JPH01307608A - Fluid quantity measuring instrument - Google Patents

Fluid quantity measuring instrument

Info

Publication number
JPH01307608A
JPH01307608A JP13755888A JP13755888A JPH01307608A JP H01307608 A JPH01307608 A JP H01307608A JP 13755888 A JP13755888 A JP 13755888A JP 13755888 A JP13755888 A JP 13755888A JP H01307608 A JPH01307608 A JP H01307608A
Authority
JP
Japan
Prior art keywords
fluid
flow path
passage
optical sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13755888A
Other languages
Japanese (ja)
Inventor
Hideo Enoki
英雄 榎
Hiroshi Oki
博 大木
Akira Miyake
亮 三宅
Isao Yamazaki
功夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13755888A priority Critical patent/JPH01307608A/en
Publication of JPH01307608A publication Critical patent/JPH01307608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To derive the quantity of a liquid in a passage with high accuracy by measuring a position of both ends of a fluid column existing on a fluid and deriving the capacity of the fluid column from data of a passage sectional area by a position of the passage. CONSTITUTION:A passage 4 having a rectangular cross section of WX(d) is provided in the vicinity of the center of a member 3 which has been placed between a plate-like transparent member 1 and a transparent member 2 of the same shape. In this state, a fluid 5 which has been separated by bubbles, etc., is allowed to flow to the passage 4. Also, a lens system 6 and a line sensor 7 are provided so as to be opposed to the passage 4. Moreover, a light source 8 is provided on the opposite side of the passage 4, and the passage 4 is illuminated by a light beam which has been emitted from the light source 8. On the line sensor 7, a minute optical sensor train 71 is arranged and provided on a straight line at an equal interval. Subsequently, the direction of the line sensor 7 is determined so that the optical sensor train 71 becomes parallel to the passage 4 and a passage image is projected onto the optical sensor train 71 by the lens system 6. By deriving a position and width of a fluid column by this projected image, the quantity of the fluid column existing in the passage can be derived with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体の容積を測定する装置に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a device for measuring the volume of a fluid.

特に、流路中の微量流体の容積測定に好適な装置に関す
る。
In particular, the present invention relates to a device suitable for measuring the volume of a small amount of fluid in a flow path.

〔従来の技術〕[Conventional technology]

従来の生化学分析装置、例えば臨床検査機器・試薬、第
二巻第四号410頁〜420頁に記載のような血液中の
血球数を計測する血球カウンタでは、血液中の体積当た
りの血球数が約5X10”/a程度と非常に多数のため
、微量(約100μQ)の血液を採取し、生理食塩水で
数百倍に希釈した試料液の一部に含まれる血球数を計数
していた。血液の採取には、第10図に示すような。
Conventional biochemical analyzers, such as blood cell counters that measure the number of blood cells in blood, such as those described in Clinical Laboratory Instruments and Reagents, Volume 2, No. 4, pages 410-420, measure the number of blood cells per volume of blood. Since the number of blood cells was very large, approximately 5×10”/a, a minute amount (approximately 100 μQ) of blood was collected and the number of blood cells contained in a portion of the sample solution diluted several hundred times with physiological saline was counted. .For blood collection, as shown in FIG.

カットバルブを使用していた。カットバルブは、回転部
101により分断された流路102.流路103より構
成され、流路102に存在する血液を回転部101の回
転により流路103に一定量移すものである。
I was using a cut valve. The cut valve has a flow path 102 . It is composed of a flow path 103, and a certain amount of blood existing in the flow path 102 is transferred to the flow path 103 by rotation of the rotating part 101.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、カットバルブではバルブ間のすきまから
血液がもれるため、すきまのクリーニングが必要であっ
た。また回転部を回転させる機構が必要で装置が複雑大
型化し信頼性の向上、小型化のネックとなっていた1本
来、血球カウンタの目的は血液中の血球数密度を求める
ことであり。
However, with cut valves, blood leaks through the gaps between the valves, so cleaning of the gaps is necessary. In addition, a mechanism for rotating the rotating part is required, making the device complicated and large, which is a bottleneck in improving reliability and downsizing.1 Originally, the purpose of a blood cell counter was to determine the density of blood cells in blood.

これは血液量及び希釈液量によって与えられるから血液
および希釈液の量は厳密に一定である必要はない。
This is given by the blood volume and diluent volume, so the blood and diluent volumes do not need to be strictly constant.

本発明の目的は流路内の血液や希釈液等の流体の量を簡
易な構成で高精度に求める装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device with a simple configuration and highly accurate determination of the amount of fluid such as blood or diluent in a flow path.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、既知形状の流路中に気泡等、血液等の被測
定流体と容易に混合しない流体によりはさまれた被測定
流体柱の形状あるいは長さあるいは両端の位置を流路に
対向し、かつ並行して設けた光源、イメージセンサ及び
集光系よりなる光学系により測定することで達成される
The above purpose is to change the shape, length, or position of both ends of a fluid column to be measured, which is sandwiched between air bubbles and other fluids that do not easily mix with the fluid to be measured, such as blood, in a flow path of known shape. , and is achieved by measuring with an optical system consisting of a light source, an image sensor, and a condensing system provided in parallel.

〔作用〕[Effect]

光源はイメージセンサに対し、流路を介して被測定流体
を照明するか、イメージセンサと同方向より被測定流体
を照明する。集光系は流路上の被測定流体像をイメージ
センサ上に投影する役割を持つが、照明光がイメージセ
ンサ上に被測定流体像を一対一投影する場合は必ずしも
必要ではない。
The light source illuminates the fluid to be measured via the flow path to the image sensor, or illuminates the fluid to be measured from the same direction as the image sensor. Although the condensing system has the role of projecting an image of the fluid to be measured on the flow path onto the image sensor, it is not necessarily necessary when the illumination light projects the image of the fluid to be measured on the image sensor one-to-one.

次にイメージセンサにより得た被測定流体像より、その
投影面積あるいは長さ、両端の位置を求め、流路の断面
形状のデータから被測定流体柱の容積を求める。
Next, the projected area or length and the positions of both ends are determined from the image of the measured fluid obtained by the image sensor, and the volume of the measured fluid column is determined from data on the cross-sectional shape of the channel.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。平板
状の透明部材1、同形の透明部材2にはさまれた部材3
の中央付近にWXdなる矩形断面を有する流路4を設け
る。流路4には気泡等により分離された流体5を流す。
An embodiment of the present invention will be described below with reference to FIG. A flat transparent member 1, a member 3 sandwiched between transparent members 2 of the same shape
A flow path 4 having a rectangular cross section WXd is provided near the center of. A fluid 5 separated by bubbles or the like is passed through the flow path 4 .

また、流路4に対向してレンズ系6(集光系)とライン
センサ7(イメージセンサ)を設ける。さらに、流路4
の反対側に光源8を設け、光源8より発した光で流路4
を照明する。ラインセンサ7上には、等間隔で直線状に
微小な光センサ列71が並んでいる。この光センサ列7
1が流路4に並行するようにラインセンサ7の方向を決
め、レンズ系6により流路像を光センサ列71上に投影
する。ラインセンサ7の出力を第2図に示す。ラインセ
ンサ7は、光センサ列71上の個々の光センサに一定時
間に到達した光の量に相当する電圧(E)を順次一定の
クロックに従って出力する。流体像が流路像中に存在す
る場合、流体5により吸収された割合だけ電圧が低下す
る。これを一定のレベルで2値化することにより流体柱
の位置や幅を求めることができる。光センサ列71の一
端の光センサの出力が2値化の閾値を越えて下がった時
をtz、次に閾値を越えて上がった時をtzとし、クロ
ックの周期をtcとし、隣接する光センサ間の幅をWs
としレンズ系6の結像倍率をM、流体柱の長さをLとす
ると、流体の容積Vは、 v=Wφd・L =W−d−M−Ws・(tz−を工)/lcで近似でき
る。なお、ライセンサ出力のパターンをもとに流体5の
両端での表面張力による凹凸の影響を補正する項を実験
的あるいは理論的に求めて、前式に加えてもよい。
Further, a lens system 6 (condensing system) and a line sensor 7 (image sensor) are provided opposite the flow path 4 . Furthermore, the flow path 4
A light source 8 is provided on the opposite side of the flow path 4 with light emitted from the light source 8.
to illuminate. On the line sensor 7, a fine optical sensor array 71 is arranged in a straight line at equal intervals. This optical sensor row 7
The direction of the line sensor 7 is determined so that the line sensor 1 is parallel to the flow path 4, and a flow path image is projected onto the optical sensor array 71 by the lens system 6. The output of the line sensor 7 is shown in FIG. The line sensor 7 sequentially outputs a voltage (E) corresponding to the amount of light that reaches each optical sensor on the optical sensor array 71 in a certain period of time according to a certain clock. If the fluid image is present in the channel image, the voltage is reduced by the amount absorbed by the fluid 5. By binarizing this at a certain level, the position and width of the fluid column can be determined. The time when the output of the optical sensor at one end of the optical sensor array 71 falls beyond the binarization threshold is set as tz, the time when the output rises beyond the threshold is set as tz, the clock cycle is set as tc, and the output of the adjacent optical sensor is set as tz. The width between
Assuming that the imaging magnification of the lens system 6 is M and the length of the fluid column is L, the volume of the fluid V is v=Wφd・L=W−d−M−Ws・(tz−)/lc. Can be approximated. Note that a term for correcting the influence of unevenness due to surface tension at both ends of the fluid 5 may be determined experimentally or theoretically based on the pattern of the licensor output and added to the above equation.

本実施例によれば、流路に存在する流体の量を非接触で
光学的に測定できるので、流路が単純化され、装置の信
頼性が増す。
According to this embodiment, the amount of fluid present in the flow path can be optically measured without contact, which simplifies the flow path and increases the reliability of the device.

本発明の他の実施例の斜視図を第3図に示す。A perspective view of another embodiment of the invention is shown in FIG.

本実施例は、流路4上の2カ所にレンズ系6とラインセ
ンサ7を設は流体柱の両端の位置を同時に測定し各セン
サ間の流路の容積を既知して流体柱の容積を求める方式
の装置である。
In this embodiment, a lens system 6 and a line sensor 7 are installed at two locations on the flow path 4, and the positions of both ends of the fluid column are simultaneously measured, the volume of the flow path between each sensor is known, and the volume of the fluid column is calculated. It is a device of the type that requires.

なお、光源8はそれぞれの光学系にたいして設けたが、
レンズやミラー等により一つの光源から分配する方式と
してもよい、また、光学系の数を二つ以上とし複数の異
なる流体柱の端部の位置を測定してもよい。
Although the light source 8 was provided for each optical system,
The light may be distributed from one light source using a lens or mirror, or the number of optical systems may be two or more to measure the positions of the ends of a plurality of different fluid columns.

本実施例によれば、流体柱の端部の小領域を拡大計測で
きるので、測定精度が向上する。
According to this embodiment, a small area at the end of the fluid column can be measured in an enlarged manner, thereby improving measurement accuracy.

本発明の他の実施例の斜視図を第4図に示す。A perspective view of another embodiment of the invention is shown in FIG.

本実施例は、第1図の実施例のラインセンサ7をエリア
センサ72に置き換えたものである。エリアセンサ72
を使用する場合も、前と同様に、平板状の透明部材1.
透明部材2にはさまれた部材3により流路4を形成する
が、エリアセンサ72では光センサ列71が2次元的に
配列しており、流路4の入口41と出口42の間の流路
の形は直線状である必要はない。動作も前とほぼ同様で
ある。すなわち、光源8により照明された流路4の像を
レンズ系6によりエリアセンサ72上に投影し、エリア
センサ72から得た2次元の流体像データから、血液柱
の占める投影面積を求め、これに部材3の厚みをかけ容
積を求める。本実施例では流路4の2次元形状を矩形状
としたが流路4の入口41と出口42が接続できればど
のような形状でもよいことは言うまでもない、また、第
3図の実施例と同様に、複数の光学系で流体柱の両端の
位置を計測する方式としてもよい。
In this embodiment, the line sensor 7 in the embodiment shown in FIG. 1 is replaced with an area sensor 72. Area sensor 72
When using a flat transparent member 1.
A flow path 4 is formed by the member 3 sandwiched between the transparent member 2. In the area sensor 72, optical sensor rows 71 are arranged two-dimensionally, and the flow between the inlet 41 and the outlet 42 of the flow path 4 is The shape of the road does not have to be straight. The operation is almost the same as before. That is, the image of the flow path 4 illuminated by the light source 8 is projected onto the area sensor 72 by the lens system 6, and the projected area occupied by the blood column is determined from the two-dimensional fluid image data obtained from the area sensor 72. Multiply the thickness of member 3 to find the volume. In this embodiment, the two-dimensional shape of the flow path 4 is rectangular, but it goes without saying that any shape may be used as long as the inlet 41 and outlet 42 of the flow path 4 can be connected. Alternatively, a method may be adopted in which the positions of both ends of the fluid column are measured using a plurality of optical systems.

本実施例によれば、流路形状を2次元化できるので流路
がコンパクトになる。また、流体柱の面積を直接求めら
れるのでラインセンサ使用の場合に比べ容積の測定精度
が向上できる。
According to this embodiment, the flow path shape can be made two-dimensional, so that the flow path can be made compact. Furthermore, since the area of the fluid column can be directly determined, the accuracy of volume measurement can be improved compared to the case of using a line sensor.

なお、前記の各実施例では、光源の位置を流路をはさん
でレンズ系とセンサの反対側に配置し流路からの透過光
を検出する構成としたが、光源をレンズ系、センサの存
在する側に置き、流路からの反射光を検出する方式とし
てもよい6また、光源と流路の間に集光系を設け、流体
柱上に照明光を集光する方式としてもよい。また、透明
部材はすり硝子等の光を拡散する半透明材料により作成
してもよい、さらに、透明部材の表面に遮光部を設けた
り、流路に接する部分のみを透明または半透明としても
よい。
In each of the above embodiments, the light source was arranged on the opposite side of the lens system and sensor across the flow path to detect the transmitted light from the flow path. A method may be adopted in which the light reflected from the flow channel is detected by placing the light source on the side where the fluid column exists.6Alternatively, a condensing system may be provided between the light source and the flow channel, and illumination light may be focused on the fluid column. In addition, the transparent member may be made of a translucent material that diffuses light, such as frosted glass.Furthermore, a light-shielding portion may be provided on the surface of the transparent member, or only the portion in contact with the flow path may be transparent or translucent. .

本発明の他の実施例の横断面を第5図に示す。A cross section of another embodiment of the invention is shown in FIG.

光センサ列71は基板9上に紙面に直交する方向に並ん
でおり透明保護層10を介して紙面に直交する流路4に
対向している。流路4は部材31にはさまれている。流
路4の上方にはLED等の発光素子列11が存在し、基
板12上に存在する透明保護層13.流路4を介して光
センサ列71に対向している。流路4の照明は発光素子
列11により行い、光センサ列71により流体による光
量変化部分を判別し計測を行う0本発明では、流路とラ
インセンサ、光源を一体化する構造としたが。
The optical sensor array 71 is arranged on the substrate 9 in a direction perpendicular to the plane of the paper, and faces the flow path 4 which is perpendicular to the plane of the paper with the transparent protective layer 10 interposed therebetween. The flow path 4 is sandwiched between members 31. A light emitting element array 11 such as an LED is present above the channel 4, and a transparent protective layer 13 is present on a substrate 12. It faces the optical sensor array 71 via the flow path 4 . The flow path 4 is illuminated by the light emitting element array 11, and the light sensor array 71 determines and measures the portion where the amount of light changes due to the fluid. In the present invention, the flow path, the line sensor, and the light source are integrated.

ラインセンサあるいは光源を外部に設置してもよい。ま
た、光源とラインセンサを同側基板上に設けてもよい、
さらに1発光素子列や光センサ列が流路中の流体により
劣化しなければ透明保護層は必ずしも必要ではない。ま
た、光源を外部に設は透明な基板を通して流路を照明す
る方式としてもよい、さらに、光センサ列と発光素子列
の各素子の間隔は必ずしも一定でなくともよい。また、
第4図の例と同様に流路を2次元状としエリアセンサを
使用する構成としてもよい。また、ファクシミリやスキ
ャナ等で原稿の読み取りに使用している密着センサ光学
系を使用してもよい。
A line sensor or light source may be installed externally. Furthermore, the light source and the line sensor may be provided on the same substrate.
Furthermore, a transparent protective layer is not necessarily required unless one light emitting element row or one optical sensor row is deteriorated by the fluid in the flow path. Alternatively, a light source may be provided externally to illuminate the flow path through a transparent substrate.Furthermore, the intervals between each element in the optical sensor array and the light emitting element array may not necessarily be constant. Also,
Similar to the example shown in FIG. 4, the flow path may be two-dimensional and an area sensor may be used. Alternatively, a contact sensor optical system used for reading documents in facsimile machines, scanners, etc. may be used.

本実施例によれば、゛レンズ系が不要で流路と光源及び
センサを一体化できるので装置が小型化できる。
According to this embodiment, a lens system is not required and the flow path, light source, and sensor can be integrated, so that the apparatus can be made smaller.

第6図に本発明の他の実施例の斜視図(a)及び上面図
(b)を示す0本実施例の装置14では、上部に凹部1
5を有し、凹部15の側面に発光素子列11と光センサ
列71を設置している。凹部15に透明な管状の流路4
を挿入し気泡等により分離した流体5を流す、同時に、
流路4を発光素子列11により照明し、光センサ列71
により流体5の計測を行う。
FIG. 6 shows a perspective view (a) and a top view (b) of another embodiment of the present invention.
5, and a light emitting element row 11 and a light sensor row 71 are installed on the side surface of the recess 15. Transparent tubular channel 4 in recess 15
is inserted and the fluid 5 separated by air bubbles etc. flows, and at the same time,
The flow path 4 is illuminated by a light emitting element array 11, and a light sensor array 71
The fluid 5 is measured by.

本実施例によれば、流路と装置が分離できるので、ガラ
ス管やビニールパイプ等の管状の流路の適当な位置での
計測が可能になる。
According to this embodiment, since the flow path and the device can be separated, measurement can be performed at an appropriate position in a tubular flow path such as a glass tube or a vinyl pipe.

第7図に本発明の他の実施例の斜視図を示す。FIG. 7 shows a perspective view of another embodiment of the invention.

本実施例では、装置14を貫通する孔16に透明な管状
の流路4を通し孔16の内側側面に発光素子列11と光
センサ列71を設け、流路4をながれる流体5の計測を
行う。
In this embodiment, a transparent tubular flow channel 4 is passed through a hole 16 penetrating the device 14, and a light emitting element array 11 and a light sensor array 71 are provided on the inner side surface of the hole 16 to measure the fluid 5 flowing through the flow channel 4. conduct.

本実施例によれば、流路の保持・位置決めが容・易にな
る。
According to this embodiment, the holding and positioning of the flow path becomes easy.

第8図に本発明の他の実施例の斜視図を示す。FIG. 8 shows a perspective view of another embodiment of the invention.

本実施例は、第6図の装置14に上蓋17を設けたもの
である。上蓋17は装置14と蝶番部18で接続してお
り、開閉が可能となっている。
In this embodiment, a top cover 17 is provided on the device 14 shown in FIG. The upper lid 17 is connected to the device 14 through a hinge portion 18, and can be opened and closed.

本実施例によれば流路の装置へのセットが容易になる。According to this embodiment, it is easy to set the channel in the device.

なお、第6図から第8図の例では流路と装置の凹部や孔
とのすきまを透明な樹脂や接着剤で埋め固定してもよい
。また、図では凹部や孔の断面を矩形状としたが管の形
状にあわせて任意に変更してもよい。また、発光素子列
や光センサ列は必ずしも対向している必要はない。また
、光源を外部に設は透明な基盤を通して流路を照明する
方式としてもよい。さらに、光センサ列と発光素子列の
各素子の間隔は必ずしも一定でなくともよい。また、流
路に装置を複数取付け、流体柱の端部の位置を検出し、
装置間の流路の容積を既知として。
In the examples shown in FIGS. 6 to 8, the gap between the flow path and the recess or hole of the device may be filled with a transparent resin or adhesive and fixed. Furthermore, although the recesses and holes have rectangular cross sections in the drawings, they may be arbitrarily changed depending on the shape of the tube. Further, the light emitting element rows and the optical sensor rows do not necessarily have to face each other. Alternatively, a light source may be provided externally to illuminate the channel through a transparent substrate. Furthermore, the distance between each element in the optical sensor array and the light emitting element array does not necessarily have to be constant. In addition, multiple devices are installed in the flow path to detect the position of the end of the fluid column.
Assuming the volume of the flow path between devices is known.

装置間にまたがる長尺の流体柱の容積を求める方式とし
てもよい、また、第4図の例と同様に流路を2次元状と
しエリアセンサを使用する構成としてもよい、また、フ
ァクシミリやスキャナ等で原稿の読み取りに使用してい
る密着センサ光学系を使用してもよい。
It is also possible to use a system that calculates the volume of a long fluid column that spans between devices, or a configuration that uses a two-dimensional flow path and an area sensor as in the example shown in Figure 4, or a system that uses a facsimile or scanner. The contact sensor optical system used for reading originals may also be used.

また、第5図から第8図までの例について、第3図の例
と同様に、離れた位置に存在する複数の光センサ列と発
光素子列の組により流体柱の両端の位置を求める方式と
してもよい、また、第9図に示すように装置の電気的入
出力端子をピン19にし通常のIC形状とすることによ
り、回路基板上への組込が容易になる。
In addition, for the examples shown in FIGS. 5 to 8, similarly to the example shown in FIG. 3, a method is used in which the positions of both ends of the fluid column are determined by a set of multiple optical sensor rows and light emitting element rows that are located at separate positions. Alternatively, as shown in FIG. 9, the electrical input/output terminals of the device may be pins 19, and the device may be formed into a normal IC shape, thereby making it easier to incorporate the device onto a circuit board.

なお、各実施例共に流路の断面積を一定としたが、測定
範囲内の流路に沿った方向の断面積のデータがあれば必
ずしも流路断面積が一定である必要はない、また、セン
サの測定範囲内に複数の流体柱が存在する場合、各流体
柱の容積を求めることができることは言うまでもない。
In addition, although the cross-sectional area of the flow path was constant in each example, the cross-sectional area of the flow path does not necessarily have to be constant as long as there is data on the cross-sectional area in the direction along the flow path within the measurement range. It goes without saying that if a plurality of fluid columns exist within the measurement range of the sensor, the volume of each fluid column can be determined.

また、照明方法、集光系、ラインセンサ、シェーディン
グ補正や2値化の方式等OA機器のファクシミリやスキ
ャナ等で利用されている技術が流用できることは旨゛う
までもない。
It goes without saying that the techniques used in OA equipment such as facsimiles and scanners, such as lighting methods, light collection systems, line sensors, shading correction, and binarization methods, can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流路の構造が簡甲、になるので装置の
信頼性の向上および小型化の効果がある。
According to the present invention, the structure of the flow path is simplified, so that the reliability of the device can be improved and the device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流体量計測!装置の斜視図
、第2図はラインセンサの出力を示す図、第3図は本発
明の他の実施例の流体量計測装置の密着させたタイプの
夫々別々の他の実施例を示す斜視図、第10図は従来の
流体量計測装置を示す斜視図である。 4・・・流路、6・・・レンズ系、7・・・ラインセン
サ、8−・・・光源、15・・・溝、16・・・孔、1
8・・・蝶番部、19・・・ピン、72・・・エリアセ
ンサ。 第 / 圀 第 22 □t 4 瘉j各 6  レンス゛系 71・−丸セ〉ナタ11 早 3 の 第 4 口 第 5 口 41・入口 42−・・上口 ’7/・・尤七)プ列 72、T−リアセンサ $ 6  目 (b) 6・・・嘴 71・・・尤七ンナ列 第 7 国 II  発尤素j列 lb・・さし lδ−・式莱番舒 71・・・尤センブタリ 第 9  凹 19・・ピン
Figure 1 shows fluid volume measurement in an embodiment of the present invention! FIG. 2 is a perspective view of the device, FIG. 2 is a diagram showing the output of the line sensor, and FIG. 3 is a perspective view showing other embodiments of the fluid amount measuring device of the present invention in which they are brought into close contact with each other. , FIG. 10 is a perspective view showing a conventional fluid amount measuring device. 4... Channel, 6... Lens system, 7... Line sensor, 8-... Light source, 15... Groove, 16... Hole, 1
8... Hinge part, 19... Pin, 72... Area sensor. No. / Kuni No. 22 □t 4 Kaj each 6 Lens ゛ system 71・-Maruse〉Nata 11 Early 3rd 4th mouth 5th mouth 41・Entrance 42-・Upper mouth '7/...Y7) row 72, T-rear sensor $ 6th (b) 6...Beak 71...7th column 7th country II Emitter element j column lb...insert lδ--formulai number 71...72 Center 9th concave 19...pin

Claims (1)

【特許請求の範囲】 1、境界の明確な複数の流体柱が存在する流路において
、流路上に存在する流体柱の両端の位置を計測する手段
を設け、かつ流路の位置による流路断面積のデータを有
し、これをもとに流体柱の容積を求めることを特徴とす
る流体量計測装置。 2、境界の明確な複数の流体柱が存在する流路において
、流路上に存在する流体柱の長さを計測する手段を設け
、該計測手段の計測範囲を占める流路断面積を一定とし
、流体、柱の容積を求めることを特徴とする流体量計測
装置。 3、請求項1または2に記載の装置において、流路の少
なくとも一側面を透明あるいは半透明な部材で構成し、
該側面に対向して光センサを設けたことを特徴とする流
体量計測装置。 4、請求項3に記載の装置において、光センサと流路間
にレンズ系を配置したことを特徴とする流体量計測装置
。 5、請求項1または2に記載の装置において、流路に光
センサあるいは光センサと光源よりなる流体柱計測手段
を一体化したことを特徴とする流体量計測装置。 6、請求項1または2に記載の装置において、光センサ
あるいは光センサと光源よりなる流体柱計測部に流路を
挿入することを特徴とする流体量計測装置。
[Claims] 1. In a flow path in which a plurality of fluid columns with clear boundaries exist, a means for measuring the positions of both ends of the fluid columns existing on the flow path is provided, and the flow path is cut off depending on the position of the flow path. A fluid volume measuring device characterized by having area data and determining the volume of a fluid column based on this data. 2. In a flow path in which a plurality of fluid columns with clear boundaries exist, a means for measuring the length of the fluid column existing on the flow path is provided, and the cross-sectional area of the flow path that occupies the measurement range of the measuring means is constant; A fluid volume measuring device characterized by determining the volume of a fluid and a column. 3. In the device according to claim 1 or 2, at least one side of the flow path is made of a transparent or translucent member,
A fluid amount measuring device characterized in that an optical sensor is provided opposite to the side surface. 4. The fluid amount measuring device according to claim 3, further comprising a lens system disposed between the optical sensor and the flow path. 5. The fluid amount measuring device according to claim 1 or 2, wherein a fluid column measuring means consisting of an optical sensor or an optical sensor and a light source is integrated in the flow path. 6. The fluid amount measuring device according to claim 1 or 2, wherein a flow path is inserted into a fluid column measuring section consisting of an optical sensor or an optical sensor and a light source.
JP13755888A 1988-06-06 1988-06-06 Fluid quantity measuring instrument Pending JPH01307608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13755888A JPH01307608A (en) 1988-06-06 1988-06-06 Fluid quantity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13755888A JPH01307608A (en) 1988-06-06 1988-06-06 Fluid quantity measuring instrument

Publications (1)

Publication Number Publication Date
JPH01307608A true JPH01307608A (en) 1989-12-12

Family

ID=15201526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13755888A Pending JPH01307608A (en) 1988-06-06 1988-06-06 Fluid quantity measuring instrument

Country Status (1)

Country Link
JP (1) JPH01307608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093306A1 (en) * 2008-01-22 2009-07-30 Shimadzu Corporation Liquid collection device, measurement device and liquid collection/measurement system provided therewith
US8783121B2 (en) 2009-03-19 2014-07-22 Shumadzu Corporation Liquid collecting system and a method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093306A1 (en) * 2008-01-22 2009-07-30 Shimadzu Corporation Liquid collection device, measurement device and liquid collection/measurement system provided therewith
CN101925821A (en) * 2008-01-22 2010-12-22 株式会社岛津制作所 System is measured in liquid extraction device, determinator and the liquid extraction with them
US8358405B2 (en) 2008-01-22 2013-01-22 Shimadzu Corporation Measuring apparatus, and liquid collecting and measuring system having the same
US8783121B2 (en) 2009-03-19 2014-07-22 Shumadzu Corporation Liquid collecting system and a method therefor

Similar Documents

Publication Publication Date Title
US5359184A (en) Optical encoding utilizing selectively refracted light
US7799558B1 (en) Ligand binding assays on microarrays in closed multiwell plates
CN100538331C (en) Light analytical equipment and light analyzer spare
US7292333B2 (en) Optical interrogation system and method for 2-D sensor arrays
JP3054756B2 (en) measuring device
EP1645864B1 (en) Enhanced sensitivity differential refractometer incorporating a photodetector array
US5986754A (en) Medical diagnostic apparatus using a Fresnel reflector
US20110188030A1 (en) Microelectronic sensor device for optical examinations in a sample medium
SE462408B (en) OPTICAL BIOSENSOR SYSTEM USING SURFACE MONITORING RESONSE FOR THE DETECTION OF A SPECIFIC BIOMOLIC CYCLE, TO CALIBRATE THE SENSOR DEVICE AND TO CORRECT FOUND BASELINE OPERATION IN THE SYSTEM
KR20120026581A (en) Imaging system comrpising microlenses and associated device for detecting a sample
US6734956B2 (en) Optical configuration and method for differential refractive index measurements
Clem et al. Practical colorimeter for direct measurement of microplates in enzyme immunoassay systems
US7863037B1 (en) Ligand binding assays on microarrays in closed multiwell plates
JPH01307608A (en) Fluid quantity measuring instrument
JPS6086439A (en) Optical quantifying device of very small quantity
US7264971B2 (en) Read-head for optical diagnostic device
KR102394294B1 (en) Diagnostic kit having micropartition region and diagnostic method using the same
US20090041633A1 (en) Apparatus and method for performing ligand binding assays on microarrays in multiwell plates
US11666909B2 (en) Hematology test slide
US20230003722A1 (en) Methods and compositions for lateral flow analyte assays
US7867783B2 (en) Apparatus and method for performing ligand binding assays on microarrays in multiwell plates
KR20150020804A (en) Light-permeable diagnostic kit and reader having the same
JPS62140029A (en) Apparatus for measuring surface level of liquid
US20030206291A1 (en) Optical configuration and method for differential refractive index measurements
RU2029942C1 (en) Method of measuring refraction index