、入射光の入
射角と直線偏光の方位を変えると位相差はそれに従って
変化するため、微妙な調整等を行なう必要がある。この
ため、フレネルロムプリズムには調整機構の付いた器具
を取り付けて使用していた。また、フレネルロムプリズ
ムは通常、特定の波長に対する材料の屈折率により外形
形状が決定されているため、厳密な意味での色消しはな
されていなかった。
However, in the above-mentioned conventional technology, if the angle of incidence of the incident light and the direction of the linearly polarized light are changed, the phase difference changes accordingly, so it is necessary to make delicate adjustments. For this reason, Fresnel-Rom prisms were used with instruments equipped with adjustment mechanisms. Furthermore, since the external shape of a Fresnel-Rom prism is usually determined by the refractive index of the material for a specific wavelength, it has not been achromatized in the strict sense.

そこで本発明は、微妙な調整や色消し等を必要とするこ
となく、入射光と出射光の間で偏光方位を回転させるこ
とのできる光学部品を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an optical component that can rotate the polarization direction between incident light and outgoing light without requiring delicate adjustment or achromatization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光学部品は、入射光の入射方向(X方向)
と直交する第1の方向(y方向)と平行であって入射方
向および第1の方向の双方に平行な平面と45度の角度
をなす第1の反射面と、入射方向と平行であって、入射
方向および第1の方向の双方に平行な平面(x−y平面
)と45度の角度をなし、第1の反射面による入射光の
反射光を反射させる第2の反射面とを備えることを特徴
とする。
The optical component according to the present invention has a direction of incidence of incident light (X direction).
a first reflective surface that is parallel to a first direction (y direction) perpendicular to the plane and makes an angle of 45 degrees with a plane that is parallel to both the incident direction and the first direction; , a second reflective surface forming an angle of 45 degrees with a plane parallel to both the incident direction and the first direction (xy plane) and reflecting the reflected light of the incident light by the first reflective surface. It is characterized by

ここで第1の反射面は、入射光の方向と直交する第1の
入射面とこの第1の入射面に直交する第1の出射面とを
有する第1の直角プリズムの全反射面で構成し、第2の
反射面は、第1の出射面と対向する第2の入射面とこの
第2の入射面に直交する第2の出射面とを有する第2の
直角プリズムの全反射面で構成されることを特徴として
もよい。
Here, the first reflective surface is constituted by a total reflection surface of a first right-angle prism having a first entrance surface perpendicular to the direction of the incident light and a first exit surface perpendicular to the first entrance surface. The second reflective surface is a total reflection surface of a second rectangular prism having a second entrance surface facing the first exit surface and a second exit surface orthogonal to the second entrance surface. It may be characterized by being configured.

また、入射方向および第1の方向の双方に直交する第2
の方向(2方向)と平行であって入射方向および第2の
方向の双方に平行な平面と45度の角度をなし、第2の
反射面による入射光の反射光を反射させる第3の反射面
を更に備えることを特徴としてもよい。
In addition, a second direction perpendicular to both the incident direction and the first direction
A third reflection that is parallel to the direction (two directions) and forms an angle of 45 degrees with a plane that is parallel to both the incident direction and the second direction, and reflects the reflected light of the incident light by the second reflective surface. It may also be characterized by further comprising a surface.

〔作用〕[Effect]

本発明によれば、直線偏光した入射光が第1の反射面で
反射された際に、p偏光成分とS偏光成分の間で位相差
が生じ、第2の反射面で再び反射される際にも同様の位
相差を生じる。ここで、第1の反射面におけるp偏光成
分は第2の反射面ではS偏光成分となり、第1の反射面
におけるS偏光成分は第2の反射面ではp偏光成分とな
る。従って、2回の反射によって両者の間の位相差は相
殺され、光を受ける方向からみた入射光と出射光の偏光
面は互いに直交することになる。
According to the present invention, when linearly polarized incident light is reflected by the first reflecting surface, a phase difference occurs between the p-polarized light component and the s-polarized light component, and when the linearly polarized incident light is reflected again by the second reflecting surface. A similar phase difference also occurs. Here, the p-polarized light component on the first reflective surface becomes an S-polarized light component on the second reflective surface, and the S-polarized light component on the first reflective surface becomes a p-polarized light component on the second reflective surface. Therefore, the phase difference between the two is canceled by the two reflections, and the planes of polarization of the incident light and the outgoing light as seen from the direction in which the light is received become orthogonal to each other.

〔実施例〕〔Example〕

以下、添付図面の第1図ないし第4図にもとづいて、本
発明の詳細な説明する。なお、図面の説明において同一
要素には同一符号を付し、重複する説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIGS. 1 to 4 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は本発明の一実施例に係る偏光方位回転プリズム
の斜視図である。同図(a)の通り、偏光方位回転プリ
ズム2は第1の直角プリズム3と第2の直角プリズム4
を貼り合わせて構成される。
FIG. 1 is a perspective view of a polarization orientation rotating prism according to an embodiment of the present invention. As shown in the figure (a), the polarization direction rotating prism 2 consists of a first right angle prism 3 and a second right angle prism 4.
It is constructed by pasting together.

ここで、図中に矢印A1で示す入射方向(X方向)から
直線偏光が入射されるとすると、この入射方向に直交す
る第1の直角プリズム3の外面が第1の入射面31をな
し、入射方向と直交するy方向(第1の方向)と平行で
あって第1の入射面31と45″の角度をなす第1の直
角プリズム3の外面が第1の反射面32をなしている。
Here, if linearly polarized light is incident from the incident direction (X direction) shown by arrow A1 in the figure, the outer surface of the first right-angle prism 3 orthogonal to this incident direction forms the first incident surface 31, The outer surface of the first rectangular prism 3, which is parallel to the y direction (first direction) orthogonal to the incident direction and forms an angle of 45'' with the first incident surface 31, forms the first reflective surface 32. .

そして、第1の入射面31に直交しかつ第1の反射面3
2と45″の角度をなす第1の直角プリズム3の外面が
第1の出射面33をなしている。一方、この第1の出射
面33と対向する第2の直角プリズム4の外面が第2の
入射面41をなし、入射方向(X方向)に平行であって
この第2の入射面41と45″の角度をなす第2の直角
プリズム4の外面が第2の反射面42をなし、第2の入
射面41に直交しかつ第2の反射面42と45°の角度
をなす第2の直角プリズム4の外面が第2の出射面43
をなしている。
and a first reflective surface 3 that is orthogonal to the first incident surface 31;
The outer surface of the first right-angle prism 3 forming an angle of 2 and 45'' forms the first exit surface 33. On the other hand, the outer surface of the second right-angle prism 4 that faces this first exit surface 33 forms the first exit surface 33. The outer surface of the second rectangular prism 4, which is parallel to the incident direction (X direction) and forms an angle of 45'' with the second incident surface 41, forms the second reflective surface 42. , the outer surface of the second rectangular prism 4, which is perpendicular to the second incident surface 41 and forms an angle of 45° with the second reflective surface 42, is the second exit surface 43.
is doing.

ここで、第1図(a)に示すように、第1の直角プリズ
ム3と第2の直角プリズム4は第1の出射面33および
第2の入射面41で互いに貼り合わされていてもよく、
この場合には図示しないシリコーンオイル等の屈折率整
合剤が介在させられている。また、第1図(b)に示す
ように、第1の直角プリズム3と第2の直角プリズム4
は第1の出射面33および第2の入射面41の間で一定
の空隙を有していてもよい。このような空隙を設ければ
、貼り合わせ剤の吸収が避けられるため紫外線や高パワ
ーの入力光に適用することができる。
Here, as shown in FIG. 1(a), the first rectangular prism 3 and the second rectangular prism 4 may be attached to each other at the first exit surface 33 and the second entrance surface 41,
In this case, a refractive index matching agent such as silicone oil (not shown) is interposed. Further, as shown in FIG. 1(b), a first right angle prism 3 and a second right angle prism 4
may have a certain gap between the first exit surface 33 and the second entrance surface 41. If such a gap is provided, absorption of the bonding agent can be avoided, so that it can be applied to ultraviolet rays and high-power input light.

次に、上記の実施例に係る偏光面回転プリズムの作用に
ついて説明する。
Next, the operation of the polarization plane rotating prism according to the above embodiment will be explained.

第2図は1個の石英ブロックによって一体成形された偏
光面回転プリズム2の斜視図と、その側面、底面および
背面の投影図である。同図において、矢印A1は第1の
入射面31への入射光を示し、矢印A2は第1の入射面
31を透過した光が第1の反射面32で全反射されるま
での光路を示し、矢印A3は第1の反射面32で全反射
された光が第2の反射面42で全反射されるまでの光路
を示し、矢印A4は第2の反射面42で全反射された光
が第2の出射面43を透過するまでの光路を示し、矢印
A5は第2の出射面43からの出射光の光路を示してい
る。ここにおいて、入射光A と出射光A5の間では、
第1に、光路A3の長さだけ光軸がずれ、第2に、光の
進行方向が直角に回転し、第3に、符号a1で示す偏光
方位が符号a5で示す偏光方位に変化している。
FIG. 2 is a perspective view of a polarization plane rotating prism 2 integrally formed from a single quartz block, and a projected view of its side, bottom, and back surfaces. In the figure, arrow A1 indicates the incident light on the first incident surface 31, and arrow A2 indicates the optical path of the light transmitted through the first incident surface 31 until it is totally reflected on the first reflective surface 32. , arrow A3 indicates the optical path of the light totally reflected by the first reflective surface 32 until it is totally reflected by the second reflective surface 42, and arrow A4 indicates the optical path of the light totally reflected by the second reflective surface 42. The light path until the light passes through the second light emitting surface 43 is shown, and arrow A5 shows the optical path of the light emitted from the second light emitting surface 43. Here, between the incident light A and the output light A5,
Firstly, the optical axis is shifted by the length of optical path A3, secondly, the traveling direction of the light is rotated at right angles, and thirdly, the polarization direction indicated by symbol a1 changes to the polarization direction indicated by symbol a5. There is.

第3図を参照して、偏光方位が上記のように変化する理
由を説明する。
The reason why the polarization direction changes as described above will be explained with reference to FIG.

同図(a)は第1図に示す第1の直角プリズム3の側面
図であり、同図(b)はその斜視図である。いま第1の
直角プリズム3の屈折率をnとし、全反射面である第1
の反射面32への入射角をφとすると、 φ≧51n−1(1/ n )        −(1
)の条件が満たされるときに、光A2は第1の反射面3
2で全反射されて光A3となる。ただし、プリズム以外
の物質は空気とする。その屈折率は1.0である。以下
の説明も同様に扱う。従って、第1の直角プリズム3が
例えば屈折率n−1,5のガラスで形成されているとき
には、臨界角φ。
1A is a side view of the first rectangular prism 3 shown in FIG. 1, and FIG. 1B is a perspective view thereof. Let the refractive index of the first right-angle prism 3 be n, and the first right-angle prism 3, which is a total reflection surface,
If the angle of incidence on the reflecting surface 32 is φ, then φ≧51n-1(1/n)-(1
), the light A2 passes through the first reflective surface 3.
2, it is totally reflected and becomes light A3. However, the substance other than the prism is assumed to be air. Its refractive index is 1.0. The following explanations are treated similarly. Therefore, when the first right angle prism 3 is made of glass with a refractive index of n-1.5, for example, the critical angle φ.

は42″以上になり上記の条件を充足する。is 42″ or more and satisfies the above conditions.

ここで、反射光A の振幅は常に入射光A2の振幅と等
しくなるが、p偏光成分とS偏光成分の間には位相差が
生じる。そして、それぞれの位相差δ 、δ は下記(
2) 、 (3)式%式% で与えられ、従って両者の位相差δは δ−6−δ           ・・・(4)p  
    s となる。
Here, the amplitude of the reflected light A2 is always equal to the amplitude of the incident light A2, but a phase difference occurs between the p-polarized light component and the S-polarized light component. And the respective phase differences δ and δ are as follows (
2), (3) Formula % Formula % Therefore, the phase difference δ between the two is δ-6-δ... (4) p
It becomes s.

上式よれば、入射角φ−45″、屈折率nm1.515
2 (BK7 632.8rv)として、δ ζ39.
5”、δ ζ79.0°であり、位p 相差δ−39,5’が第1の反射面32における全反射
で生じることになる。従って、もし第1の直角プリズム
3の第1の反射面32に第3図(b)で符号a1として
示す45″の方位をもった直線偏光が入射されると、符
号a ′として示す随円偏光A ′が出射されることに
なる。
According to the above formula, the incident angle is φ-45″, the refractive index nm is 1.515
2 (BK7 632.8rv), δ ζ39.
5", δ ζ 79.0°, and a phase difference δ-39,5' occurs due to total reflection at the first reflecting surface 32. Therefore, if the first reflection of the first right-angle prism 3 When linearly polarized light having an azimuth of 45'', shown as a1 in FIG. 3(b), is incident on the surface 32, circularly polarized light A', shown as a', is emitted.

ところが、第1図に示すような直角プリズムを組み合わ
せると、第1の反射面32におけるp偏光成分は第2の
反射面42ではS偏光成分となり、第1の反射面32に
おけるS偏光成分は第2の反射面42ではp偏光成分と
なる。このため、前述の式(2) 、 (3)で示した
位相差δ 、δ は第2s      p の反射面42では逆に生じることになり、結果的に両者
が相殺されて第2図に符号a5で示す直線偏光が得られ
ることになる。これは、光を受ける方向から見た偏光方
位が互いに直交している。
However, when a right-angle prism as shown in FIG. At the second reflecting surface 42, it becomes a p-polarized light component. Therefore, the phase differences δ and δ shown in the above-mentioned equations (2) and (3) occur in the opposite way at the second sp reflective surface 42, and as a result, the two cancel each other out, resulting in the sign shown in FIG. Linearly polarized light indicated by a5 is obtained. This means that the polarization directions seen from the direction in which the light is received are orthogonal to each other.

次に、第4図および第5図を参照して第1の変形例を説
明する。
Next, a first modification will be described with reference to FIGS. 4 and 5.

第4図はその斜視図で、この偏光方位回転プリズム2で
は第1の直角プリズム3および第2の直角プリズム4に
加えて、第3の直角プリズム5を備えている。この第3
の直角プリズム5の第3の入射面51は第2の直角プリ
ズム4の第2の出射面43と対向し、第3の反射面52
はこの第3の入射面51と45°の角度をなしている。
FIG. 4 is a perspective view of the prism 2, which includes a third right-angle prism 5 in addition to the first right-angle prism 3 and the second right-angle prism 4. FIG. This third
The third entrance surface 51 of the right angle prism 5 faces the second exit surface 43 of the second right angle prism 4, and the third reflection surface 52
forms an angle of 45° with this third incident surface 51.

そして、第3の出射面53は第3の入射面51に直交し
かつ第3の反射面52と45°の角度をなしている。
The third exit surface 53 is perpendicular to the third entrance surface 51 and forms an angle of 45° with the third reflection surface 52.

この変形例によれば、出射光A6は入射光A1と光路A
 と光路A4のベクトル和分だけ軸ずれするが、進行方
向は入射光A と出射光A6で同一になっている。そし
て、入射光A1と出射光A6の間の偏光面の関係は、第
5図のようになっている。同図に示す通り、入射光A1
の偏光面に対する出射先人〇の偏光面の90″の回転は
、45@ 、 (225”  )  、135@ 、 
(315”)のいずれかで得られることがわかる。
According to this modification, the emitted light A6 is connected to the incident light A1 and the optical path A
Although the axis is shifted by the vector sum of the optical path A4, the traveling directions of the incident light A and the outgoing light A6 are the same. The relationship between the planes of polarization between the incident light A1 and the output light A6 is as shown in FIG. As shown in the figure, the incident light A1
The rotation of the polarization plane of the output destination 〇 by 90'' with respect to the polarization plane of is 45@, (225''), 135@,
(315'').

次に、第6図を参照して第2の変形例を説明する。Next, a second modification will be explained with reference to FIG.

同図に示す通り、本発明の光学部品はプリズムではなく
、反射ミラーを組み合せて構成してもよい。図示の通り
、ブロック6には第1の反射面61と第2の反射面62
が形成されている。ここで、第1の反射面61は入射光
A1の入射方向(X方向)と直交する方向(X方向)に
平行であってx−y平面と45’の角度をなし、第2の
反射面62はx、yの両方向に直交する2方向への反射
光A2を受ける。そして、第2の反射面62・は入射方
向(X方向)と平行であって、x−z平面と45°の角
度をなしている。さらに、第1の反射面61および第2
の反射面62は全反射コーティングされている。この変
形例によっても、第1図に示す実施例と同様に偏光方位
の回転を実現できる。なお、第4図と同様に第3の反射
面をブロック6に設けてもよいことは言うまでもない。
As shown in the figure, the optical component of the present invention may be constructed by combining reflecting mirrors instead of prisms. As shown in the figure, the block 6 has a first reflective surface 61 and a second reflective surface 62.
is formed. Here, the first reflective surface 61 is parallel to the direction (X direction) orthogonal to the incident direction (X direction) of the incident light A1 and forms an angle of 45' with the xy plane, and the second reflective surface 62 receives reflected light A2 in two directions orthogonal to both the x and y directions. The second reflective surface 62 is parallel to the direction of incidence (X direction) and forms an angle of 45° with the xz plane. Furthermore, the first reflective surface 61 and the second
The reflective surface 62 of is coated with a total reflection coating. With this modification as well, rotation of the polarization direction can be realized in the same way as in the embodiment shown in FIG. It goes without saying that the block 6 may be provided with a third reflective surface as in FIG. 4.

本発明の光学部品においては、材料による特性の変化は
なく、また入射光の波長に対する依存性もない。そして
、フレネルロムプリズムのような調整機構は全く不要で
ある。 ゛ 〔発明の効果〕 以上、詳細に説明した通り、本発明では直線偏光した入
射光が第1の反射面で反射された際に、p偏光成分とS
偏光成分の間で位相差が生じ、第2の反射面で再び反射
される際にも同様の位相差を生じる。ここで、第1の反
射面におけるp偏光成分は第2の反射面ではS偏光成分
となり、第1の反射面におけるS偏光成分は第2の反射
面ではp偏光成分となる。従って、2回の反射によって
両者の間の位相差は相殺され、光を受ける方向からみた
入射光と出射光の偏光方位は互いに直交することになる
In the optical component of the present invention, the characteristics do not change depending on the material, and there is no dependence on the wavelength of incident light. Further, an adjustment mechanism such as a Fresnel-Rom prism is not required at all. [Effects of the Invention] As explained above in detail, in the present invention, when linearly polarized incident light is reflected by the first reflecting surface, the p-polarized component and the S
A phase difference occurs between the polarized light components, and a similar phase difference occurs when the polarized light components are reflected again at the second reflecting surface. Here, the p-polarized light component on the first reflective surface becomes an S-polarized light component on the second reflective surface, and the S-polarized light component on the first reflective surface becomes a p-polarized light component on the second reflective surface. Therefore, the phase difference between the two is canceled by the two reflections, and the polarization directions of the incident light and the outgoing light are orthogonal to each other when viewed from the direction in which the light is received.

従って、微妙な:A整や色消し等を必要とすることなく
、入射光と出射光の間で偏光方位を回転させることので
きる光学部品を提供することができる。このため、各種
の偏光光学系に幅広く応用することが可能になる。
Therefore, it is possible to provide an optical component that can rotate the polarization direction between incident light and outgoing light without requiring delicate A adjustment or achromatization. Therefore, it becomes possible to widely apply it to various polarizing optical systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の構成を示す斜視図、第2図
および第3図は、上記実施例の作用を示す図、第4図は
、第1の変形例の斜視図、第5図は、第1の変形例の作
用を説明する図、第6図は、第2の変形例を示す斜視図
、第7図は、従来から知られているフレネルロムプリズ
ムの斜視図である。 1・・・フレネルロムプリズム、2・・・偏光方位回転
プリズム、3・・・第1の直角プリズム、31・・・第
1の入射面、32・・・第1の反射面、33・・・第1
の出射面、4・・・第2の直角プリズム、41・・・第
2の入射面、42・・・第2の反射面、43・・・第2
の出射面、5・・・第3の直角プリズム、51・・・第
3の入射面、52・・・第3の反射面、53・・・第3
の出射面、6・・・ブロック、61・・・第1の反射面
、62・・・第2の反射面。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹at。 實鞄伸」の作用 jl!13r11J Itの・隻す例の@戊
FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the operation of the above embodiment, and FIG. 4 is a perspective view of a first modification; FIG. 5 is a diagram illustrating the operation of the first modified example, FIG. 6 is a perspective view showing the second modified example, and FIG. 7 is a perspective view of a conventionally known Fresnel-Rom prism. . DESCRIPTION OF SYMBOLS 1... Fresnel-Rom prism, 2... Polarization direction rotating prism, 3... First right angle prism, 31... First incident surface, 32... First reflecting surface, 33...・First
exit surface, 4... second right angle prism, 41... second incident surface, 42... second reflective surface, 43... second
Output surface, 5...Third rectangular prism, 51...Third entrance surface, 52...Third reflection surface, 53... Third
Output surface, 6... block, 61... first reflective surface, 62... second reflective surface. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshiki Hase at. The effect of “Jibagshin”! 13r11J It's example @戊

Claims (1)

【特許請求の範囲】 1、入射光の入射方向と直交する第1の方向と平行であ
って前記入射方向および第1の方向の双方に平行な平面
と45度の角度をなす第1の反射面と、 前記入射方向と平行であって、前記入射方向および第1
の方向の双方に平行な平面と45度の角度をなし、前記
第1の反射面による前記入射光の反射光を反射させる第
2の反射面とを備えることを特徴とする光学部品。 2、前記第1の反射面は、前記入射光の方向と直交する
第1の入射面とこの第1の入射面に直交する第1の出射
面とを有する第1の直角プリズムの全反射面で構成され
、前記第2の反射面は、前記第1の出射面と対向する第
2の入射面とこの第2の入射面に直交する第2の出射面
とを有する第2の直角プリズムの全反射面で構成される
ことを特徴とする請求項1記載の光学部品。 3、前記第1の出射面と第2の入射面が屈折率整合剤を
介して互いに貼り合わされている請求項2記載の光学部
品。 4、前記入射方向および第1の方向の双方に直交する第
2の方向と平行であって前記入射方向および第2の方向
の双方に平行な平面と45度の角度をなし、前記第2の
反射面による前記入射光の反射光を反射させる第3の反
射面を更に備えることを特徴とする請求項1記載の光学
部品。
[Claims] 1. A first reflection parallel to a first direction perpendicular to the direction of incidence of the incident light and forming an angle of 45 degrees with a plane parallel to both the direction of incidence and the first direction. a surface parallel to the incident direction and parallel to the incident direction and a first
An optical component comprising: a second reflecting surface forming an angle of 45 degrees with a plane parallel to both directions, and reflecting light reflected from the incident light by the first reflecting surface. 2. The first reflective surface is a total reflection surface of a first rectangular prism having a first incident surface perpendicular to the direction of the incident light and a first exit surface perpendicular to the first incident surface. The second reflecting surface is a second rectangular prism having a second entrance surface facing the first exit surface and a second exit surface orthogonal to the second entrance surface. The optical component according to claim 1, comprising a total reflection surface. 3. The optical component according to claim 2, wherein the first exit surface and the second entrance surface are bonded to each other via a refractive index matching agent. 4, parallel to a second direction perpendicular to both the incident direction and the first direction, forming an angle of 45 degrees with a plane parallel to both the incident direction and the second direction; The optical component according to claim 1, further comprising a third reflective surface that reflects the reflected light of the incident light by the reflective surface.
JP14267588A 1988-06-09 1988-06-09 Optical component Pending JPH01310304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14267588A JPH01310304A (en) 1988-06-09 1988-06-09 Optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14267588A JPH01310304A (en) 1988-06-09 1988-06-09 Optical component

Publications (1)

Publication Number Publication Date
JPH01310304A true JPH01310304A (en) 1989-12-14

Family

ID=15320895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14267588A Pending JPH01310304A (en) 1988-06-09 1988-06-09 Optical component

Country Status (1)

Country Link
JP (1) JPH01310304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412633A (en) * 1990-09-26 1995-05-02 Hitachi, Ltd. Optical disk apparatus with galvanomirror having movable reflecting surfaces cooperating with fixed reflecting surfaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940606A (en) * 1982-08-31 1984-03-06 Fujitsu Ltd Polarizing element
JPS5975220A (en) * 1982-10-22 1984-04-27 Jeol Ltd Optical prism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940606A (en) * 1982-08-31 1984-03-06 Fujitsu Ltd Polarizing element
JPS5975220A (en) * 1982-10-22 1984-04-27 Jeol Ltd Optical prism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412633A (en) * 1990-09-26 1995-05-02 Hitachi, Ltd. Optical disk apparatus with galvanomirror having movable reflecting surfaces cooperating with fixed reflecting surfaces

Similar Documents

Publication Publication Date Title
US20060044514A1 (en) Polarizing beam splitter and projection apparatus having the same
JPS6118481Y2 (en)
JPH02239219A (en) Lighting system for liquid crystal display system
JPH01152401A (en) Light image rotator
JPH03126910A (en) Polarization light source device and polarization beam splitter
JPH01310304A (en) Optical component
JP2002048911A (en) Beam splitter and laser system using the same
JP2017049486A (en) Polarization split element
US7612939B2 (en) Transmissive phase plate, polarized beam splitter, and projection display
JPH0230490B2 (en)
JPH10282340A (en) Polarization beam splitter, and projection type display device using it
JPH05313094A (en) Optical isolator
JPS63205636A (en) Optical isolator
JP2775103B2 (en) Polarizing prism
JPS6230607B2 (en)
JP2000231080A (en) Optical circulator
TW500934B (en) Optical switch utilizing Faraday rotator
JP3960733B2 (en) Image projection device
JP3388377B2 (en) Polarization-independent optical circulator
JP3454380B2 (en) Optical isolator
JPH04358115A (en) Polarization depencence eliminating filter assembly
JPH06317703A (en) Polarization-independent beam splitter and optical parts formed by using the same
JPS60169825A (en) Reflection type optical shutter array
JPH05127122A (en) Optical isolator
JPH06281886A (en) Optical isolator and optical device using optical isolator