JPH01307175A - Small fuel battery type power generating system - Google Patents

Small fuel battery type power generating system

Info

Publication number
JPH01307175A
JPH01307175A JP63136594A JP13659488A JPH01307175A JP H01307175 A JPH01307175 A JP H01307175A JP 63136594 A JP63136594 A JP 63136594A JP 13659488 A JP13659488 A JP 13659488A JP H01307175 A JPH01307175 A JP H01307175A
Authority
JP
Japan
Prior art keywords
fuel
burner
misfire
reformer
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63136594A
Other languages
Japanese (ja)
Inventor
Makoto Nagasawa
誠 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63136594A priority Critical patent/JPH01307175A/en
Publication of JPH01307175A publication Critical patent/JPH01307175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent misfire of a modifier burner by calculating the misfire timing of the burner upon reception of an output current increment signal and a modifier burner temp. drop signal, computing the amount of the aid fuel supplied on the basis of the result from calculations, and by driving the aid fuel supplying part when the burner temp. has sunk. CONSTITUTION:A misfire timing calculating part 31 calculates the misfire timing with the plant constant taken into considerations upon reception of the current increment signal emitted repeatedly from a main calculating part 20 at a certain timing and the temp. drop signal from the set value of the temp. of modifier burner 41. An aid fuel computing part 32 computes the incremental portion (aid fuel) of the modifier fuel at modifier burner 41 necessary for prevention of misfire on the basis of the result from calculation of misfire timing to be emitted repeatedly, and when the temp. of the modifier burner 41 has sunk below specified value, a control signal to drive the aid fuel supplying part is emitted. Accordingly supply of the modifier fuel to the modifier burner 41 is increased in an amount corresponding to the aid fuel. Thus the modifier burner 41 is prevented from misfire certainly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料改質器を用いた小型の燃料電池発電シス
テム、特に電力負荷の増加に対する追従性のよい交流出
力の小型燃料電池発電システムに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a small fuel cell power generation system using a fuel reformer, and in particular to a small fuel cell power generation system with an AC output that can easily follow an increase in power load. .

〔従来の技術〕[Conventional technology]

燃料改質器を用いた燃料電池発電装置IItにおいて、
小型でかつ電力負荷が激しく変動する用途に使用される
交流出力の燃料電池発電システムは、燃料改質器に供給
される改質原料の供給量と燃料電池部に供給する燃料9
気の供給量とを電力負荷に応じて制御する必要がある。
In a fuel cell power generation device IIt using a fuel reformer,
A fuel cell power generation system with AC output, which is small and used in applications where the power load fluctuates rapidly, has two main components: the amount of reforming material supplied to the fuel reformer and the amount of fuel supplied to the fuel cell section.
It is necessary to control the amount of air supplied according to the power load.

従来の大型の燃料電池発電装置は燃料改質器の改質反応
の遅れを避けるために燃料電池の燃料極側の手前に燃料
ガスのサージタンクを加えたシ、1X荷の増加時に燃料
極に水素を供給したシしていた。しかしながら、小型の
発電装置では、スペース上の問題や、長時間の独立運転
ができなければならないことなどから、システム内で燃
料改質器の遅れを補うために二次電池を用いている。
Conventional large-scale fuel cell power generation equipment has a fuel gas surge tank added in front of the fuel electrode side of the fuel cell in order to avoid delays in the reforming reaction of the fuel reformer. Hydrogen was supplied. However, in small power generation devices, due to space issues and the need to be able to operate independently for long periods of time, secondary batteries are used in the system to compensate for the delay of the fuel reformer.

〔発明が解決しようとする味題〕[Problem that the invention attempts to solve]

このような小型燃料′#j1.池発電装置では、以下の
ような問題点があった。
Such small fuel '#j1. Pond power generation equipment had the following problems.

イ)負荷によっては二次電池の容量が大きく必要である
b) Depending on the load, a large capacity secondary battery is required.

口)従って、二次電池の大きさが小型化の妨げになる。Therefore, the size of the secondary battery becomes an impediment to miniaturization.

−・)負荷変動が激しいときは、運転途中に二次電池が
過放電状態となり出力電圧が低下する。
-・) When load fluctuations are severe, the secondary battery becomes over-discharged during operation and the output voltage decreases.

筐た、燃料電池に供給される燃料ガスの一部はリターン
ガスとして燃料改質器バーナに供給され、原燃料の改質
反応に必要な熱エネルギーとして消費されるが、電力負
荷の急増時には燃料ガスの大部分を燃料電池が消費して
しまうために、改質器バーナの失火(立消え)が起こり
やすく、これが二次電池の過放電を加速する原因になる
A part of the fuel gas supplied to the fuel cell is supplied as return gas to the fuel reformer burner and is consumed as thermal energy necessary for the reforming reaction of the raw fuel. Since most of the gas is consumed by the fuel cell, the reformer burner tends to misfire (go out), which accelerates overdischarge of the secondary battery.

この発明の目的は、電力負荷が急上昇した場合に燃料改
質器のバーナが失火することを防ぐ機能を有することで
、燃料改質器の負荷追従性を上げ、これにより二次電池
の容量を軽減し、より小型の燃料電池発電装置を得るこ
とにある。
The purpose of this invention is to have a function to prevent the burner of the fuel reformer from misfiring when the power load suddenly increases, thereby increasing the load followability of the fuel reformer and thereby increasing the capacity of the secondary battery. The objective is to reduce the number of fuel cells and obtain a more compact fuel cell power generation device.

〔課題を解決するための手段〕[Means to solve the problem]

上記訝題を屏決するために、この発明によれは、燃料電
池の負荷電力、補機電力、二次電池電圧等の検出イg号
に基づき燃料電池の総出力電力を算出して燃料電池の出
力電流を制御するとともに、総出力電力に相応する改質
原料、改質器燃料、および助燃料空気等の流量を時々刻
々算出して制御信号を発する主演算部を備えたものにお
いて、この主演算部から所定のタイミングで出力される
燃料を池の出力電流増加信号および改質器温度低下信号
に基づいて改質器バーナの失火タイミングを算出する失
火タイミング演算部と、この失火タイミングメ與結釆に
基づき前記改質器バーナの補助燃料供給量を扉出し改質
器温度の低下が所定レベルに達したとき請」両信号を発
する補助燃料演算部と、この補助燃料演算部の出力制御
信号を受けて所定麓の補助燃料を前記改質器バーナに供
給する補助燃料制御部とを備えてなるものとする。
In order to resolve the above question, the present invention calculates the total output power of the fuel cell based on the detection of load power of the fuel cell, auxiliary power, secondary battery voltage, etc. In a device that is equipped with a main calculation section that controls the output current, momentarily calculates the flow rates of the reforming material, reformer fuel, auxiliary fuel air, etc. corresponding to the total output power, and issues a control signal. A misfire timing calculation section that calculates the misfire timing of the reformer burner based on the fuel output current increase signal of the pond and the reformer temperature decrease signal, which is outputted from the calculation section at a predetermined timing; an auxiliary fuel calculation unit that issues a signal to control the amount of auxiliary fuel supplied to the reformer burner based on the door-output signal when the temperature of the reformer reaches a predetermined level; and an output control signal of the auxiliary fuel calculation unit. and an auxiliary fuel control section that receives auxiliary fuel at a predetermined level and supplies the auxiliary fuel to the reformer burner.

〔作用〕[Effect]

上記手段は、改質器バーナの失火タイミングは配管を含
む燃料電池の燃料ガス系の容積などのプラント定数と出
力電流の増加層、改質器バーナの温度低下に左右され、
著しい場合には電流の増加時点から数秒間で失火を生ず
るので、この失火タイミングを早期に検知して改質器バ
ーナに供給する改質器燃料を増量することにより失火を
防止できることに着目して構成されたものである。すな
わち、失火タイミング演算部で主演算部から所定のタイ
ミングで繰返し出力される電流の増加量信号と、改質器
バーナ温度の設定値に対する温度低下量信号を受け、プ
ラント定数を考慮した失火タイミングが算出される。ま
た、補助燃料演算部では株返し出力される失火タイミン
グの算出結果に基づいて失火を防止するに必要な改質器
バーナの改質器燃料の増量分(以下補助燃料とよぶ)を
算出し、前記改質器バーナ温度が所定温度以下に低下し
たとき補助燃料供給部を駆動する制御信号を発すること
により、改質器バーナえの改質器燃料の供給が補助燃料
分だけ増量される。したがって、補助燃料の供給開始タ
イミングを決める改質器バーナ温度を失火するOJ能性
のある改質器バーナ温度の低下量より遥かに小δく設定
しておけば、改5It器バーナの失火を確実に防止する
ことができ、これ釦付随する二次電池の消耗が阻止され
る。
In the above means, the misfire timing of the reformer burner depends on plant constants such as the volume of the fuel gas system of the fuel cell including piping, the increase level of the output current, and the temperature drop of the reformer burner,
In severe cases, misfires occur within a few seconds from the point at which the current increases, so we focused on the fact that misfires can be prevented by detecting this misfire timing early and increasing the amount of reformer fuel supplied to the reformer burner. It is constructed. That is, the misfire timing calculation section receives the current increase amount signal repeatedly output at predetermined timing from the main calculation section and the temperature decrease amount signal for the set value of the reformer burner temperature, and calculates the misfire timing taking into account the plant constants. Calculated. In addition, the auxiliary fuel calculation section calculates the amount of increase in the amount of reformer fuel for the reformer burner (hereinafter referred to as auxiliary fuel) necessary to prevent misfires based on the calculation results of the misfire timing outputted back. By issuing a control signal for driving the auxiliary fuel supply section when the reformer burner temperature falls below a predetermined temperature, the amount of reformer fuel supplied to the reformer burner is increased by the amount of the auxiliary fuel. Therefore, if the reformer burner temperature, which determines the timing to start supplying auxiliary fuel, is set to be much smaller than the amount of decrease in the reformer burner temperature that has the potential for OJ to misfire, misfires in the reformer burner can be prevented. This can be reliably prevented, and the consumption of the secondary battery associated with this button is prevented.

〔実施例〕〔Example〕

第1図はこの発明の実施例装置を示す構成図である。図
において、1は燃料改質器、2は燃料電池であり、燃料
改質器1は改質器バーナ41.温度検出器30f、備え
、改質原料制御部3から供給される原燃料71を所定の
作動温度に加熱された改質触媒層の改質反応によって燃
料ガス81に改質し、燃料電池2に供給する。燃料電池
2は各単電池に供給される燃料ガス81および図示しな
い反応空気制御部から供給される反応空気とにより直接
発電を行い、燃料ガスの一部はリターンガス82として
改質器バーナ41に導びかれ、吸熱反応である改質反応
に必要な熱エネルギーを供給する。また改質器バーナ4
1は助燃空気制御4および改質器燃料制御部5からそれ
ぞれ供給される助燃空気74および改質器燃料73を燃
焼させて必要な熱エネルギーを発生させる。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a fuel reformer, 2 is a fuel cell, and the fuel reformer 1 is a reformer burner 41. A temperature detector 30f is provided, and the raw fuel 71 supplied from the reforming raw material control section 3 is reformed into fuel gas 81 by the reforming reaction of the reforming catalyst layer heated to a predetermined operating temperature, and is then supplied to the fuel cell 2. supply The fuel cell 2 directly generates electricity using the fuel gas 81 supplied to each unit cell and the reaction air supplied from a reaction air control section (not shown), and a portion of the fuel gas is sent to the reformer burner 41 as a return gas 82. It supplies the thermal energy necessary for the endothermic reforming reaction. Also, the reformer burner 4
1 generates necessary thermal energy by combusting the auxiliary combustion air 74 and reformer fuel 73 supplied from the auxiliary combustion air control section 4 and the reformer fuel control section 5, respectively.

一万燃料電池1の出力回路は、電流制御部10゜D C
/A C変換器11を介して負荷16が接続され、電流
制御部10の出力側には二次電池17が設けられて変動
の大きい負荷13に電流を供給する。また、負荷13の
消費電力は電圧検出器22゜電流検出器26の出力信号
を乗算する負荷電力算出器24によシその実際値24A
が求められ、各制御部3,4,5.6等の補機電力は、
二次電池電圧検出器25および補機電源14の電流検出
器26の出力信号を乗算する補機電力算出器27によシ
その実際値27Aが求められる。また燃料電池2の出力
電圧2 B A (Vfc)、出力電流29A(工fc
)は電圧検出器28および電流検出器29で求められる
。さらに、改質器温度(バーナ温度)30A(T)は温
度検出器60で検出される。
The output circuit of the 10,000 fuel cell 1 includes a current control section 10°DC
A load 16 is connected via the /AC converter 11, and a secondary battery 17 is provided on the output side of the current control section 10 to supply current to the load 13 which has large fluctuations. The power consumption of the load 13 is determined by the load power calculator 24, which multiplies the output signals of the voltage detector 22 and the current detector 26, and its actual value is 24A.
is calculated, and the auxiliary power of each control unit 3, 4, 5.6, etc. is
The actual value 27A is determined by the auxiliary power calculator 27 which multiplies the output signals of the secondary battery voltage detector 25 and the current detector 26 of the auxiliary power source 14. In addition, the output voltage of the fuel cell 2 is 2 B A (Vfc), and the output current is 29 A (Vfc).
) is determined by the voltage detector 28 and current detector 29. Furthermore, the reformer temperature (burner temperature) 30A(T) is detected by a temperature detector 60.

20は主演算部であシ、負荷電力算出器24゜補機電力
算出器27および燃料電池2の出力電圧検出器28.出
力電流検出器29それぞれの出力信号24A、27A、
28A、29Aを受け、燃料電池2が出力すべき総見電
電力を算出し、これに基づいて電流制御部10に出力電
流工fcの制御を指令する信号10Aを出力する。また
、出力電流工fc  と出力電圧Vfc を出力するに
必要な原燃料71.助燃空気74.改質器燃料76等の
供給量を算出し、それぞれ制御信号3A 、 4A 、
 5Aを各制御部3,4.5に向けて出力する。また、
さらに主演算部20はD C/A C変換器に図では省
略した負荷電力の制御信号を出力しておシ、電流制御部
10.DC/AC変換器11相互の制御の兼ね合いによ
って軸負荷時には二次電池17が充電され、負荷増加時
には二次電池17が放電するよう制御されることにより
、燃料電池2は燃料ガス81の消費率を例えば70%前
後に保って発電を行うよう制御される。
20 is a main calculation unit, a load power calculator 24, an auxiliary power calculator 27, and an output voltage detector 28 of the fuel cell 2. Output signals 24A, 27A of the output current detector 29,
28A and 29A, the total electric power to be output by the fuel cell 2 is calculated, and based on this, a signal 10A is outputted to the current control unit 10 to instruct the control of the output current fc. Also, the raw fuel 71. necessary to output the output current fc and the output voltage Vfc. Auxiliary combustion air74. The supply amount of the reformer fuel 76 etc. is calculated and the control signals 3A, 4A,
5A is output to each control section 3, 4.5. Also,
Furthermore, the main calculation section 20 outputs a load power control signal (not shown in the figure) to the DC/AC converter, and the current control section 10. By controlling the mutual control of the DC/AC converter 11, the secondary battery 17 is charged when the shaft is loaded, and the secondary battery 17 is discharged when the load increases, so that the fuel cell 2 can control the consumption rate of the fuel gas 81. For example, it is controlled to generate electricity while keeping it at around 70%.

第2図は実施別装置の制御状態を説明するための燃料電
池の電圧−電流特性線図であシ、曲線100.101,
102は燃料ガスの消費率がそれぞh70%、50%、
100%以上におけるVfc−Ifc特性曲線を示す。
FIG. 2 is a voltage-current characteristic diagram of a fuel cell for explaining the control state of the device according to the embodiment, curves 100, 101,
102 has a fuel gas consumption rate of h70% and 50%, respectively.
The Vfc-Ifc characteristic curve at 100% or more is shown.

図において、燃料消費率70%を保持して電流工0で運
転されている燃料電池の負荷電力が増加して主制御部2
0が燃料電池の出力電流を工、に増加する指令を発した
と仮定する。電流工0から11への増加指令が緩l漫で
あれば電流の増加に原燃料の供給増が追随するので、燃
料電池は曲線100上をA点からB点に向けて変化する
制御特性を示し、電圧vOからvlへの低下は一次的に
二次電池の放電によって補償される。ところが、負荷電
流の急増や二次電池の電圧低下などの悪条件によって電
流の増加指令が急速であった場合、燃料電池はリターン
ガスとして改質器バーナに送られるべき燃料を消費して
発電を行うために燃料消費率が高まり、燃料電池の出力
電圧は図中点線で示すようにA点からC点に向けて変化
する。この過程で改質器からの燃料ガスの供給が増加し
てくれれば改質器バーナの失火をまぬがれるが、燃料ガ
スの供給の増加が追いつかず、燃料消費率が100%以
上の曲線上のC点近くにまで達する燃料ガス不足を生じ
た場合には改質器バーナが失火(立ち消え)する事態が
発生する。
In the figure, the load power of the fuel cell, which is being operated at 0 current with a fuel consumption rate of 70%, increases and the main control unit 2
Assume that 0 issues a command to increase the output current of the fuel cell to . If the command to increase the current from 0 to 11 is slow, the increase in raw fuel supply will follow the increase in current, so the fuel cell will have control characteristics that change from point A to point B on curve 100. , and the drop in voltage from vO to vl is primarily compensated for by discharge of the secondary battery. However, if the current increase command is rapid due to unfavorable conditions such as a sudden increase in load current or a voltage drop in the secondary battery, the fuel cell consumes the fuel that should be sent to the reformer burner as return gas to generate electricity. As a result, the fuel consumption rate increases, and the output voltage of the fuel cell changes from point A to point C, as shown by the dotted line in the figure. If the supply of fuel gas from the reformer increases during this process, misfire of the reformer burner can be avoided, but the increase in the supply of fuel gas cannot keep up and the fuel consumption rate is higher than 100%. In the event of a fuel gas shortage that reaches near the point, a situation may occur in which the reformer burner misfires (goes out).

第1図において、失火タイミング演算部61゜補助燃料
演算部32.および補助燃料制御部63は、上記改質器
バーナの失火の防止手段であシ、失火タイミング演算部
31には主演算部20から温度検出器30の出力信号3
0Aに基づき改質器バーナの温度低下量信号30Bと、
出力電流の増加量を示す信号29Bとが時々刻々入力さ
れ、信号29Bおよび30Bとプラント定数とに基づい
て第2図のA点からC点に到る失火タイミングが算出さ
れる。補助燃料算出部32は上記算出結果31Aを受け
て補助燃料の供給iを算出し、温度検出器30の出力信
号が所定レベルに低下した時点で制御信号32Aを補助
燃料制御部33に向けて出力する。その結果、改質器バ
ーナ41には改質器燃料制御部5からの改質器燃料に加
えて補助燃料75が加わることによシ、リターンガス8
2の減少を補償することになり、その結果改質器パ−す
温度が上昇して燃料ガス81の供給量が増加することに
より、改質器バーナの失火が防止される。
In FIG. 1, a misfire timing calculation section 61°, an auxiliary fuel calculation section 32. The auxiliary fuel control section 63 is a means for preventing misfire of the reformer burner, and the misfire timing calculation section 31 receives the output signal 3 of the temperature detector 30 from the main calculation section 20.
A temperature reduction amount signal 30B of the reformer burner based on 0A;
A signal 29B indicating the amount of increase in the output current is inputted from time to time, and the misfire timing from point A to point C in FIG. 2 is calculated based on the signals 29B and 30B and the plant constant. The auxiliary fuel calculation unit 32 receives the above calculation result 31A, calculates the supply i of auxiliary fuel, and outputs a control signal 32A to the auxiliary fuel control unit 33 when the output signal of the temperature detector 30 drops to a predetermined level. do. As a result, since the auxiliary fuel 75 is added to the reformer burner 41 in addition to the reformer fuel from the reformer fuel control section 5, the return gas 8
As a result, the reformer gas temperature rises and the amount of fuel gas 81 supplied increases, thereby preventing misfire of the reformer burner.

第3図は上述の失火防止手段の動作説明図であジ、[t
II巌110は補助燃料の流量曲線、曲線111は改質
器バーナの温度曲線を示す。図において、時刻t1で電
流の増加と、これに基づく燃料消費率の増大、改質器バ
ーナ温度の低下が始まったと仮定する。改質器バーナ温
度TがΔT1低下した時点t2で補助燃料演算部62が
制御信号32Aを出力し、補助燃料制御部が補助燃料を
改質器バーナ41に供給することによシ、改質器バーナ
41の温度は1IIll線111に示すようにΔT2T
2低下時点で上昇に転じ、燃料ガスの供給量が追いつい
た時点t3で平衡に達する。その結果、補助燃料が供給
されない場合図中点線で示すように改質バーナ温度が低
下して生ずる失火が、これより早く供給を開始する補助
燃料によって回避される。なお、補助燃料流量曲線11
0の形は、失火タイミング演算部31が時々刻々入力さ
れる入力信号29Bおよび30Bの実際1直に基づいて
その出力信号31Aを変更し、この変更値に基づいて補
助燃料演算部32の制御信号が変更されることによシ、
失火防止に好適な制御が行われる。
FIG. 3 is an explanatory diagram of the operation of the above-mentioned misfire prevention means.
II curve 110 shows the flow rate curve of the auxiliary fuel, and curve 111 shows the temperature curve of the reformer burner. In the figure, it is assumed that at time t1, the current increases, the fuel consumption rate increases based on this, and the reformer burner temperature begins to decrease. At time t2 when the reformer burner temperature T decreases by ΔT1, the auxiliary fuel calculation unit 62 outputs the control signal 32A, and the auxiliary fuel control unit supplies auxiliary fuel to the reformer burner 41, thereby reducing the reformer burner temperature. The temperature of the burner 41 is ΔT2T as shown by the 1IIll line 111.
When the amount of fuel gas decreases by 2, it starts to increase, and reaches equilibrium at time t3 when the amount of fuel gas supply catches up. As a result, misfires that would occur due to a drop in reforming burner temperature as shown by the dotted line in the figure when auxiliary fuel is not supplied are avoided by starting supply of auxiliary fuel earlier. In addition, auxiliary fuel flow curve 11
In the form of 0, the misfire timing calculation section 31 changes its output signal 31A based on the actual frequency of the input signals 29B and 30B that are inputted from time to time, and changes the control signal of the auxiliary fuel calculation section 32 based on this changed value. may be changed,
Control suitable for preventing misfires is performed.

〔発明の効果〕 この発明は前述のように、燃料電池の出力電流増加量と
改質器バーナ温度の低下信号を受けて改質器バーナの失
火タイミングを算出する失火タイミング演算部、この演
算結果に基づいて補助燃料の供給量を算出し改質器バー
ナの温度低下が生じたとき補助燃料供給部を駆動する補
助燃料演算部を設けるよう構成した。その結果、燃料電
池出力電流の増加による燃料ガス不足を早期に検知して
改質燃料の増加を行うことが可能となり、従来技術で問
題となった燃料ガス不足に基づく改質器バーナの失火が
未然に防止され、負荷変動の大きい小型燃料′Rt池の
負荷変動に対する追随性が改善される。また、改質器バ
ーナの失火が回避されることによシ、二次電池の放電時
間が短縮されるので、二次電池の設備容量の低減が可能
となシ、小型燃料電池発電システムの小型化、軽量化に
貢献できる利点が得られる。
[Effects of the Invention] As described above, the present invention provides a misfire timing calculation unit that calculates a misfire timing of a reformer burner in response to an increase in output current of a fuel cell and a signal of a decrease in a reformer burner temperature, and a result of this calculation. The present invention is configured to include an auxiliary fuel calculation unit that calculates the amount of auxiliary fuel supplied based on the auxiliary fuel supply amount and drives the auxiliary fuel supply unit when the temperature of the reformer burner decreases. As a result, it is possible to detect fuel gas shortages due to an increase in fuel cell output current at an early stage and increase the amount of reformed fuel, eliminating the problem of reformer burner misfires due to fuel gas shortages, which was a problem with conventional technology. This is prevented, and the followability of the small fuel 'Rt' pond, which has large load fluctuations, to load fluctuations is improved. In addition, by avoiding a misfire in the reformer burner, the discharge time of the secondary battery is shortened, making it possible to reduce the installed capacity of the secondary battery, and making it possible to reduce the size of the small fuel cell power generation system. This has the advantage of contributing to weight reduction and weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例装置を示す構成図、第2図は
実7I例装置の制御状態を示す特性線図、第3図は実施
例装置の動作説明図である。 1・・・燃料改質器、2・・・燃料電池、20・・・主
演算部、30・・・温度検出器、61・・・失火タイミ
ング演算部、32・・・怖助燃料演算部、33・・・補
助燃料制御部、41・・・改質器バーナ。 7IJ2目 第3図
FIG. 1 is a block diagram showing a device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing a control state of the device according to the 7I example, and FIG. 3 is an explanatory diagram of the operation of the device according to the embodiment. DESCRIPTION OF SYMBOLS 1... Fuel reformer, 2... Fuel cell, 20... Main calculation part, 30... Temperature detector, 61... Misfire timing calculation part, 32... Auxiliary fuel calculation part , 33... Auxiliary fuel control section, 41... Reformer burner. 7IJ 2nd figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)燃料電池の負荷電力、補機電力、二次電池電圧等の
検出信号に基づき燃料電池の総出力電力を算出して燃料
電池の出力電流を制御するとともに、総出力電力に相応
する改質原料、改質器燃料、および助燃空気等の流量を
時々刻々算出して制御信号を発する主演算部を備えたも
のにおいて、この主演算部から所定のタイミングで出力
される燃料電池の出力電流増加信号および改質器温度低
下信号に基づいて改質器バーナの失火タイミングを算出
する失火タイミング演算部と、この失火タイミング演算
結果に基づき前記改質器バーナの補助燃料供給量を算出
し改質器温度の低下が所定レベルに達したとき制御信号
を発する補助燃料演算部と、この補助燃料演算部の出力
制御信号を受けて所定量の補助燃料を前記改質器バーナ
に供給する補助燃料制御部とを備えてなることを特徴と
する小型燃料電池発電システム。
1) Calculate the total output power of the fuel cell based on detection signals such as load power of the fuel cell, auxiliary power, secondary battery voltage, etc., control the output current of the fuel cell, and perform reforming corresponding to the total output power In a device equipped with a main calculation unit that momentarily calculates the flow rates of raw materials, reformer fuel, auxiliary combustion air, etc. and issues control signals, this increases the output current of the fuel cell that is output from the main calculation unit at a predetermined timing. a misfire timing calculation unit that calculates the misfire timing of the reformer burner based on the signal and the reformer temperature drop signal, and a misfire timing calculation unit that calculates the auxiliary fuel supply amount of the reformer burner based on the misfire timing calculation result an auxiliary fuel calculation unit that issues a control signal when the temperature decrease reaches a predetermined level; and an auxiliary fuel control unit that receives the output control signal of the auxiliary fuel calculation unit and supplies a predetermined amount of auxiliary fuel to the reformer burner. A small fuel cell power generation system characterized by comprising:
JP63136594A 1988-06-02 1988-06-02 Small fuel battery type power generating system Pending JPH01307175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136594A JPH01307175A (en) 1988-06-02 1988-06-02 Small fuel battery type power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136594A JPH01307175A (en) 1988-06-02 1988-06-02 Small fuel battery type power generating system

Publications (1)

Publication Number Publication Date
JPH01307175A true JPH01307175A (en) 1989-12-12

Family

ID=15178949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136594A Pending JPH01307175A (en) 1988-06-02 1988-06-02 Small fuel battery type power generating system

Country Status (1)

Country Link
JP (1) JPH01307175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220620A (en) * 2006-02-20 2007-08-30 Sanyo Electric Co Ltd Fuel cell power generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220620A (en) * 2006-02-20 2007-08-30 Sanyo Electric Co Ltd Fuel cell power generating device

Similar Documents

Publication Publication Date Title
US7485383B2 (en) Fuel cell power supply
WO1989006866A1 (en) Fuel cell generating apparatus and method of controlling the same
US7291412B2 (en) Control apparatus and control method of fuel cell system
JPH0831328B2 (en) Fuel cell generator
JPH05151983A (en) Hybrid fuel cell system
US20120062166A1 (en) Integrated Fuel Processor and Fuel Cell System Control Method
KR20200020513A (en) External power supply system and supply method of fuel cell vehicle
JP2007188826A (en) Fuel cell system and method of starting fuel cell system
JP2003229154A (en) Surplus power control system and control method, and power supply system
US20090214903A1 (en) Fuel cell system and control method thereof
JPH01307175A (en) Small fuel battery type power generating system
JP4843898B2 (en) Fuel cell device and control method thereof
JPH0451466A (en) Output control device for fuel cell power generation system
JP5683031B2 (en) Fuel cell system and operation method thereof
JPH06275296A (en) Fuel cell power generating device
US8293418B2 (en) Fuel supply control method and system for fuel cells
KR20050073703A (en) Fuzzy logic control method for grid independent operation of fuel cell/battery hybrid system, and the apparatus for it
JPH06327161A (en) Hybrid power-supply apparatus
JPS63236269A (en) Control method for fuel cell
JPH0642181B2 (en) Fuel cell power generation system
KR20070109781A (en) Method and apparatus for controlling operation of direct methanol fuel cell system
KR100520544B1 (en) Sub battery charge method of fuel cell electric vehicle
JPS6345763A (en) Operation controller of fuel cell power generating plant
JP2002204536A (en) Power control device and control method for power supply apparatus
JPH11320462A (en) Leg type moving robot