JPH01308254A - Production of chlorinated pyridine - Google Patents

Production of chlorinated pyridine

Info

Publication number
JPH01308254A
JPH01308254A JP13674188A JP13674188A JPH01308254A JP H01308254 A JPH01308254 A JP H01308254A JP 13674188 A JP13674188 A JP 13674188A JP 13674188 A JP13674188 A JP 13674188A JP H01308254 A JPH01308254 A JP H01308254A
Authority
JP
Japan
Prior art keywords
reaction solution
pyridine
boiling point
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13674188A
Other languages
Japanese (ja)
Inventor
Noboru Kamei
登 亀井
Fuminori Nishiwaki
西脇 文宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13674188A priority Critical patent/JPH01308254A/en
Publication of JPH01308254A publication Critical patent/JPH01308254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)

Abstract

PURPOSE:To obtain a compound useful as a synthetic intermediate for drugs and agricultural chemicals, by a simple operation while preventing formation of colored substance and insoluble substance in a neutralization process, by chlorinating pyridine in a gas phase, heating the reaction solution for <=a fixed time, degassing contained chlorine and then neutralizing. CONSTITUTION:Pyridine is chlorinated by using a diluent such as water or N2 in a gas phase and cooled to give a reaction solution. The reaction solution is heated at a boiling point or a temperature close to the temperature within one hour to degas contained chlorine. Then the resulting substance is neutralized with an alkali such as NaOH to give 2-chloropyridine and/or 2,6- dichloropyridine. In the degassing process, a condensed solution is heated by a receiver of the reaction solution, the reaction solution is most suitably heated at the boiling point or the temperature close to the boiling point within one hour, retention time as a solution containing a chlorine gas is a time corresponding to a piping between a condenser-a receiver and the amount of the solution changed is negligible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相反応によってピリジンと塩素から、医農薬
の中間体として有用なピリジン塩素化物である2−クロ
ロピリジン及び/又は2,6−ジクロロピリジンを製造
する方法の改良に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention produces 2-chloropyridine and/or 2,6-chlorinated pyridine, which is a pyridine chloride useful as an intermediate for pharmaceuticals and agricultural chemicals, from pyridine and chlorine through a gas phase reaction. This invention relates to improvements in the method for producing dichloropyridine.

〔従来の技術及び発明が解決しようとする課題〕以下、
ピリジンの気相塩素化のうち、光反応を例にとり本発明
の詳細な説明する。
[Problems to be solved by conventional techniques and inventions] Below,
The present invention will be described in detail by taking photoreaction as an example of gas phase chlorination of pyridine.

ピリジンと塩素とを紫外線照射下、気相にて反応させ、
2−クロロピリジン及び/又は2,6−ジクロロピリジ
ンを合成する方法は既にいくつか知られている。
Pyridine and chlorine are reacted in the gas phase under ultraviolet irradiation,
Several methods for synthesizing 2-chloropyridine and/or 2,6-dichloropyridine are already known.

例えばランプの汚れや、クール物の発生を防止するため
四塩化炭素を稀釈剤として用いている例(米国特許第3
.297.556号)や、ピリジンに対し少なくとも1
モル以上の水蒸気又はハロゲン化炭化水素−水蒸気を添
加する方法(特公昭52−3935号、特公昭52−3
936号、特公昭55−4742号)がある。
For example, carbon tetrachloride is used as a diluent to prevent lamp dirt and generation of cool substances (U.S. Patent No. 3).
.. 297.556) or at least 1 for pyridine.
Method of adding mol or more of water vapor or halogenated hydrocarbon-steam (Japanese Patent Publication No. 52-3935, Japanese Patent Publication No. 52-3
No. 936, Special Publication No. 55-4742).

しかしながらこれらの例では、ハロゲン化炭化水素が光
反応時若干反応し、2−クロロピリジンと蒸留分離し難
い生成物を生じ、そのため反応液を酸処理し、ハロゲン
化炭化水素由来の副生物を除去した後、中和、分留する
という複雑な後処理が必要となる(特開昭50−197
53号、特開昭56−90058号)。
However, in these examples, the halogenated hydrocarbon reacts slightly during the photoreaction, producing a product that is difficult to separate from 2-chloropyridine by distillation. Therefore, the reaction solution is treated with an acid to remove byproducts derived from the halogenated hydrocarbon. After that, complicated post-processing of neutralization and fractional distillation is required (Japanese Patent Application Laid-Open No. 1977-1979)
No. 53, Japanese Unexamined Patent Publication No. 56-90058).

この改良法として、ハロケン化炭化水素の代わりに窒素
を稀釈剤として用いる方法(特開昭60’−78967
号)や、大過剰の水等での稀釈下、撹拌機を取付けた反
応器を用いろ方法(特願昭62−256104号)があ
り、これらの方法によればハロゲン化炭化水素由来の副
生物は存在しないため比較的簡単な精製プロセスで済む
利点がある。
As an improved method of this, a method using nitrogen as a diluent instead of halogenated hydrocarbon (Japanese Patent Application Laid-open No. 60'-78967
There are two methods: dilution with a large excess of water, etc., using a reactor equipped with a stirrer (Japanese Patent Application No. 62-256104), and these methods eliminate by-products derived from halogenated hydrocarbons. It has the advantage of requiring a relatively simple purification process since it does not contain living organisms.

本発明者等は、これらの方法について収率、或いは後工
程について詳しく検討したところ、反応液を中和し、抽
出分液する工程で著しい着色が起きたり、特に分液工程
で、界面に中間層が存在するという問題を見出した。そ
れに起因してか、中和、分液した後に得られる有価物量
は必ずしも高いとは言えず、これらの着色物や不溶物に
変化する有価物の予は決して無視できる量ではないと考
えられた。
The present inventors investigated the yield and post-processes of these methods in detail, and found that significant coloring occurred during the process of neutralizing the reaction solution, extracting and separating the liquid, and that intermediates formed at the interface, especially during the liquid separation process. We discovered the problem of the existence of layers. Perhaps because of this, the amount of valuable materials obtained after neutralization and liquid separation was not necessarily high, and the amount of valuable materials that would turn into colored or insoluble materials was thought to be far from negligible. .

〔課題を解決するだめの手段〕 本発明者等は以上の点を改良すべく鋭意検討を重ねた結
果、反応ガスを冷却し、凝縮して得られる反応液中に含
有される未反応塩素が有価物と反応して好ましくない副
生物を生成するためであることを見出した。
[Means to Solve the Problem] As a result of intensive studies to improve the above points, the present inventors have found that unreacted chlorine contained in the reaction liquid obtained by cooling and condensing the reaction gas is It was found that this is because it reacts with valuables and produces undesirable by-products.

水を稀釈剤に用いた場合、反応液は2液相で存在し、有
機層には2.6−ジクロロピリジン、2−クロロピリジ
ンの他に、塩素ガスが相当量溶解している。水層へはピ
リジン塩酸塩、2−クロロピリジン塩酸塩の他、少量の
2,6−ジクロロピリジンや塩素ガスが溶解している。
When water is used as a diluent, the reaction solution exists in two liquid phases, and a considerable amount of chlorine gas is dissolved in the organic layer in addition to 2,6-dichloropyridine and 2-chloropyridine. In addition to pyridine hydrochloride and 2-chloropyridine hydrochloride, a small amount of 2,6-dichloropyridine and chlorine gas are dissolved in the water layer.

本発明者等は、こうして溶解している塩素ガス分が時間
と共に減少し、数時間の後には極くわずかとなっている
ことを見出した。そしてこの塩素ガス分が減少すること
と、後工程での着色、不溶物の量とが深い関わりのある
ことを見出したのである。
The present inventors have discovered that the amount of dissolved chlorine gas decreases over time and becomes extremely small after several hours. They discovered that the reduction in chlorine gas content is closely related to the amount of coloring and insoluble matter in the subsequent process.

即ち光塩素化反応液は淡黄色であり、長時間放置しても
その色相は変化しない。しかしながら、放置している間
に有価物は塩素分と反応し、好ましくない副生物を生成
している。該副生物は、中和工程で、アルカリ性条件と
なった時に重合し始め、着色物や不溶物を生成するとい
うメカニスムが明らかとなったのである。このような着
色物や不溶物は、当初、気相光塩素化反応にて生成する
ものであると考えられたが、凝縮した反応液としての放
置中に生成するとは、全く意外な結果であった。
That is, the photochlorination reaction liquid is pale yellow, and its hue does not change even if it is left for a long time. However, while left standing, the valuables react with the chlorine content, producing undesirable by-products. It has now become clear that the by-products begin to polymerize when alkaline conditions are reached during the neutralization process, producing colored substances and insoluble substances. Initially, it was thought that such colored substances and insoluble substances were generated during the gas-phase photochlorination reaction, but it was a completely unexpected result that they were generated while the condensed reaction liquid was left standing. Ta.

本発明者等は、こうした経時変化反応に着目し、これを
防止する方法について鋭意検討を重ねた結果、生成した
反応液を1時間以内に沸点あるいはこれに近い温度に保
持するという非常に簡単な操作で、中和工程での着色物
や不溶物の生成を完全に防止し得ることを見出し、本発
明に到達した。
The inventors of the present invention focused on such reactions that change over time, and as a result of intensive studies on ways to prevent them, the inventors discovered a very simple method of keeping the generated reaction liquid at or near the boiling point within one hour. The present invention was achieved based on the discovery that it is possible to completely prevent the formation of colored substances and insoluble substances during the neutralization process by operation.

即ぢ、本発明はピリジンを気相で塩素化を行い、冷却し
て反応液を得、これを中和してピリジン塩素化物を得る
方法に於いて、反応液を得た後1時間以内に、反応液を
沸点あるいはこれに近い温度に加熱して含有塩素分を脱
気することを特徴とするピリジン塩素化物の製造法に関
するものである。
Therefore, the present invention provides a method for chlorinating pyridine in a gas phase, cooling it to obtain a reaction solution, and neutralizing this to obtain a chlorinated pyridine, within one hour after obtaining the reaction solution. , relates to a method for producing a pyridine chloride, which is characterized by heating a reaction solution to a boiling point or a temperature close to this to degas the chlorine content.

このように沸点近くの温度で、含有される塩素分を脱気
することにより、かかる経時変化反応を防止できるわけ
であるが、反応してから、この脱気工程を行う迄の時間
が問題となる。反応液が生成して遅くとも1時間以内に
該脱気工程を行う必要がある。この方法として、反応液
の受器で凝縮液を加熱し、沸点あるいはこれに近い温度
とすることが最も優れている。この方法によると塩素ガ
スを含んだ液としての滞留時間は、凝縮器〜受器の間の
配管分しかなく、その経時変化量は殆ど無視し得るので
ある。また、使用する装置によって可能であれば受槽内
を減圧にして、脱気することもできる。
This time-dependent reaction can be prevented by degassing the chlorine content at a temperature close to the boiling point, but the time from the reaction to the degassing process is a problem. Become. It is necessary to carry out the degassing step within one hour at the latest after the reaction solution is generated. The best method for this is to heat the condensate in a reaction liquid receiver to a temperature at or near the boiling point. According to this method, the residence time of the liquid containing chlorine gas is only the length of the piping between the condenser and the receiver, and the amount of change over time can be almost ignored. Further, if possible depending on the equipment used, the inside of the receiving tank can be depressurized and degassed.

かくして得られた反応液は、無色透明であり、これをア
ルカリで中和しても殆ど着色せず、しかも不溶解物は全
く生成しない。該中和液は分液し、有機層を蒸留し、溶
剤、ピリジン、2−クロロピリジン、2,6−ジクロロ
ピリジンを容易に分別回収できる。
The reaction solution thus obtained is colorless and transparent, exhibits almost no coloring even when neutralized with an alkali, and does not generate any insoluble matter. The neutralized liquid is separated and the organic layer is distilled to easily separate and recover the solvent, pyridine, 2-chloropyridine, and 2,6-dichloropyridine.

反応液の加熱温度は、好ましくは常圧、或いは減圧下の
沸点で加熱リフラックス状態とすることが望まれる。沸
点より20℃低いと、その効果は薄くなるので、これ以
上の温度にすることが望ましい。
The heating temperature of the reaction solution is preferably normal pressure or the boiling point under reduced pressure to achieve a reflux state. If the temperature is 20°C lower than the boiling point, the effect will be diminished, so it is desirable to keep the temperature higher than this.

反応稀釈剤としては、水が最も好ましいが、N2、四塩
化炭素等を使用した場合でも本状は適用できる。稀釈剤
に水を用いない場合は、受槽へ水を張り込んでおくこと
が望ましい。反応稀釈剤に有機溶剤を用いない時は凝縮
ガス中へ有機溶剤を添加するとよい。
As the reaction diluent, water is most preferred, but the present invention is also applicable when N2, carbon tetrachloride, etc. are used. If water is not used as a diluent, it is desirable to fill the receiver tank with water. When an organic solvent is not used as a reaction diluent, it is preferable to add an organic solvent to the condensed gas.

アルカリは通常、水酸化ナトリウムや水酸化カリウム等
の強塩基を使用する。
As the alkali, a strong base such as sodium hydroxide or potassium hydroxide is usually used.

以上、ピリジンの気相光塩素化反応について詳述したが
、本状は200℃から500℃で行う熱気相塩素化反応
や、触媒充填層を通過せしめる反応等、ピリジンを気相
塩素化する他の方法にも、もちろん適用できる。
The vapor phase photochlorination reaction of pyridine has been described in detail above, but this article will discuss other methods for vapor phase chlorination of pyridine, such as a hot vapor phase chlorination reaction carried out at 200°C to 500°C, and a reaction in which the pyridine is passed through a catalyst packed bed. Of course, this method can also be applied.

〔発明の効果〕〔Effect of the invention〕

ピリジンの気相塩素化反応液に於ける経時変化について
のメカニズムを見出し、その防止対策として、反応液を
沸点あるいはこれに近い温度で保持して塩素を脱気する
という非常に簡単な操作法により、中和工程での着色、
不溶物の発生を防止し、収率を改善することができた。
We discovered the mechanism behind the change over time in the gas-phase chlorination reaction solution of pyridine, and as a preventive measure, we developed a very simple method of holding the reaction solution at or near its boiling point and degassing the chlorine. , coloring during the neutralization process,
It was possible to prevent the generation of insoluble matter and improve the yield.

〔実施例〕〔Example〕

以下に実施例により本発明を説明するが、本発明はこれ
らの実施例に限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 光反応缶としてランプ据え付は口、撹拌機取付は口、温
度計口、ガス導入口、ガス流出口等を有するジャケット
つきの51パイレックス缶を、そして光源としては10
0W、高圧水銀灯を用いた。
Example 1 As a photoreaction can, a 51 Pyrex can with a jacket was used, which had a port for installing a lamp, a port for installing a stirrer, a thermometer port, a gas inlet, a gas outlet, etc., and a 10 Pyrex can as a light source.
A 0W, high pressure mercury lamp was used.

ガス流出部には、溶剤添加口、冷却器が取付けられ、■
矛の撹拌機及びジャケット付の受器が設置されている。
A solvent addition port and a cooler are attached to the gas outlet, and ■
A spear stirrer and a jacketed receiver are installed.

また受器に排ガスクーラーとして、ジムロート型冷却器
が取付けられており、これを出た排ガスはアルカリ吸収
塔で未反応塩素分等を吸収できるようになっている。
In addition, a Dimroth type cooler is attached to the receiver as an exhaust gas cooler, and the exhaust gas exiting from this can be used to absorb unreacted chlorine, etc. in an alkali absorption tower.

受器のジャケットへは、100 ℃の熱オイルが導かれ
ており、加熱できるようになっている。
Hot oil at 100°C is introduced into the jacket of the receiver, allowing it to be heated.

あらかじめ反応缶内温度を130℃に予熱しておき、ピ
リジンは90.0 g / Hで仕込み、水を410g
/H1塩素ガスを121g/Hで仕込んだ。
The temperature inside the reactor was preheated to 130℃, pyridine was charged at 90.0 g/H, and water was added at 410 g.
/H1 Chlorine gas was charged at 121 g/H.

反応槽温度が160℃を保つようにジャケットの熱媒温
度を調節しながら反応を継続した。
The reaction was continued while adjusting the temperature of the heat medium in the jacket so that the reactor temperature was maintained at 160°C.

反応ガス出口部へ四塩化炭素を200g/Hで仕込み、
混合ガスを温水を用いて80℃近くまで冷却した後、凝
縮液を受槽へ導いた。
Charge carbon tetrachloride at 200 g/H to the reaction gas outlet,
After cooling the mixed gas to nearly 80° C. using hot water, the condensate was led to a receiving tank.

受槽は、ジャケットで加熱され、リフラックス状態とな
っており、温度は83℃を示していた。
The receiving tank was heated with a jacket and was in a reflux state, and the temperature was 83°C.

該反応液を冷却器を通して抜き取ったところ、毎時80
0gの反応液を得た。反応液をカセイソーダ水溶液でp
H8に中和したところ、カセイソーダ純分で55g/H
(1,38モル/H)消費した。
When the reaction liquid was taken out through a cooler, the reaction rate was 80% per hour.
0 g of reaction solution was obtained. P the reaction solution with aqueous caustic soda solution.
When neutralized to H8, the pure caustic soda content was 55g/H.
(1,38 mol/H) was consumed.

こうして得られる反応液中には、未反応ピリジンが8.
0g/ H3P−クロロピリジンが78.6 g /H
12,6−ジクロロピリジンが48.3 g / H含
まれていた。
The reaction solution thus obtained contains 8.0% unreacted pyridine.
0g/H3P-chloropyridine 78.6g/H
It contained 48.3 g/H of 12,6-dichloropyridine.

ピリジンの転化率は91.1%、2−クロロピリジンの
収率は60.8%、2.6−ジクロロピリジンの収率は
28.7%であった。有価物の収支上のロスは仕込みピ
リジンに対し、1.6%と評価された。
The conversion rate of pyridine was 91.1%, the yield of 2-chloropyridine was 60.8%, and the yield of 2,6-dichloropyridine was 28.7%. The balance loss of valuables was estimated to be 1.6% of the pyridine used.

中和液は1日放置後、濃い黄色となったが、界面には不
溶物は全く存在しなかった。
The neutralized solution turned dark yellow after being left for one day, but no insoluble matter was present at the interface.

実施例2 水の仕込み量を200g/Hとしたこと以外は、実施例
1と同様に処理した。毎時590gの反応液を得た。反
応液をカセイソーダ水溶液でpH8に中和したところ、
カセイソーダ純分で56 g / H(1,40モル/
H)消費した。この反応液中には、未反応ピリジンが7
.5g/H12−クロロピリジンが57.6g/H,2
,6−ジクロロピリジンが74,6g/H含まれていた
Example 2 The same process as in Example 1 was carried out except that the amount of water charged was 200 g/H. 590 g of reaction solution was obtained per hour. When the reaction solution was neutralized to pH 8 with aqueous caustic soda solution,
Caustic soda pure content: 56 g/H (1,40 mol/H)
H) Consumed. This reaction solution contained 7 unreacted pyridine.
.. 5g/H12-chloropyridine is 57.6g/H,2
, 6-dichloropyridine in an amount of 74.6 g/H.

ピリジンの転化率は91.2%、2−クロロピリジンの
収率は44.6%、2.6−ジクロ口ピリジンの収率は
44.3%であった。有価物の収支上のロスは仕込みピ
リジンに対し、2.3%と評価された。
The conversion rate of pyridine was 91.2%, the yield of 2-chloropyridine was 44.6%, and the yield of 2,6-dichloropyridine was 44.3%. The balance loss of valuables was estimated to be 2.3% of the pyridine used.

中和液は1日放置後、黄色を示していたが、界面層に於
ける不溶物は全く存在しなかった。
The neutralized solution showed a yellow color after being left for one day, but no insoluble matter was present in the interfacial layer.

比較例1 受槽ジャッケト及びガス流出部冷却器へ水道水を通し、
受槽の温度を50℃に保つこと以外、実施例1と同様の
操作を行った。得られた反応液を5時間経過の後に、カ
セイソーダ水溶液でρ[18に調整したところ、カセイ
ソーダ純分で62g/H(1,55モル/H)消費した
。該反応液を分析したところ、未反応ピリジンが5.7
g/H1今         2−クロロピリジン73
.9g/H,2,6−ジクロロピリジン49.9g/H
含まれていることが判った。
Comparative Example 1 Tap water was passed through the receiving tank jacket and gas outlet cooler,
The same operation as in Example 1 was performed except that the temperature of the receiving tank was maintained at 50°C. After 5 hours had elapsed, the resulting reaction solution was adjusted to ρ[18] with an aqueous solution of caustic soda, and 62 g/H (1.55 mol/H) of pure caustic soda was consumed. When the reaction solution was analyzed, unreacted pyridine was found to be 5.7
g/H1 now 2-chloropyridine 73
.. 9g/H, 2,6-dichloropyridine 49.9g/H
It was found that it was included.

ピリジン転化率は937%、2−クロロピリジン収率は
57.2%、2,6−ジクロロピリジン収率は29.6
%であり、有価物の収支上のロスは、仕込みピリジンに
対し、6.9%あることが判った。
Pyridine conversion rate is 937%, 2-chloropyridine yield is 57.2%, 2,6-dichloropyridine yield is 29.6
%, and the balance loss of valuables was found to be 6.9% relative to the charged pyridine.

冊 なお、中和した時に、反応液は褐色に変色し、1日後界
面に黒いタール状の中間物が存在していた。
When neutralized, the reaction solution turned brown, and a black tar-like intermediate was present at the interface after one day.

上比較例 2 受槽ジャケン)及びガス流出部冷却器へ水道水を通し、
受槽の温度を50℃に保つこと以外、実施例2と同様の
操作を行った。得られた反応液を5時間経過の後に、カ
セイソーダ水溶液でp[18に調整したところ、カセイ
ソーダ純分て68g/H(1,70モル/H)消費した
。該反応液を分析したところ、未反応ピリジンが5.6
g/ H3P−クロロピリジンが48.9 g / H
3P、6−ジクロロピリジンが70.9 g / H含
まれていた。
Comparative Example 2 Tap water is passed through the receiver tank (jaken) and the gas outlet cooler,
The same operation as in Example 2 was performed except that the temperature of the receiving tank was maintained at 50°C. After 5 hours had passed, the resulting reaction solution was adjusted to p[18 with a caustic soda aqueous solution, and 68 g/H (1.70 mol/H) of pure caustic soda was consumed. When the reaction solution was analyzed, unreacted pyridine was found to be 5.6
g/H3P-chloropyridine is 48.9 g/H
It contained 70.9 g/H of 3P,6-dichloropyridine.

ピリジンの転化率は93.8%、2−クロロピリジン収
率は37.8%、2,6−ジクロロピリジンの収率は4
2.1%であり、有価物の収支上のロスは仕込みピリジ
ンに対し13.9%と評価された。
The conversion rate of pyridine was 93.8%, the yield of 2-chloropyridine was 37.8%, and the yield of 2,6-dichloropyridine was 4%.
The loss of valuables was estimated to be 13.9% with respect to the charged pyridine.

中和液は1日放置後黒褐色を示し、界面には多量のター
ル状中間物が存在していた。
The neutralized solution showed a blackish brown color after being left for one day, and a large amount of tar-like intermediates were present at the interface.

Claims (1)

【特許請求の範囲】 1 ピリジンを気相で塩素化し、冷却して反応液を得、
これを中和してピリジン塩素化物を得る方法に於いて、
反応液を得た後1時間以内に、反応液を沸点あるいはこ
れに近い温度に加熱して含有塩素分を脱気することを特
徴とするピリジン塩素化物の製造法。 2 反応ガスを冷却し、凝縮した反応液の受槽に於いて
、該液を沸点あるいはこれに近い温度に保持することに
より含有塩素分を脱気する請求項1記載のピリジン塩素
化物の製造法。
[Claims] 1. Chlorinate pyridine in a gas phase and cool it to obtain a reaction solution,
In the method of neutralizing this to obtain pyridine chloride,
A method for producing a pyridine chloride, which comprises heating the reaction solution to a boiling point or a temperature close to this within one hour after obtaining the reaction solution to degas the chlorine content. 2. The method for producing a pyridine chloride according to claim 1, wherein the reaction gas is cooled and the chlorine content is degassed by maintaining the condensed reaction liquid at a temperature at or near its boiling point in a receiving tank.
JP13674188A 1988-06-03 1988-06-03 Production of chlorinated pyridine Pending JPH01308254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13674188A JPH01308254A (en) 1988-06-03 1988-06-03 Production of chlorinated pyridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13674188A JPH01308254A (en) 1988-06-03 1988-06-03 Production of chlorinated pyridine

Publications (1)

Publication Number Publication Date
JPH01308254A true JPH01308254A (en) 1989-12-12

Family

ID=15182419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13674188A Pending JPH01308254A (en) 1988-06-03 1988-06-03 Production of chlorinated pyridine

Country Status (1)

Country Link
JP (1) JPH01308254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918707B2 (en) 1997-07-15 2005-07-19 Silverbrook Research Pty Ltd Keyboard printer print media transport assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918707B2 (en) 1997-07-15 2005-07-19 Silverbrook Research Pty Ltd Keyboard printer print media transport assembly

Similar Documents

Publication Publication Date Title
CN104926661A (en) Synthetic method for bronopol
JPH01308254A (en) Production of chlorinated pyridine
CN110475764B (en) Method for purifying trifluoromethylpyridines
JPH01308255A (en) Production of chlorinated pyridine
JPS6078967A (en) Production of 2-chloropyridine and/or 2,6-dichloropyridine
US5618986A (en) Method for producing a hydrofluorocarbon
JPH01149740A (en) Production of 4,4&#39;-dibromobiphenyl
JPH0717606B2 (en) Method for separating chloropyridines
JP2523789B2 (en) Distillation method of chlorinated pyridine
RU2084437C1 (en) Method of synthesis of hexafluorobenzene or its mono- or disubstituted derivatives
JPH10287609A (en) Production of 3,3-dichloro-1,1,1-trifluoroacetone
CN110950809B (en) Synthetic post-treatment method of aryl triazolinone compound
JP2563484B2 (en) Gas phase chlorination of pyridine
JPS597699B2 (en) Method for producing indolines
US5352840A (en) Oxidation process
JPH04360879A (en) Purification of aromatic triazoles
JPH045007B2 (en)
JPS6130667B2 (en)
US3962357A (en) Process for the preparation of substituted vinylbenzyl chloride
US3113132A (en) Synthesis of chlorinated alkylpyrazines
JP2559433B2 (en) Method for producing chloropyridine
JPH0219104B2 (en)
US4721822A (en) Process for preparing 2,6-dichlorotoluene
JPS649969B2 (en)
JPS6130663B2 (en)