JPH01307613A - Measuring instrument for spiral pitch of optical fiber carrying spacer - Google Patents

Measuring instrument for spiral pitch of optical fiber carrying spacer

Info

Publication number
JPH01307613A
JPH01307613A JP63138383A JP13838388A JPH01307613A JP H01307613 A JPH01307613 A JP H01307613A JP 63138383 A JP63138383 A JP 63138383A JP 13838388 A JP13838388 A JP 13838388A JP H01307613 A JPH01307613 A JP H01307613A
Authority
JP
Japan
Prior art keywords
spacer
angle
pitch
pair
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63138383A
Other languages
Japanese (ja)
Other versions
JPH083411B2 (en
Inventor
Hidenobu Nagao
長尾 秀信
Shinji Toyokawa
豊川 真治
Tetsuo Shibagaki
柴垣 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP63138383A priority Critical patent/JPH083411B2/en
Publication of JPH01307613A publication Critical patent/JPH01307613A/en
Publication of JPH083411B2 publication Critical patent/JPH083411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To measure a spiral pitch of a spacer having an inversion-like spiral groove with high accuracy by executing an operation by receiving each signal from a speed pulse generator for generating a signal corresponding to an advance quantity of a spiral spacer and a pair of angle pulse generators which are fitted into the spiral groove. CONSTITUTION:When a spacer 12 having an inverted spiral groove for carrying an optical fiber on the outside periphery advances in the direction as indicated with an arrow, a speed signal corresponding to its advance quantity is obtained by a speed pulse generator 18 provided on a take-up machine 14 in front. Also, a pair of angle pulse generators 22, 22' provided between a pair of take-up machines 14 generate an angle signal corresponding to a rotation angle of a pair of rotating bodies 20, 20' which rotate as the spiral spacer 12 advances. Subsequently, the advance quantity of the spacer from the speed pulse generator 18 and the rotation angle of the rotating bodies 20, 20' which are fitted into the spiral groove from a pair of angle pulse generators 22, 22' are led to an arithmetic circuit, and a pitch of the spiral groove is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗張力線の外周に複数の溝を適当なピッチ毎
に反転するように形成した光ファイバ担持用スペーサの
螺旋ピッチ測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a helical pitch measuring device for an optical fiber supporting spacer in which a plurality of grooves are formed on the outer periphery of a tensile strength line so as to be reversed at appropriate pitches.

(発明の背景) 周知のように、光ファイバは、低伝送損失でしかも伝送
量が極めて大きいので通信の分野で広範囲に亘って実用
化が促進されており、複数本の光ファイバをケーブル化
して敷設する際には、外周に光ファイバを担持するため
の螺旋溝が形成されたスペーサをケーブル芯線として用
い、この螺旋溝に光ファイバを挿入して、引張、圧縮1
曲げ等の応力を回避している。
(Background of the Invention) As is well known, optical fibers have a low transmission loss and a very large amount of transmission, so their practical use in the field of communications is being promoted widely, and multiple optical fibers are made into cables. When installing, a spacer with a spiral groove formed on the outer periphery for supporting the optical fiber is used as a cable core wire, the optical fiber is inserted into this spiral groove, and tension and compression 1
Avoids stress such as bending.

ところで、スペーサに設けられる螺旋溝は、外周を一方
から他方に周回するようにして設けられたものと、外周
を所定の角度、例えば180度の間隔内で反転するよう
にして設けられたものとが提供されている。
By the way, there are two types of spiral grooves provided in a spacer: one that goes around the outer periphery from one side to the other, and the other that turns the outer periphery at a predetermined angle, for example, within an interval of 180 degrees. is provided.

前者の周回状の螺旋溝では、光ファイバを溝内に挿入す
る場合、光ファイバを巻付けたボビンを回転させなけれ
ばならず、かなり大型の回転設備が必要となり、設備費
が高価になる。また、ケーブル化後、光ファイバを途中
から分岐しにくいなどの問題がある。
In the former circular spiral groove, when an optical fiber is inserted into the groove, the bobbin around which the optical fiber is wound must be rotated, which requires fairly large rotating equipment, resulting in high equipment costs. In addition, there are problems such as difficulty in branching the optical fiber from the middle after it is made into a cable.

これに対して後者の反転状の螺旋溝ではケーブル途中か
らの分岐取出しが容易であるとともに、光ファイバを巻
付けたボビンを回転させる必要がなく、回転設備が不要
で設備費が安価になるが、特にこの形式の螺旋溝では、
所定の角度間隔毎に溝の方向が反転しており、この反転
部分で溝形状に異常が発生し易い。
On the other hand, with the latter inverted spiral groove, it is easy to branch out the cable from the middle, and there is no need to rotate the bobbin around which the optical fiber is wound. , especially for this type of spiral groove,
The direction of the groove is reversed at every predetermined angular interval, and abnormalities in the groove shape are likely to occur at these reversed portions.

螺旋溝に異常が発生すると、ケーブル化する際に光ファ
イバを溝内に安定して収容できないなどのトラブルが生
じたり、ケーブル化はできても、使用時にこの異常個所
によって、光ファイバに不要な側圧が作用して伝送損失
が増加して、光ファイバの伝送特性などに悪影響を及ぼ
す。
If an abnormality occurs in the spiral groove, problems may occur such as not being able to store the optical fiber stably in the groove when making a cable, or even if the optical fiber can be made into a cable, the abnormality may cause the optical fiber to become unnecessary during use. The lateral pressure acts and increases transmission loss, which adversely affects the transmission characteristics of the optical fiber.

このような観点から、特に、反転する螺旋溝のピッチは
、全長に亘って厳格な寸法精度を要求されているが、従
来、このようなスペーサのピッチを高精度に測定できる
装置が提供されていなかった。
From this point of view, the pitch of the reversing spiral groove in particular requires strict dimensional accuracy over its entire length, but conventionally, no device has been provided that can measure the pitch of such a spacer with high precision. There wasn't.

そこで、本発明者らは、上述の背景に鑑み鋭意研究して
本発明の完成に至ったものであって、その目的とすると
ころは、反転する螺旋溝を有する光ファイバ担持用スペ
ーサの螺旋ピッチを高精度に測定できる装置を提供する
ことにある。
In view of the above background, the present inventors have conducted extensive research and have completed the present invention. The objective is to provide a device that can measure with high precision.

(問題点を解決するための手段) 上記目的を達成するために、本発明は、外周に所定のピ
ッチおよび反転角で形成された螺旋溝を有する光ファイ
バ担持用スペーサの螺旋ピッチ測定装置において、前記
スペーサの進行量に対応した信号を発生させる速度パル
ス発生器と、前記螺旋溝の反転ピッチ以内に嵌合された
一対の回転体を介してこれらの回転体の回転角度に対応
した信号を発生させる一対の角度パルス発生器と、これ
らの角度パルス発生器の信号を受け、その出力信号が一
致する時点を検出する比較器と、この比較器の出力信号
を受けて、前記速度パルス発生器の信号を計数して、こ
の計数値に基づいて前記螺旋溝のピッチを算出する演算
回路とからなることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a helical pitch measuring device for an optical fiber supporting spacer having a helical groove formed at a predetermined pitch and inversion angle on the outer periphery. A speed pulse generator generates a signal corresponding to the amount of advance of the spacer, and a signal corresponding to the rotation angle of these rotating bodies is generated through a pair of rotating bodies fitted within the reversal pitch of the spiral groove. a pair of angle pulse generators that receive the signals of these angle pulse generators and detect the point in time when their output signals match; It is characterized by comprising an arithmetic circuit that counts signals and calculates the pitch of the spiral groove based on the counted value.

(実施例および作用) 以下、本発明の好適な実施例について添附図面を参照に
して詳細に説明する。
(Embodiments and Effects) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図から第5図は、本発明に係る光ファイバ担持用ス
ペーサの螺旋ピッチ測定装置10の一実施例を示してい
る。
1 to 5 show an embodiment of a helical pitch measuring device 10 for an optical fiber supporting spacer according to the present invention.

第1図は測定装置10の配置状態を示しており、装置1
0は同図の矢印方向に走行する螺旋スペーサ12の製造
工程の途中に設けられた一対の引取機14.14間にあ
って、支持台16上に設置されている。
FIG. 1 shows the arrangement of the measuring device 10, and the device 1
0 is placed on a support stand 16 between a pair of take-up machines 14 and 14 provided in the middle of the manufacturing process of the helical spacer 12 traveling in the direction of the arrow in the figure.

第2図は螺旋スペーサ12の詳細を示しており、スペー
サ12は中心に配設された単調線などの抗張力線の外周
に熱可塑性樹脂を被覆し、この樹脂被覆層にピッチPで
、反転角360度の6条の螺旋溝12a、12aが形成
されている。
FIG. 2 shows the details of the helical spacer 12. The spacer 12 has a thermoplastic resin coated on the outer periphery of a tensile strength line such as a monotone line arranged at the center, and this resin coating layer is coated with a pitch P and an inversion angle. Six 360 degree spiral grooves 12a, 12a are formed.

測定装置10は、上記スペーサ12の引取機14による
進行量に対応した速度信号Vを発生させる速度パルス発
生器18と、上記螺旋溝12aに嵌合され、螺旋スペー
サ12の進行に伴なって回転する一対の回転体20.2
0’ と、これらの回転体20.20’によってそれぞ
れ回転駆動され、各回転体20.20’の回転角度に対
応した角度信号θ1.θ2を発生させる一対の角度パル
ス発生器22.22’ とを有している。
The measuring device 10 includes a speed pulse generator 18 that generates a speed signal V corresponding to the amount of movement of the spacer 12 by the take-up machine 14, and a speed pulse generator 18 that is fitted into the helical groove 12a and rotates as the helical spacer 12 moves forward. A pair of rotating bodies 20.2
0' and rotationally driven by these rotating bodies 20 and 20', and angle signals θ1. It has a pair of angular pulse generators 22 and 22' for generating θ2.

上記速度パルス発生器18は前方の引取機14に設けら
れており、その製品駆動部の回転軸に取付けられている
The speed pulse generator 18 is provided in the front take-up machine 14, and is attached to the rotating shaft of the product drive section.

上記回転体20.20’は、螺旋スペーサ12の螺旋溝
12aの反転ピッチ以内にあって、同じ螺旋溝128に
設置され、第4図にその詳細を示すように、外周部にギ
ア20aが嵌着されたフランジ筒状本体20bと、この
本体20bのフランジ面に凹設され、中心方向を指向す
る複数の放射溝20cに取り付はネジ20dを介して固
定されるビン20eとを備えている。
The rotating body 20, 20' is located within the reverse pitch of the spiral groove 12a of the spiral spacer 12, and is installed in the same spiral groove 128, and a gear 20a is fitted on the outer periphery, as shown in detail in FIG. The cylindrical body 20b has a flange attached thereto, and a pin 20e is fixed to a plurality of radial grooves 20c recessed in the flange surface of the body 20b and oriented toward the center via screws 20d. .

回転体20.20’間の間隔は基本的には上記のように
反転ピッチ、すなわち溝の回転方向が変換する距離以内
であればよいが、外径の小さなスペーサの場合は、この
間隔が長いとスペーサに捩じれが付加されるので反転ピ
ッチの1/2あるいは1/4程度が好ましい。
Basically, the distance between the rotating bodies 20 and 20' is sufficient as long as it is within the reversal pitch, that is, the distance where the direction of rotation of the groove changes, as described above, but in the case of a spacer with a small outer diameter, this distance is long. Since twist is added to the spacer, it is preferable to set the pitch to about 1/2 or 1/4 of the inversion pitch.

上記ピン20eは、その詳細を第4図(B)に示すよう
に、先端部201が先細状になっていて、基部202に
は取付用の長孔203が穿設されている。
As shown in detail in FIG. 4(B), the pin 20e has a tapered tip 201 and a long hole 203 for attachment in the base 202.

そして、この実施例では2本のピン20e、20eが用
いられ、各ピン20eは対向する位置にあって、それぞ
れ同一螺旋溝12aに嵌合するようにその突出量を調整
して取り付はネジ20dで固定されている。
In this embodiment, two pins 20e, 20e are used, and each pin 20e is located at an opposing position, and the amount of protrusion is adjusted so that each pin 20e fits into the same spiral groove 12a. It is fixed at 20d.

以上のように構成された各回転体20.20’は、第3
図に示すように、ホルダ24を介して支持台16上にそ
れぞれ設置される。
Each of the rotating bodies 20 and 20' configured as described above has a third
As shown in the figure, each is installed on the support stand 16 via a holder 24.

ホルダ24は、ベアリング26を介して回転体20を回
転自在に支持する環状部24aと、この環状部24aを
支持する基台部24bとから構成されている。
The holder 24 includes an annular portion 24a that rotatably supports the rotating body 20 via a bearing 26, and a base portion 24b that supports the annular portion 24a.

環状部24aの上端には、上記角度パルス発生器22の
本体部分であるロータリエンコーダ22aが固設され、
このロータリエンコーダ22aの回転軸22bには円板
状の従動ギヤ22cが固設され、従動ギヤ22cは回転
体20の外周に設けられたギヤ20aと噛合している。
A rotary encoder 22a, which is the main body portion of the angle pulse generator 22, is fixedly installed at the upper end of the annular portion 24a.
A disk-shaped driven gear 22c is fixed to the rotating shaft 22b of the rotary encoder 22a, and the driven gear 22c meshes with a gear 20a provided on the outer periphery of the rotating body 20.

なお、この実施例で使用するロータリエンコーダ22a
は、回転角度に対応した信号を絶対値として送出する。
Note that the rotary encoder 22a used in this embodiment
sends out a signal corresponding to the rotation angle as an absolute value.

このため該一対の回転体20.20′を、螺旋溝12a
の中の同一溝に入れるピン20eとロータリエンコーダ
22aの相対関係が各回転体とも同じになるようにセッ
トする。
Therefore, the pair of rotating bodies 20 and 20' are connected to the spiral groove 12a.
Set the rotary encoder 22a so that the relative relationship between the pin 20e and the rotary encoder 22a placed in the same groove in each rotating body is the same.

上記ホルダ24の前後には、一対の案内ローラ装置28
.28が支持台16上に設置されている。
A pair of guide roller devices 28 are provided before and after the holder 24.
.. 28 is installed on the support stand 16.

各案内ローラ装置28は、第6図にも示すように、螺旋
スペーサ12を下方から支持し、垂直方向に回転する大
径ローラ28aと、螺旋スペーサ12の両側面からこれ
に当接し、且つ水平方向に回転する一対の小径ローラ2
8b、28bと、各ローラ28b、28bを回転可能に
軸支する支持ポスト28cとから構成され、螺旋スペー
サ12を引取機14で引取る際の上下、左右の振動が角
度パルス発生器22の測定誤差として現われないように
配慮している。
As shown in FIG. 6, each guide roller device 28 supports the spiral spacer 12 from below, and has a large diameter roller 28a that rotates vertically, and abuts against this from both sides of the spiral spacer 12, and horizontally rotates the spiral spacer 12. A pair of small diameter rollers 2 that rotate in the direction
8b, 28b, and a support post 28c that rotatably supports each roller 28b, 28b, and the angle pulse generator 22 measures the vertical and horizontal vibrations when the spiral spacer 12 is taken up by the taking machine 14. Care is taken to ensure that this does not appear as an error.

上記速度パルス発生器18および角度パルス発生器22
の信号V、θl、θ2は、第5図に示す制御回路30に
入力される。
The speed pulse generator 18 and the angle pulse generator 22
The signals V, θl, and θ2 are input to a control circuit 30 shown in FIG.

制御回路30は、上記角度パルス発生回路22からの角
度信号θlとθ2とを入力し、これらの角度信号が一致
したときに一致信号Sを出力する比較器30aと、この
比較器30aの一致信号Sを計数し、これが設定された
値になったときに信号を送出するカウンタ回路30bと
、上記速度パルス発生器18の速度信号Vを入力信号と
し、カウンタ回路30bの出力信号を制御信号として、
速度信号Vに基づいて螺旋溝12aのピッチを演算する
演算回路30cと、演算回路30cの演算結果を表示す
るピッチ表示器30dと、このピッチ表示器30dの出
力値を2進値に変換し、連続的に測定される螺旋溝12
aのピッチの測定値、最大最少値、平均値を求め、これ
を印字表示するマイクロコンピュータ30eとから構成
されている。
The control circuit 30 inputs the angle signals θl and θ2 from the angle pulse generation circuit 22, and includes a comparator 30a that outputs a coincidence signal S when these angle signals match, and a coincidence signal of the comparator 30a. A counter circuit 30b that counts S and sends out a signal when it reaches a set value, the speed signal V of the speed pulse generator 18 as an input signal, and the output signal of the counter circuit 30b as a control signal,
An arithmetic circuit 30c that calculates the pitch of the spiral groove 12a based on the speed signal V, a pitch indicator 30d that displays the calculation result of the arithmetic circuit 30c, and converts the output value of the pitch indicator 30d into a binary value, Continuously measured spiral groove 12
It is comprised of a microcomputer 30e that calculates the measured value, maximum/minimum value, and average value of the pitch of a, and prints and displays the results.

上記演算回路30cで実行されるピッチの演算について
説明すると、いま、螺旋溝12aの反転点a1から同a
2までを1ピツチPとし、上記回転体20.20’が第
2図(A)に示すように、螺旋溝12aの反転ピッチの
内にあって、それぞれ反転点at、a2の位置で角度信
号θl、θ2が同じ大きさになるようにセットされてい
る。図に示すように、前方に位置する回転体20では既
に反転点alを通過しているので、螺旋スペーサ12が
矢印方向に進行すると、進行方向に見て左回転し、角度
信号θ1はその大きさが減少する。
To explain the calculation of the pitch executed by the calculation circuit 30c, now, from the reversal point a1 of the spiral groove 12a to the same point a
2 is defined as 1 pitch P, and the rotating bodies 20 and 20' are within the reversal pitch of the spiral groove 12a, as shown in FIG. θl and θ2 are set to have the same size. As shown in the figure, since the rotating body 20 located at the front has already passed the reversal point al, when the spiral spacer 12 moves in the direction of the arrow, it rotates to the left as seen in the direction of movement, and the angle signal θ1 is The intensity decreases.

一方、後方の回転体20′は、反転点a1を未だ通過し
ていないので、進行方向に見て右回転し角度信号θ2は
増加する。
On the other hand, since the rear rotating body 20' has not yet passed the reversal point a1, it rotates clockwise as viewed in the direction of travel, and the angle signal θ2 increases.

また、第2図(B)に示すように、回転体20゜20.
20’が反転点a1から次の反転点の間にあるときは、
回転体20.20’はそれぞれ同じ方向に回転するので
、この間で角度信号θ1.θ2が一致することはない。
Moreover, as shown in FIG. 2(B), the rotating body 20°20.
When 20' is between the reversal point a1 and the next reversal point,
Since the rotating bodies 20 and 20' rotate in the same direction, the angle signal θ1. θ2 will never match.

そして、反転点alがちょうど回転体20.20′の間
にある状態においては、aOの表示角度をθt、aaの
表示角度を021反転位置a1が回転体20.20’を
それぞれ通過するときの角度をθ、aOからalに進む
間の回転体20の回転角度α1、alからa3に進む間
の回転体20′の回転角度をα2とすれば、θ■−θ−
α11θ2−θ十α2と表示できるが、alが角度的に
aOとa3の中間の位置ではα1とα2の絶対値が等し
く、これを1αc 1とすれば、例えば第2図(A)に
おいてはaOは左向き(符号−)、a3は右向き(符号
子)であるので、θl−θ−(−1αel)−θ+1α
cl、  θ2■θ+(十1αcl)−θ+1αC1と
なり角度信号θlと同θ2とが一致し、これを比較器3
0aで検出し、一致信号Sを出力する。
When the inversion point al is exactly between the rotating bodies 20 and 20', the display angle of aO is θt, and the display angle of aa is 021 when the inversion position a1 passes through the rotating bodies 20 and 20'. If the angle is θ, the rotation angle of the rotating body 20 while going from aO to al is α1, and the rotation angle of the rotating body 20' while going from al to a3 is α2, then θ■−θ−
It can be expressed as α11θ2−θ0α2, but at a position where al is angularly intermediate between aO and a3, the absolute values of α1 and α2 are equal, and if this is set as 1αc 1, then for example, in Figure 2 (A), aO is to the left (sign -) and a3 is to the right (sign), so θl - θ - (-1αel) - θ + 1α
cl, θ2■θ+(11αcl)−θ+1αC1, so the angle signal θl and the same θ2 match, and this is sent to the comparator 3.
It is detected at 0a and a match signal S is output.

また、aOが右向き(符号子)、a3が左向き(符号−
)のときはθ1−θ2−θ−1αc1のときに一致する
Also, aO points to the right (sign code), and a3 points to the left (sign -
), they match when θ1-θ2-θ-1αc1.

このように、角度信号θlと同θ2とが一致する点は、
この実施例では、反転ピッチ毎に発生し、1ピツチでは
2回になり、比較器30aからの一致信号Sは2回送出
される。
In this way, the point where the angle signal θl and the angle signal θ2 match is
In this embodiment, the coincidence signal S from the comparator 30a is sent out twice, since it occurs every inversion pitch, and twice for one pitch.

従って、反転部間のピッチを求めるときは、設定数−1
、繰返しのピッチを求めるときは、設定数−2をカウン
タ回路30bに設定することにより、速度信号Vの計数
値との関係から、反転ピッチあるいはピッチPが計算で
きる。
Therefore, when finding the pitch between the inverted parts, set number - 1
, when calculating the repetition pitch, by setting the set number -2 in the counter circuit 30b, the inverted pitch or pitch P can be calculated from the relationship with the count value of the speed signal V.

なお、上記実施例では、螺旋溝12aが6条であって、
その反転角が360度のものを例示したが、これ以上な
いしは以下の条数のものやこれ以外の反転角のものも勿
論測定できる。
In addition, in the above embodiment, the spiral groove 12a has six grooves,
Although a case where the reversal angle is 360 degrees is illustrated, it is of course possible to measure a case with a larger or smaller number of threads or a reversal angle other than this.

(発明の効果) 以上、実施例で詳細に説明したように、本発明に係る光
ファイバ担持用スペーサのピッチ測定装置によれば、螺
旋溝に嵌合された回転体の回転角と螺旋スペーサを引き
取るときの進行量から正確に反転する螺旋溝のピッチが
測定できる。
(Effects of the Invention) As described above in detail in the embodiments, according to the pitch measuring device for an optical fiber supporting spacer according to the present invention, the rotation angle of the rotating body fitted in the helical groove and the helical spacer can be measured. The pitch of the spiral groove that reverses can be accurately measured from the amount of progress when taking it off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明装置の一例を示す全体配置図、第
1図(B)は案内ローラ装置の側面図、第2図は螺旋溝
の詳細と角度信号との関係を示す説明図、第3図は回転
体とそのホルダの詳細図、第4図は回転体の詳細図、第
5図は制御回路のブロック図である。 10・・・・・・・・・ピッチ測定装置12・・・・・
・・・・螺旋スペーサ 12a・・・・・・螺旋溝 18・・・・・・・・・速度パルス発生器20・・・・
・・・・・回転体 22・・・・・・・・・角度パルス発生器30a・・・
・・・比較器 30c・・・・・・演算回路 特許出願人       宇部日東化成株式会社代 理
 人         弁理士 −色健輔同     
      弁理士 松本雅利第2図(A) θI       θ2 第2図(B) 12  12a θl        θ2
FIG. 1(A) is an overall layout diagram showing an example of the device of the present invention, FIG. 1(B) is a side view of the guide roller device, and FIG. 2 is an explanatory diagram showing the relationship between the details of the spiral groove and the angle signal. , FIG. 3 is a detailed view of the rotating body and its holder, FIG. 4 is a detailed view of the rotating body, and FIG. 5 is a block diagram of the control circuit. 10...Pitch measuring device 12...
...Spiral spacer 12a ...Spiral groove 18 ...Speed pulse generator 20 ...
...Rotating body 22...Angle pulse generator 30a...
... Comparator 30c ... Arithmetic circuit patent applicant Ube Nitto Kasei Co., Ltd. Representative Patent attorney - Kensuke Shiro
Patent Attorney Masatoshi Matsumoto Figure 2 (A) θI θ2 Figure 2 (B) 12 12a θl θ2

Claims (1)

【特許請求の範囲】[Claims] 外周に所定のピッチおよび反転角で形成された螺旋溝を
有する光ファイバ担持用スペーサの螺旋ピッチ測定装置
において、前記スペーサの進行量に対応した信号を発生
させる速度パルス発生器と、前記螺旋溝の反転ピッチ以
内に嵌合された一対の回転体を介してこれらの回転体の
回転角度に対応した信号を発生させる一対の角度パルス
発生器と、これらの角度パルス発生器の信号を受け、そ
の出力信号が一致する時点を検出する比較器と、この比
較器の出力信号を受けて、前記速度パルス発生器の信号
を計数して、この計数値に基づいて前記螺旋溝のピッチ
を算出する演算回路とからなることを特徴とする光ファ
イバ担持用スペーサの螺旋ピッチ測定装置。
A helical pitch measuring device for an optical fiber supporting spacer having a helical groove formed at a predetermined pitch and reversal angle on the outer periphery includes a speed pulse generator that generates a signal corresponding to the amount of advance of the spacer; A pair of angle pulse generators that generate signals corresponding to the rotation angles of these rotating bodies via a pair of rotating bodies fitted within the reversal pitch, and a pair of angle pulse generators that receive signals from these angle pulse generators and generate their outputs. a comparator that detects the point in time when the signals match; and an arithmetic circuit that receives the output signal of the comparator, counts the signal of the speed pulse generator, and calculates the pitch of the spiral groove based on the counted value. A helical pitch measuring device for an optical fiber supporting spacer, comprising:
JP63138383A 1988-06-07 1988-06-07 Spiral pitch measuring device for spacer for optical fiber Expired - Fee Related JPH083411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138383A JPH083411B2 (en) 1988-06-07 1988-06-07 Spiral pitch measuring device for spacer for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138383A JPH083411B2 (en) 1988-06-07 1988-06-07 Spiral pitch measuring device for spacer for optical fiber

Publications (2)

Publication Number Publication Date
JPH01307613A true JPH01307613A (en) 1989-12-12
JPH083411B2 JPH083411B2 (en) 1996-01-17

Family

ID=15220658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138383A Expired - Fee Related JPH083411B2 (en) 1988-06-07 1988-06-07 Spiral pitch measuring device for spacer for optical fiber

Country Status (1)

Country Link
JP (1) JPH083411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003002931A1 (en) * 2001-06-28 2004-10-21 宇部日東化成株式会社 Inspection device for helical spacer for supporting optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003002931A1 (en) * 2001-06-28 2004-10-21 宇部日東化成株式会社 Inspection device for helical spacer for supporting optical fiber

Also Published As

Publication number Publication date
JPH083411B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US4833871A (en) Apparatus for inserting optical fibers into a spacer having spiral grooves
CN208125061U (en) A kind of diameter of wire automatic laser measuring device
JP3314688B2 (en) Method and apparatus for manufacturing spacer for optical cable
JPH01307613A (en) Measuring instrument for spiral pitch of optical fiber carrying spacer
CN203372907U (en) Wire winding device for optical fiber macrobending test
CN208200002U (en) A kind of bus cable device of the Internet of Things convenient for lineation
US6789399B1 (en) Method for measuring the twisting of an optical fiber, and a method and apparatus for manufacturing optical fibers
JP2521801B2 (en) Optical fiber carrying spacer reversal angle measuring method and apparatus
JP4367799B2 (en) Apparatus for measuring groove pitch and groove inversion angle of spacer for supporting optical fiber
JP5663993B2 (en) Optical measuring device
JPS63210603A (en) Apparatus for measuring pitch and reversal angle of spiral spacer for supporting optical fiber
US5174102A (en) Twist number setting device for a two-for-one twister
CN218147512U (en) Auxiliary speed measuring device for steel cord stranding machine
JPH0754804Y2 (en) Stranded wire pitch measuring device
JP2004021221A (en) Method for detecting slot shape of optical fiber spacer
CN211784146U (en) A testing arrangement for spandex silk elasticity
JPS5943437Y2 (en) Twisting device
TW528896B (en) Test instrument for testing the slots on spiral spacer for carrying the optical fiber
JPH049521Y2 (en)
JP2021183533A (en) Fiber winding apparatus
JP2015004640A (en) Turning angle measuring device for slot for optical cable
JPH06127771A (en) Tape taking-up device
JP5783313B2 (en) Optical measuring device
JPS5825532Y2 (en) Pitch display device
JPH10129930A (en) Regular winding method of wire of dissimilar section, and device used therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees