JPH01308481A - Heat transfer oil - Google Patents

Heat transfer oil

Info

Publication number
JPH01308481A
JPH01308481A JP63138970A JP13897088A JPH01308481A JP H01308481 A JPH01308481 A JP H01308481A JP 63138970 A JP63138970 A JP 63138970A JP 13897088 A JP13897088 A JP 13897088A JP H01308481 A JPH01308481 A JP H01308481A
Authority
JP
Japan
Prior art keywords
oil
base oil
heat transfer
equipment
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63138970A
Other languages
Japanese (ja)
Other versions
JPH0747730B2 (en
Inventor
Junichi Kubo
純一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP63138970A priority Critical patent/JPH0747730B2/en
Priority to EP89105829A priority patent/EP0338311B1/en
Priority to DE89105829T priority patent/DE68911356T2/en
Priority to CA000595637A priority patent/CA1327787C/en
Priority to US07/333,706 priority patent/US5015404A/en
Publication of JPH01308481A publication Critical patent/JPH01308481A/en
Publication of JPH0747730B2 publication Critical patent/JPH0747730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To reduce the formation of carbonaceous material when a heat transfer oil is used at high temperature, by incorporating a small amount of a specified hydrogenated oil having a high hydrogen donating capacity at high temperatures into a heat transfer oil consisting mainly of a mineral base oil and/or a synthetic base oil. CONSTITUTION:A hydrocarbon having a boiling point of 50 deg.C or higher, obtained from the equipment for thermal cracking, catalytic cracking or catalytic reforming of petroleum (e.g., cracking residue obtained from the equipment for thermal cracking of naphtha) is hydrogenated with a hydrogen gas in the presence of a hydrogenation catalyst (e.g., nickel oxide) to give a hydrogenated oil having a hydrogen donating capacity at 350 deg.C or above at least three times that of a base oil comprising a mineral base oil and/or a synthetic base oil. 100pts.wt. mineral base oil and/or synthetic base oil (e.g., 1-phenyl-1-xylylethane) is mixed with 0.1-20pts.wt. said hydrogenated oil as essential constituent, and necessary additives, such as an oxidizing agent and an antifoaming agent, thus giving an objective heat transfer oil.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱媒体油に関し、詳しくは高温で使用される際
の炭素質の生成が少ない熱媒体油に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat transfer oil, and more particularly to a heat transfer oil that produces less carbonaceous material when used at high temperatures.

従来の技術 熱媒体油は、間接加熱方式の熱媒体として最も一般的に
使用されている。この熱媒体油の要求性能としては、(
1)熱安定性がよく、高温での長時間使用に耐えること
、(2)比重、粘度、熱伝導度、蒸気圧などの物性値に
問題のないこと、(3)毒性のないこと、(4)腐蝕性
のないことなどがある。
BACKGROUND OF THE INVENTION Heat transfer oil is most commonly used as a heat transfer medium in indirect heating systems. The required performance of this heat transfer oil is (
1) It has good thermal stability and can withstand long-term use at high temperatures; (2) it has no problems with physical properties such as specific gravity, viscosity, thermal conductivity, and vapor pressure; (3) it is non-toxic; 4) It is non-corrosive.

現在、精製鉱油をはじめジフェニル、ジフェニルエーテ
ル、アルキルベンゼン、アルキルナフタレン、1−フェ
ニル−1−キシリルエタンなどが熱媒体油として広く用
いられている。しかし、熱媒体油は一般に高温で使用さ
れるため、長時間使用すると油が劣化し、炭素質が生成
し、これがスラッジ生成の原因となっている。したがっ
て、高温における熱劣化が少なく、炭素質の生成のない
熱媒体油の開発は重要課題となりつつある。
Currently, purified mineral oil, diphenyl, diphenyl ether, alkylbenzene, alkylnaphthalene, 1-phenyl-1-xylylethane, and the like are widely used as heat transfer oils. However, heat transfer oil is generally used at high temperatures, so when used for a long time, the oil deteriorates and carbonaceous substances are produced, which causes sludge formation. Therefore, the development of heat transfer oil that exhibits less thermal deterioration at high temperatures and does not generate carbonaceous matter is becoming an important issue.

一方、水素供与性物質の存在は古くから知られており、
石炭液化あるいは重質油分解、ビスブレーキング等にし
ばしば使用されている。水素供与性物質として最も代表
的なものはテトラリン(テトラヒドロナフタレン)であ
るが2環以上の芳香環を有するか芳香環−環と五員環1
個とをともに有する化合物の水素化物が水素供与性を有
することはすでに公知である。
On the other hand, the existence of hydrogen-donating substances has been known for a long time.
It is often used for coal liquefaction, heavy oil cracking, visbreaking, etc. The most typical hydrogen-donating substance is tetralin (tetrahydronaphthalene), which has two or more aromatic rings or an aromatic ring and a five-membered ring.
It is already known that a hydride of a compound having both of

発明が解決しようとする課題 しかし、これらの水素供与性物質を熱媒体油使用時にお
ける炭素質生成防止に適用しようという試みはなく、ま
たそのような目的の実験報告もない。本発明者は石炭液
化および重質油分解など分子量の減少を伴なう操作にお
ける炭素質生成機構も熱媒体油使用時における炭素質生
成機構も本質的には同一であることに着目し、熱媒体油
使用時における炭素質生成に対して水素供与性物質の存
在が有効であることを実験により見出し、本発明を完成
するに至った。
Problems to be Solved by the Invention However, there has been no attempt to apply these hydrogen-donating substances to the prevention of carbonaceous formation when heat transfer oil is used, nor are there any experimental reports for such purpose. The present inventor focused on the fact that the carbonaceous production mechanism in operations that involve a reduction in molecular weight, such as coal liquefaction and heavy oil cracking, and the carbonaceous production mechanism in the use of heat transfer oil, are essentially the same. Through experiments, the present inventors discovered that the presence of a hydrogen-donating substance is effective for carbonaceous production when using medium oil, and have completed the present invention.

本発明は、高温使用時において炭素質生成の少ない熱媒
体油を提供することを目的とする。
An object of the present invention is to provide a heat transfer oil that generates less carbonaceous material during high-temperature use.

課題を解決するための手段 本発明は、 (i)鉱油系基油及び/または合成系基油100重量部
に対して、必須成分として、 (i i)石油を熱分解、接触分解または接触改質する
装置から得られる沸点250℃以上の炭化水素を水素化
し、350℃以上での水素供与性が前記鉱油系基油及び
/または合成系基油の3倍以上である水素化油0.1〜
20重量部 を添加してなる熱媒体油を提供するものである。
Means for Solving the Problems The present invention provides (i) thermal cracking, catalytic cracking or catalytic reforming of petroleum as an essential component for 100 parts by weight of mineral base oil and/or synthetic base oil. A hydrogenated oil 0.1 obtained by hydrogenating hydrocarbons with a boiling point of 250°C or higher obtained from a heating equipment, and having a hydrogen donating property at 350°C or higher that is 3 times or more that of the mineral base oil and/or synthetic base oil. ~
20 parts by weight of heat transfer oil is provided.

以下、本発明の内容をより詳細に説明する。Hereinafter, the content of the present invention will be explained in more detail.

本発明の鉱油系基油および合成系基油としては、−膜内
に潤滑油として使用されている油と同程度の粘度を有す
る油であれば何を使用してもよい。
As the mineral base oil and the synthetic base oil of the present invention, any oil having a viscosity comparable to that of the oil used as a lubricating oil in the membrane may be used.

鉱油系基油としては、具体的には、たとえば、70ペー
ル油、SAE 10.5AE20.5AE30.5AE
50、ブライトストック等の各種グレードのものが使用
される。
Specifically, the mineral base oil includes, for example, 70 pale oil, SAE 10.5AE20.5AE30.5AE
Various grades such as 50 and bright stock are used.

また合成系基油としては、具体的には例えばポリブテン
、α−オレフィンオリゴマー、アルキルベンゼン、アル
キルナフタレン、ジエステル、ポリオールエステル、ポ
リグリコール、ポリフェニルエーテル、トリクレジルホ
スフェート、シリコーン油、パーフルオロアルキルエー
テル、ノルマルパラフィン、ジフェニルアルカンなどが
使用される。
Specific examples of synthetic base oils include polybutene, α-olefin oligomer, alkylbenzene, alkylnaphthalene, diester, polyol ester, polyglycol, polyphenyl ether, tricresyl phosphate, silicone oil, perfluoroalkyl ether, Normal paraffin, diphenylalkane, etc. are used.

これらの中でジフェニルアルカンの一種である、式 で表される、1−フェニル−1−キシリルエタンは、特
に好ましく使用される。
Among these, 1-phenyl-1-xylylethane, which is a type of diphenylalkane and is represented by the formula, is particularly preferably used.

本発明において基油に添加される水素化油は基油に対し
て水素供与性が優れていなければならない。そして高温
下で基油から炭素質物資が生成するかあるいは高分子物
質が生成するような条件下で水素を供与する物質でなけ
ればならない。また、一方、基油は熱媒体油それぞれの
用途に合致した性状のものが選ばれる。基油に対して加
えられる水素化油が多いと基油が本来有している性質が
損われ、熱媒体油としての性能が失われる。したがって
、基油に対して添加される水素化油の量は少なくて効果
のあるものが好ましい。実用的な見地から基油に添加さ
れる水素化油の量は基油100重量部に対して0.1〜
20重量部であることが必要であり、好ましくは1〜1
5重量部、更に好ましくは2〜10重量部である。また
、この場合、基油に対して加えられる水素化油の水素供
与性は基油の3倍以上、好ましくは5倍以上、さらに好
ましくは10倍以上であることが必要である。本発明者
は、前述の条件を満たす水素化油として、石油を熱分解
、接触分解または′接触改質する装置か゛ら得られる沸
点250℃以上の炭化水素を水素化した水素化油が有効
であることを見出した。この水素化油は、2環以上の芳
香環を有する化合物および芳香環−環と不飽和五員環1
個とをともに有する化合物を多く含有し、これを水素化
することにより水素供与性を有するようになる。
In the present invention, the hydrogenated oil added to the base oil must have excellent hydrogen donating properties to the base oil. It must be a substance that donates hydrogen under conditions such that carbonaceous substances or polymeric substances are generated from the base oil at high temperatures. On the other hand, the base oil is selected to have properties that match the use of each heat transfer oil. If too much hydrogenated oil is added to the base oil, the inherent properties of the base oil will be impaired and the performance as a heat transfer oil will be lost. Therefore, it is preferable that the amount of hydrogenated oil added to the base oil is small and effective. From a practical standpoint, the amount of hydrogenated oil added to base oil is 0.1 to 100 parts by weight of base oil.
It is necessary that the amount is 20 parts by weight, preferably 1 to 1
The amount is 5 parts by weight, more preferably 2 to 10 parts by weight. Further, in this case, the hydrogen donating property of the hydrogenated oil added to the base oil needs to be at least 3 times, preferably at least 5 times, more preferably at least 10 times that of the base oil. The present inventor has found that hydrogenated oil obtained by hydrogenating hydrocarbons with a boiling point of 250°C or higher obtained from an apparatus for thermal cracking, catalytic cracking, or catalytic reforming of petroleum is effective as a hydrogenated oil that satisfies the above-mentioned conditions. I discovered that. This hydrogenated oil contains compounds having two or more aromatic rings, an aromatic ring-ring and an unsaturated five-membered ring.
It contains a large amount of compounds having both of

具体的には、ナフサ熱分解装置分解残油、FCC装置(
接触分解装置)サイクルオイル、スラリーオイルならび
にデカンテッドオイル(D CO)、ナフサ接触改質装
置改質残油、原油熱分解装置分解タールまたは、これら
の混合物が例示される。
Specifically, the cracked residual oil from naphtha pyrolysis equipment, FCC equipment (
Examples include cycle oil (catalytic cracker), slurry oil and decanted oil (DCO), naphtha catalytic reformer reformed residue, crude oil pyrolysis cracked tar, or mixtures thereof.

通常、基油にも前記多環の芳香族化合物が含まれること
が知られているが、良好な水素供与性を有する化合物の
含有量は極めて少なく、基油の水素供与性が極めて低い
ことは実験により確かめられている。
It is generally known that base oils also contain the above-mentioned polycyclic aromatic compounds, but the content of compounds with good hydrogen donating properties is extremely small, and it is said that the base oil has extremely low hydrogen donating properties. This has been confirmed through experiments.

また、この石油を熱分解、接触分解または接触改質する
装置から得られる沸点250℃以上の炭化水素の水素化
方法は任意であるが、通常、水素化機能を有する触媒の
存在下で水素ガスにより水素化する方法が用いられる。
Hydrocarbons with a boiling point of 250°C or higher obtained from equipment for thermal cracking, catalytic cracking, or catalytic reforming of this petroleum can be hydrogenated by any method, but usually hydrogen gas is produced in the presence of a catalyst with a hydrogenation function. A method of hydrogenation is used.

水素化機能を有する触媒としては、特に制限はなく、石
油留分の水素化処理に用t、)る公知の触媒が使用でき
る。具体的には、周期律表第V〜■族から選ばれた少な
くとも一種の金属元素、特にニッケル、コバルト、モリ
ブデン、バナジウムおよびタングステンから選ばれる少
なくとも一種の金属元素の硫化物、酸化物等をアルミナ
、シリカ、シリカ・アルミナ、カチオン置換ゼオライト
等の無機質担体に担持させたものあるいは芳香環核水素
化触媒、例えばニッケル、酸化ニッケル、ニッケルー銅
、白金、酸化白金、白金−ロジウム、白金−リチウム、
ロジウム、パラジウム、コバルト、ラネーコバルト、ル
テニウム等の金属を活性炭、アルミナ、シリカ−アルミ
ナ、けいそう土およびゼオライト等の無機質担体に担持
させたものが例示される。原料油をこれらの水素化機能
を有する触媒の存在下で水素化する際の条件は、前記石
油留分の水素化処理に用いられる触媒の場合には300
℃〜400℃、30気圧〜150気圧であることが好ま
しく、また芳香環核水素化触媒の場合には150℃〜3
00℃、30気圧〜150気圧であることが望ましい。
The catalyst having a hydrogenation function is not particularly limited, and any known catalyst used for hydrotreating petroleum fractions can be used. Specifically, the sulfide, oxide, etc. of at least one metal element selected from Groups V to II of the periodic table, especially at least one metal element selected from nickel, cobalt, molybdenum, vanadium, and tungsten, is used as alumina. , those supported on inorganic carriers such as silica, silica-alumina, and cation-substituted zeolites, or aromatic ring hydrogenation catalysts such as nickel, nickel oxide, nickel-copper, platinum, platinum oxide, platinum-rhodium, platinum-lithium,
Examples include metals such as rhodium, palladium, cobalt, Raney cobalt, and ruthenium supported on inorganic carriers such as activated carbon, alumina, silica-alumina, diatomaceous earth, and zeolite. The conditions for hydrogenating feedstock oil in the presence of these catalysts having a hydrogenation function are 300%
℃ to 400℃ and 30 atmospheres to 150 atmospheres, and in the case of an aromatic ring hydrogenation catalyst, the temperature is preferably 150℃ to 3
The temperature is preferably 00°C and 30 to 150 atmospheres.

反応装置についてもとくに制限はなく、一般の固定床反
応装置を使用することによって良好な水素供与性を有す
る水素化油を調製することができる。かようにして得ら
れた水素化油中には水素供与性物質として、具体的には
例えば、ジヒドロナフタレン、テトラヒドロナフタレン
、ジヒドロアントラセン、ジヒドロフェナントレン、テ
トラヒドロアシトラセン、テトラヒドロフェナントレン
、オクタヒドロアントラセン、オクタヒドロフェナント
レン等が含まれ、これらの物質を単体で使用することも
可能であるが、経済的見地から好ましくない。
There are no particular restrictions on the reactor, and a hydrogenated oil having good hydrogen-donating properties can be prepared by using a general fixed bed reactor. The thus obtained hydrogenated oil contains hydrogen-donating substances such as dihydronaphthalene, tetrahydronaphthalene, dihydroanthracene, dihydrophenanthrene, tetrahydroacytracene, tetrahydrophenanthrene, octahydroanthracene, and octahydro. These substances include phenanthrene and the like, and although it is possible to use these substances alone, it is not preferred from an economic standpoint.

本願において、これら炭化水素類の水素供与性を評価す
る方法は、以下の方法によって行う。これは、水素受容
体を用いて移行性水素の捕捉量から求める方法である。
In the present application, the hydrogen donating properties of these hydrocarbons are evaluated by the following method. This is a method of calculating from the amount of captured migrating hydrogen using a hydrogen acceptor.

すなわち、試料とアントラセン等の水素受容体を一定条
件で反応させ、反応後水素化された水素受容体の量をノ
tスクロマトグラフィ一等で分析する。
That is, a sample and a hydrogen acceptor such as anthracene are reacted under certain conditions, and after the reaction, the amount of hydrogenated hydrogen acceptor is analyzed by chromatography.

具体的には、所定量の炭化水素類試料およびアントラセ
ンを所定量(試料/アントラセン−1/2重量比)撹拌
器付きオートクレーブに収容し、350℃以上、たとえ
ば350℃〜450℃の温度、圧力50kg/cd ・
g (N2圧)、無触媒で30分間反応させる。反応前
後の9.10−ジヒドロアントラセン、1,4.5.8
−テトラヒドロアントラセン、1,2,3.4−テトラ
ヒドロアントラセン、1,2,3,4.5,6,7゜8
−オクタヒドロアントラセンならびに残存アントラセン
の量をガスクロマトグラフィーで分析する。これらアン
トラセンの水素化物生成に使用される水素は、水素供与
性を有する炭化水素類から供給されるので、これら炭化
水素類からアントラセンに移行した水素の量(水素原子
/5oul:アントラセン)を求め、これを水素供与性
として測定する。
Specifically, a predetermined amount of a hydrocarbon sample and anthracene (sample/anthracene-1/2 weight ratio) are placed in an autoclave equipped with a stirrer, and the temperature and pressure are set at 350° C. or higher, for example, from 350° C. to 450° C. 50kg/cd・
g (N2 pressure) and react for 30 minutes without catalyst. 9.10-dihydroanthracene, 1,4.5.8 before and after reaction
-tetrahydroanthracene, 1,2,3.4-tetrahydroanthracene, 1,2,3,4.5,6,7゜8
- Analyze the amount of octahydroanthracene and residual anthracene by gas chromatography. Since the hydrogen used to generate these anthracene hydrides is supplied from hydrocarbons that have hydrogen-donating properties, the amount of hydrogen transferred from these hydrocarbons to anthracene (hydrogen atoms/5 oul: anthracene) is determined. This is measured as hydrogen donating property.

なお、この方法は、Yokono  T、、Marsh
  H,and  Yokono  M、、Fue l
、60.607 (1981)に記載されている方法に
準じたものである。
This method is described by Yokono T., Marsh
H, and Yokono M,, Fue l
, 60.607 (1981).

このような物質を基油に加える方法としては製油所で基
油を製造する段階で加えることもできるし、熱媒体油を
使用する段階で使用者側で添加することも可能である。
Such a substance can be added to the base oil at the stage of producing the base oil at a refinery, or it can be added by the user at the stage of using the heat transfer oil.

さらには、基油を製造する段階で、石油を熱分解、接触
分解または接触改質する装置から得られる2環以上の芳
香環を有するかまたは一環の芳香環と一個の五員環とを
ともに有する化合物を含有する油を基油とともに水素化
し、基油を製造すると同時に水素化物を得ることも可能
である。
Furthermore, at the stage of producing base oil, it is possible to obtain oil with two or more aromatic rings obtained from equipment for thermal cracking, catalytic cracking, or catalytic reforming of petroleum, or to combine one aromatic ring with one five-membered ring. It is also possible to hydrogenate the oil containing the compound with the base oil to obtain the hydride at the same time as producing the base oil.

また、普通熱媒体油には各種添加剤を加えてその性能を
向上せしめる。本発明の熱媒体油に対して、このような
添加剤を加えることも何ら支障はない。このような添加
剤としては、たとえば酸化防止剤、清浄分散剤、粘度指
数向上剤、流動点降下剤、腐食防止剤、金属不活性剤、
さび止め剤、消泡剤、着色剤などが挙げられる。これら
各種添加剤の詳細は、例えば“潤滑油学界誌、第15巻
、第6号”または“桜井俊男編著、「石油製品添加剤」
 (幸書房)°などに記載されている。これら各種添加
剤の合計添加量は、基油100重量部に対して10重量
部以下、好ましくは5重量部以下、特に好ましくは3重
量部以下であるのが望ましい。
Additionally, various additives are added to ordinary heat transfer oil to improve its performance. There is no problem in adding such additives to the heat transfer oil of the present invention. Such additives include, for example, antioxidants, detergent dispersants, viscosity index improvers, pour point depressants, corrosion inhibitors, metal deactivators,
Examples include rust inhibitors, antifoaming agents, and coloring agents. Details of these various additives can be found, for example, in "Lubricant Science Journal, Volume 15, No. 6" or "Petroleum Product Additives" edited by Toshio Sakurai.
(Saiwai Shobo) ° etc. The total amount of these various additives added is preferably 10 parts by weight or less, preferably 5 parts by weight or less, particularly preferably 3 parts by weight or less, based on 100 parts by weight of the base oil.

実施例 本発明につき以下の実験、比較実験、実施例、比較例に
より更に詳細に説明する。
EXAMPLES The present invention will be explained in more detail by the following experiments, comparative experiments, working examples, and comparative examples.

実験1〜3、比較実験1〜3 熱媒体油基油と水素化油の水素供与性を比較するために
次のような実験を行った。熱媒体油基油としては、アラ
ビア系原油からの5AEIO,,5AE30.5AE5
0 (いずれも水素化精製したもの)を、水素化油の例
としてナフサ熱分解装置分解残油、ナフサ接触改質装置
改質残油およびFCCCC装置デカンデッドビオイル素
化物を使用した。実験方法は前述の方法によって行った
Experiments 1 to 3, Comparative Experiments 1 to 3 The following experiments were conducted to compare the hydrogen donating properties of heat transfer oil base oil and hydrogenated oil. As the heat transfer oil base oil, 5AEIO, 5AE30.5AE5 from Arabian crude oil is used.
0 (all of which were hydrorefined), naphtha pyrolysis unit cracked residue, naphtha catalytic reformer reformed residue, and FCCCC unit decanted bioilized product were used as examples of hydrogenated oil. The experimental method was as described above.

すなわち、試料とアントラセンを一定条件で反応させ、
アントラセンに添加した水素の量から水素移行量を求め
る方法によった。前記5AEIO。
In other words, the sample and anthracene are reacted under certain conditions,
The amount of hydrogen transferred was calculated from the amount of hydrogen added to anthracene. Said 5AEIO.

5AE30および5AE50の基油をアントラセンと一
定条件(表1)で反応させ、反応後9,10−ジヒドロ
アントラセン、1.2,3.4−テトラヒドロアントラ
セン、1.4,5.8−テトラヒドロアントラセンおよ
び1.2,3,4,5゜6.7.8−オクタヒドロアン
トラセンの量をガスクロマトグラフィーで分析した。こ
の結果、各基油からアントラセンに移行した水素の量が
わかる。結果を表3に示す。一方ナフサ熱分解装置分解
残油、ナフサ接触改質装置改質残油およびFCC装置デ
カンテッド・オイルを一定条件(表2)で水素化した水
素化物とアントラセンを表1の条件で反応させ、反応前
後の9.10−ジヒドロアントラセン、1.4.5.8
−テトラヒドロアントラセン、1,2.3.4−テトラ
ヒドロアントラセン、1.2.3,4,5,6,7.8
−オクタヒドロアントラセンならびにアントラセンの量
をガスクロマトグラフィーで分析した。反応前後のこれ
らの増減を求め、ナフサ熱分解装置分解残油、ナフサ接
触改質装置改質残油およびFCC装置デカンテッド・オ
イルの水素化物からアントラセンに移行した水素移行量
(水素原子/1lotアントラセン)を求めた。各基油
からアントラセンに移行した水素の量ならびにナフサ熱
分解装置分解残油、ナフサ接触改質装置改質残油および
FCC装置デカンテヅド・オイルの水素化物からアント
ラセンに移行した水素の量をまとめて表3に示す。
5AE30 and 5AE50 base oils were reacted with anthracene under certain conditions (Table 1), and after the reaction, 9,10-dihydroanthracene, 1,2,3,4-tetrahydroanthracene, 1,4,5,8-tetrahydroanthracene and The amount of 1.2,3,4,5°6.7.8-octahydroanthracene was analyzed by gas chromatography. As a result, the amount of hydrogen transferred from each base oil to anthracene can be determined. The results are shown in Table 3. On the other hand, the hydride obtained by hydrogenating naphtha pyrolysis equipment cracked residual oil, naphtha catalytic reformer reformed residual oil, and FCC equipment decanted oil under certain conditions (Table 2) was reacted with anthracene under the conditions shown in Table 1. 9.10-dihydroanthracene, 1.4.5.8
-tetrahydroanthracene, 1,2.3.4-tetrahydroanthracene, 1.2.3,4,5,6,7.8
-The amounts of octahydroanthracene and anthracene were analyzed by gas chromatography. The increase and decrease in these values before and after the reaction was determined, and the amount of hydrogen transferred from the hydride of the naphtha pyrolysis equipment cracked residual oil, the naphtha catalytic reformer reformed residual oil, and the FCC equipment decanted oil to anthracene (hydrogen atom/1 lot anthracene) was determined. I asked for The amount of hydrogen transferred to anthracene from each base oil and the amount of hydrogen transferred to anthracene from the hydrides of naphtha pyrolysis unit cracked oil, naphtha catalytic reformer reformed residue, and FCC unit decanted oil are summarized in the table below. Shown in 3.

この結果、各基油からの水素の移行量は非常に少なく、
一方、水素化油の例では水素の移行量はかなり大きく、
すなわち、水素供与性は各基油の3倍以上、たとえば1
0〜30倍あることがわかる。
As a result, the amount of hydrogen transferred from each base oil is very small.
On the other hand, in the case of hydrogenated oil, the amount of hydrogen transferred is quite large;
In other words, the hydrogen donating property is more than three times that of each base oil, for example, 1
It can be seen that there are 0 to 30 times more.

表1.水素供与性の実験条件 表2.ナフサ熱分解装置分解残油、 ナフサ接触改質装置改質残油および FCC装置デカンテッド・オイル の水素化条件 3、水素移行量の実験結果 実施例1、比較例1 内容積100−の内部撹拌型オートクレーブ実験装置に
より比較例1では比較実験3に示した5AE50基油、
実施例1では同じ5AE50基油100重量部に、実験
1に示したナフサ熱分解装置分解残油の水素化物5重量
部を加えたものを各々上記オートクレーブに入れ、40
0℃で72時間、内部の撹拌を継続した。なお、気相は
窒素で初圧5kg/cj(常温)で加圧してから昇温し
た。
Table 1. Hydrogen donating experimental conditions table 2. Hydrogenation conditions 3 of naphtha pyrolysis equipment cracked residual oil, naphtha catalytic reformer reformed residual oil, and FCC equipment decanted oil, experimental results of hydrogen transfer amount Example 1, Comparative Example 1 Internal stirring type with internal volume of 100- In Comparative Example 1, the 5AE50 base oil shown in Comparative Experiment 3 was measured using an autoclave experimental apparatus.
In Example 1, 100 parts by weight of the same 5AE50 base oil and 5 parts by weight of the hydride of the naphtha thermal cracker cracked residue shown in Experiment 1 were added to the above autoclave, and 40 parts by weight of the same 5AE50 base oil were added.
Internal stirring was continued for 72 hours at 0°C. The gas phase was pressurized with nitrogen at an initial pressure of 5 kg/cj (at room temperature) and then heated.

72時間経過後内容物を取り出し炭素質の生成を観察し
、次いでトルエン不溶分を測定した。結果を表4に示し
た。
After 72 hours, the contents were taken out and the formation of carbonaceous matter was observed, and then the toluene insoluble content was measured. The results are shown in Table 4.

実施例2、比較例2 図に示す内部密閉型恒温槽(ステンレス製)中に、比較
例2では比較実験2に示した5AE30基油、実施例2
では同じ5AE30基油100重量部に、実験2に示し
たナフサ接触改質装置改質残油の水素化物7重量部を加
えたものをそれぞれ上記内部密閉型恒温槽に入れた。い
ずれの場合も表面温度的800℃のニクロム線を液中に
浸し、液は撹拌し、液の温度は200℃に保持するよう
恒温槽を加熱した。また、気相は窒素で置換した。
Example 2, Comparative Example 2 In Comparative Example 2, the 5AE30 base oil shown in Comparative Experiment 2 and Example 2 were placed in an internally sealed constant temperature oven (made of stainless steel) shown in the figure.
Now, 100 parts by weight of the same 5AE30 base oil and 7 parts by weight of the hydride of the naphtha catalytic reformer reformed residual oil shown in Experiment 2 were added to each of the above-mentioned internally sealed thermostats. In each case, a nichrome wire with a surface temperature of 800°C was immersed in the liquid, the liquid was stirred, and a constant temperature bath was heated to maintain the temperature of the liquid at 200°C. In addition, the gas phase was replaced with nitrogen.

この状態を1,500時間継続したのち、液のサンプリ
ングを行い、液中の炭素質の生成を観察し、次いでトル
エン不溶分を測定した。この結果も表4に示した。
After this state was continued for 1,500 hours, the liquid was sampled to observe the formation of carbonaceous substances in the liquid, and then toluene insoluble matter was measured. The results are also shown in Table 4.

表4 以上の各実施例から次の点が明らかである。Table 4 The following points are clear from each of the above embodiments.

(1)熱媒体油基油の水素供与性は小さい。(1) The hydrogen donating property of the heat transfer oil base oil is small.

(2)石油の熱分解装置、接触分解装置および接触改質
装置から得られる製品の水素化物の水素供与性は熱媒体
油基油に比較して非常に大きい。
(2) The hydrogen-donating properties of hydrides obtained from petroleum pyrolysis equipment, catalytic cracking equipment, and catalytic reforming equipment are much greater than that of heat transfer oil base oil.

(3)熱媒体油基油に上記石油の熱分解装置、接触分解
装置および接触改質装置から得られた製品の水素化物を
加えると炭素質の生成が大巾に減少する。
(3) Addition of hydrides of products obtained from the above-mentioned petroleum thermal crackers, catalytic crackers, and catalytic reformers to the heat transfer oil base oil greatly reduces the production of carbonaceous substances.

(4)上記石油の熱分解装置、接触分解装置および接触
改質装置から得られる製品の水素化物は多くは必要とせ
ず、上記の例では数%で十分効果が発揮される。
(4) A large amount of the hydride product obtained from the petroleum pyrolysis equipment, catalytic cracking equipment, and catalytic reforming equipment is not required, and in the above example, a few percent is sufficient to exhibit the effect.

発明の効果 以上のように、石油を熱分解、接触分解または接触改質
する装置から得られた沸点250℃以上の炭化水素で所
定の水素供与性を有するものを熱媒体油に少量加えるこ
とによって、熱媒体油使用時における炭素質の析出が制
限され、しかも基油の有する性状を損うことなく使用さ
れることがわかる。
Effects of the Invention As described above, by adding a small amount of a hydrocarbon with a boiling point of 250°C or higher obtained from an apparatus for thermally cracking, catalytic cracking or catalytic reforming of petroleum and having a predetermined hydrogen donating property to heat transfer oil. It can be seen that the precipitation of carbonaceous substances when using the heat transfer oil is restricted, and that it can be used without impairing the properties of the base oil.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例において用いる試験装置を示す略
示図である。 (1)ニステンレス製恒温槽、(2):撹拌装置、(3
)二ニクロム線、     (4):温度計。 特許出願人   日本石油株式会社
The figure is a schematic diagram showing a test apparatus used in an example of the present invention. (1) stainless steel constant temperature bath, (2) stirring device, (3
) Nichrome wire, (4): Thermometer. Patent applicant Nippon Oil Co., Ltd.

Claims (1)

【特許請求の範囲】 〔1〕 (i)鉱油系基油及び/または合成系基油100重量部
に対して、必須成分として、 (ii)石油を熱分解、接触分解または接触改質する装
置から得られる沸点250℃以上の炭化水素を水素化し
、350℃以上での水素供与性が前記鉱油系基油及び/
または合成系基油の3倍以上である水素化油0.1〜2
0重量部 を添加してなる熱媒体油。 〔2〕前記石油を熱分解、接触分解または接触改質する
装置から得られる沸点250℃以上の炭化水素が、ナフ
サ熱分解装置分解残油、FCC装置(接触分解装置)サ
イクルオイル、スラリーオイルならびにデカンテッドオ
イル(DCO)、ナフサ接触改質装置改質残油、原油熱
分解装置分解タールまたはこれらの混合物である請求項
1に記載の熱媒体油。
[Scope of Claims] [1] (i) As an essential component for 100 parts by weight of mineral base oil and/or synthetic base oil, (ii) An apparatus for thermally cracking, catalytically cracking, or catalytically reforming petroleum. Hydrocarbons with a boiling point of 250°C or higher obtained from
Or hydrogenated oil 0.1 to 2 times more than synthetic base oil
Heat transfer oil containing 0 parts by weight. [2] Hydrocarbons with a boiling point of 250°C or higher obtained from the equipment for thermal cracking, catalytic cracking, or catalytic reforming of the petroleum are used as naphtha pyrolysis equipment cracked residue, FCC equipment (catalytic cracking equipment) cycle oil, slurry oil, and decane. The heat transfer oil according to claim 1, which is ted oil (DCO), naphtha catalytic reformer reformed residual oil, crude oil pyrolysis equipment cracked tar, or a mixture thereof.
JP63138970A 1988-04-05 1988-06-06 Heat carrier oil Expired - Lifetime JPH0747730B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63138970A JPH0747730B2 (en) 1988-06-06 1988-06-06 Heat carrier oil
EP89105829A EP0338311B1 (en) 1988-04-05 1989-04-03 Oil composition containing hydrogenated oil
DE89105829T DE68911356T2 (en) 1988-04-05 1989-04-03 Oil composition containing hydrogenated oil.
CA000595637A CA1327787C (en) 1988-04-05 1989-04-04 Oil composition containing hydrogenated oil
US07/333,706 US5015404A (en) 1988-04-05 1989-04-05 Oil composition containing hydrogenated oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138970A JPH0747730B2 (en) 1988-06-06 1988-06-06 Heat carrier oil

Publications (2)

Publication Number Publication Date
JPH01308481A true JPH01308481A (en) 1989-12-13
JPH0747730B2 JPH0747730B2 (en) 1995-05-24

Family

ID=15234431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138970A Expired - Lifetime JPH0747730B2 (en) 1988-04-05 1988-06-06 Heat carrier oil

Country Status (1)

Country Link
JP (1) JPH0747730B2 (en)

Also Published As

Publication number Publication date
JPH0747730B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US9090836B2 (en) Upgrading hydrocarbon pyrolysis products
US6506297B1 (en) Biodegradable high performance hydrocarbon base oils
Dufresne et al. New developments in hydrocracking: low pressure high-conversion hydrocracking.
US5015404A (en) Oil composition containing hydrogenated oil
JP2002524605A (en) High-grade synthetic lubricant base oil
JP2010270341A (en) Mixing of low viscosity base oil by fischer-tropsch process for production of high quality lubricating base oil
JPH0737623B2 (en) Lubricating oil composition
US4069165A (en) Electrical insulating oils
US4210520A (en) Unsupported catalysts in the production of olefins
CA1327787C (en) Oil composition containing hydrogenated oil
US5362375A (en) Oil compositions
JPH01308481A (en) Heat transfer oil
JPH01308482A (en) Heat transfer oil
Ma et al. Preparation and performance evaluation of mPAO8 using olefin from coal as raw material
JP2527999B2 (en) Lubricant composition
JP2539250B2 (en) Metal working oil
JPH0215114A (en) Oil for metal working
CN104560192B (en) Preparation method of low-viscosity base oil of lubricating oil
US3929923A (en) Process for preparation of isomers of 1-cyclohexyl-1,3,3-trimethylhydrindane
JPH0243292A (en) Lubricant composition
JPS606044B2 (en) Electrical insulation oil composition
EP1401886A1 (en) Process for hydrogenating/dehalogenationg polyalphaolefin polymer, the resulting polymer and lubrican containing same
JPH0617057A (en) Method for converting heavy oil into light oil
JPS6059682B2 (en) electrical insulation oil
GB1326946A (en) Blended hydrocarbon oil and process of manufacture