JPH01307148A - X-ray spectral analyzing device - Google Patents

X-ray spectral analyzing device

Info

Publication number
JPH01307148A
JPH01307148A JP63137865A JP13786588A JPH01307148A JP H01307148 A JPH01307148 A JP H01307148A JP 63137865 A JP63137865 A JP 63137865A JP 13786588 A JP13786588 A JP 13786588A JP H01307148 A JPH01307148 A JP H01307148A
Authority
JP
Japan
Prior art keywords
ray
sample
specimen
spectrometer
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137865A
Other languages
Japanese (ja)
Inventor
Kazuo Koyanagi
和夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63137865A priority Critical patent/JPH01307148A/en
Publication of JPH01307148A publication Critical patent/JPH01307148A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To move a specimen surface to the proper position by a single action by moving the specimen in such a direction as to provide equal output from two X-ray spectrum analyzers, arranged on the optical axis of an electron optical system with the point of view dislocated, while comparing the outputs from these two spectral analyzers. CONSTITUTION:In an X-ray spectral analyzer to locate a pointlike X-ray source on a Rowland circle by the use of bent crystals for spectral analysis, two X-ray spectrum analyzers M1, M2 are arranged around the electron beam while the point of view is dislocated in the optical axis (e) direction onto the optical axis (e) of an electron optical system E, i.e., the center line of an electron beam irradiating a specimen S. The point of view O of X-ray spectral analyzer M3 for analyzing specimen is located just in the middle between the points of view A, B of the two X-ray spectral analyzers M1, M2, and the specimen S surface is moved to the position in the middle of the points of view A, B of these two analyzers. Thereby the direction in which the specimen is dislocated, can be sensed, and adjustment of specimen position can be made in a single action without trial motion of the specimen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子線マイクロアナライザ(EPMA)におけ
るX線分光器のように、試料面に電子ビームを収束させ
、試料面から放射されるX線を湾曲結晶を用いて分光す
る型のX線分光器における試料位置調節装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention focuses an electron beam on a sample surface, like an X-ray spectrometer in an electron beam microanalyzer (EPMA), and detects X-rays emitted from the sample surface. The present invention relates to a sample position adjustment device in an X-ray spectrometer that uses a curved crystal to perform spectroscopy.

(従来の技術) 湾曲結晶を用いたX ′!lA分光器では一般に分光器
へのX線入射スリット、出射スリットおよび分光結晶中
心が一つのローランド円上に位置するように3者の位置
関係を規制する必要がある。試料面上の一点に電子ビー
ムを収束させて、電子ビームの収束点をX線源とすると
きは、そのX線源をローランド円上に位置させて入射ス
リットを省(ことができる。しかしこの場合試料の電子
線照射点をX線分光器の所定の位置つまり上記ローラン
ド円上に位置するように、試料位置をFIIJKnする
必要がある。
(Prior art) X'! using a curved crystal! In an 1A spectrometer, it is generally necessary to regulate the positional relationship between the three, such that the X-ray entrance slit, the exit slit, and the center of the spectroscopic crystal are located on one Rowland circle. When converging an electron beam on a point on the sample surface and using the convergence point of the electron beam as an X-ray source, the X-ray source can be positioned on the Rowland circle to eliminate the entrance slit. In this case, it is necessary to position the sample so that the electron beam irradiation point of the sample is located at a predetermined position of the X-ray spectrometer, that is, on the Rowland circle.

このためEPMAでは通常電子光学系と共軸的に付設さ
れた光学顕微鏡の焦点位置とX線分光器におけるX線源
の位置を一致させておき、試料面を光学顕微鏡の焦点位
置に合わせることでX線分光器に対する試料位置調節を
行っているが、試料面が平滑で試料面に目視的なパター
ンがないときは顕微鏡による位置調節ができない。この
ような場合従来は試料における特徴的な元素例えば試料
が鋼のような場合は鉄の特性X線が検出されるようにX
線分光器の波長を設定しておき、X vA検出強度が最
大になる試料位置を調節すると云う方法がとられていた
。しかしこのような方法は試料面の位置が正しい位置か
ら正負どちら側にずれているかが予め不明であるから、
−々試しに試料を動かして見る必要があり、また大へん
非能率である。特に試料位置を連続的に変えながら分析
を行って行(場合、試料面の傾きとか凹凸に追従させて
試料を上下させる必要があるが、試料面が正負どちら側
にずれたかが不明なため新しい分析点毎に試料の水平移
動を止めて試料を上下に試し移動させねばならず、試料
面の一次元的或は二次元的な連続分析に対応できなかっ
た。
For this reason, in EPMA, the focal position of the optical microscope, which is attached coaxially with the electron optical system, is usually aligned with the position of the X-ray source in the X-ray spectrometer, and the sample surface is aligned with the focal position of the optical microscope. The sample position is adjusted with respect to the X-ray spectrometer, but if the sample surface is smooth and there is no visible pattern on the sample surface, the position cannot be adjusted using the microscope. In such cases, conventional methods have been used to detect characteristic elements in the sample, for example, if the sample is steel, X-rays are
The conventional method was to set the wavelength of the line spectrometer and adjust the sample position where the X vA detection intensity was maximized. However, with this method, it is not known in advance whether the position of the sample surface deviates from the correct position, positive or negative.
- It is necessary to move the sample for testing, and it is very inefficient. In particular, when analysis is performed while continuously changing the sample position (in some cases, it is necessary to move the sample up and down to follow the inclination or unevenness of the sample surface, but it is unclear whether the sample surface has shifted to the positive or negative side, so a new analysis is required). The horizontal movement of the sample had to be stopped at each point and the sample had to be moved vertically, making it impossible to perform one-dimensional or two-dimensional continuous analysis of the sample surface.

(発明が解決しようとする課題) X線分光器に対する試料面の位置ずれの方向を検知して
一動作で試料面を正しい位置に移動させ得るようにしよ
うとするものである。
(Problems to be Solved by the Invention) The present invention attempts to detect the direction of positional deviation of the sample surface with respect to the X-ray spectrometer and to move the sample surface to the correct position in one operation.

(課題を解決するための手段) 分光用湾曲結晶を用い点状XM源をローランド円上に位
置させる19分光器において、X線源の正しい位置をX
線分光器の視点と云うことにする。本発明は試料を照射
する電子ビームの中心線即ち電子光学系の光軸上に光軸
方向に視点位置をずらせて二つのX線分光器を上記電子
ビームの周囲に配置し、両X線分光器の視点間の丁度中
間位置に試料分析用X線分光器の視点を位置させ、上記
二つのX線分光器のX線検出出力を比較することにより
試料面を上記二つのX線分光器の視点の中間位置に移動
させるようにした。
(Means for solving the problem) In the 19 spectrometer, which uses a curved crystal for spectroscopy and positions the point-like XM source on the Rowland circle, the correct position of the X-ray source is
Let's call it the viewpoint of a line spectrometer. In the present invention, two X-ray spectrometers are arranged around the electron beam with their viewpoints shifted in the optical axis direction on the center line of the electron beam that irradiates the sample, that is, on the optical axis of the electron optical system, and both X-ray spectrometers are By positioning the viewpoint of the X-ray spectrometer for sample analysis at exactly the midpoint between the viewpoints of the instrument, and comparing the X-ray detection outputs of the two X-ray spectrometers, the sample surface can be determined by Moved the viewpoint to an intermediate position.

(作用) 二つのX線分光器が電子光学系の光軸上で視点位置をず
らせて配置されているので、これら両X線分光器の検出
x111!波長を試料内の任意の元素の特性X線波長に
合わせておくと、試料面を電子光学系の光軸方向に動か
したとき、夫々のX線検出器の出力は第3図のように変
化し、試料面が夫々のX線分光器の視点位置に来たとき
、そのX線分光器の出力が最大となり、試料面が上記二
つの視点の中間位置にあるとき、両X線分光器の出力は
等しくなる。両X線分光器の出力を比較しながら両X線
分光器の出力が等しくなる方向に試料を動かすことによ
り、試料面を上記両X線分光器の中間位置に位置させる
ことができ、試料分析用X線分光器の視点を予め上記両
X線分光器の視点の中間に位置させてお(ことにより試
料の位置合わせができる。この場合、試料面を動かす方
向は上記両X線分光器の出力の大小比較により決定でき
、試しの移動を行う必要がないから、試料面の傾斜とか
凹凸に連続的に追従させて試料面を上下させることがで
きる。
(Function) Since the two X-ray spectrometers are arranged with their viewpoints shifted on the optical axis of the electron optical system, the detection x111 of these two X-ray spectrometers! If the wavelength is matched to the characteristic X-ray wavelength of any element in the sample, when the sample surface is moved in the direction of the optical axis of the electron optical system, the output of each X-ray detector will change as shown in Figure 3. However, when the sample surface comes to the viewpoint position of each X-ray spectrometer, the output of that X-ray spectrometer becomes maximum, and when the sample surface is at the intermediate position between the above two viewpoints, the output of both X-ray spectrometers becomes maximum. The outputs will be equal. By comparing the outputs of both X-ray spectrometers and moving the sample in the direction where the outputs of both X-ray spectrometers are equal, the sample surface can be positioned at an intermediate position between the two X-ray spectrometers, allowing sample analysis. The viewpoint of the X-ray spectrometer for use with the X-ray spectrometer is positioned in advance between the viewpoints of the two X-ray spectrometers (this allows the sample to be aligned. In this case, the direction in which the sample surface is moved is the same as that of the two X-ray spectrometers. Since it can be determined by comparing the magnitude of the output and there is no need to perform trial movement, the sample surface can be moved up and down while continuously following the inclination or unevenness of the sample surface.

(実施例) 第1図に本発明の一実施例を示す。この実施例はEPM
Aであって、Eは電子光学系で、Gは電子銃、Lは対物
レンズ、eは電子光学系の光軸である。Ml、M2は夫
々独立したX線分光器でR1、R2は夫々の分光器にお
けるローランド円であり、C1,C2は夫々の分光用湾
曲結晶、A1、A2はX線出射スリットで、DI、D2
はX線検出器である。分光結晶C1,C2は夫々の送り
ねじT1.T2によって各ねじ軸線方向に駆動されるよ
うになっており、各ねじTl、T2は夫々の分光器のベ
ースBl、B2に固定されており、X線出射スリットA
1.A2と夫々に対応する検出器D1.D2は一体化さ
れ、分光結晶C1、C2と機構的に連結されている。こ
の機構は通常用いられているものと同じであり、図では
省略しである。第1図では表わすことができないが、図
で手前側にもう一つのX線分光器があり、構造的には上
記Ml、M2と同じである。第2図はこれらのX線分光
器の配置を示し、電子光学系の光軸eの周りに放射状に
配置されている。M3が第1図で表されていないX線分
光器である。第1図において電子光学系の光軸e上の0
点は上記王台のX線分光器M1〜M3の正規の視点位置
である。X線分光器M1.M2のベースBl、B2は上
記0点を通り、光軸eと直交する線上の一点PL、P2
を通りベースに垂直な軸を中心としてEPMA本体に揺
動可能に軸支されており、Pl、22点を中心に小さな
各範囲で揺動させることにより、分光器M1.M2の視
点を光軸e上で0点から上下に移動させることができる
。Kl。
(Example) FIG. 1 shows an example of the present invention. This example is an EPM
In A, E is an electron optical system, G is an electron gun, L is an objective lens, and e is an optical axis of the electron optical system. Ml and M2 are independent X-ray spectrometers, R1 and R2 are Rowland circles in each spectrometer, C1 and C2 are curved crystals for spectroscopy, A1 and A2 are X-ray exit slits, and DI and D2 are
is an X-ray detector. The spectroscopic crystals C1 and C2 are connected to respective feed screws T1. Each screw Tl, T2 is fixed to the base Bl, B2 of the spectrometer, and the X-ray exit slit A
1. A2 and the corresponding detector D1. D2 is integrated and mechanically connected to spectroscopic crystals C1 and C2. This mechanism is the same as the one normally used and is omitted in the figure. Although it cannot be shown in FIG. 1, there is another X-ray spectrometer on the near side in the figure, which is structurally the same as M1 and M2 described above. FIG. 2 shows the arrangement of these X-ray spectrometers, which are arranged radially around the optical axis e of the electron optical system. M3 is an X-ray spectrometer not shown in FIG. In Figure 1, 0 on the optical axis e of the electron optical system.
The points are the regular viewpoint positions of the above-mentioned royal X-ray spectrometers M1 to M3. X-ray spectrometer M1. The bases Bl, B2 of M2 pass through the above 0 point and are at one point PL, P2 on a line perpendicular to the optical axis e.
The spectrometer M1. The viewpoint of M2 can be moved up and down from the 0 point on the optical axis e. Kl.

K2はカムでEPMAの本体外から回すことができるよ
うになっており、ベースBl、B2から下方に突出した
突起Fl、F2に当っている。分光器MlにおいてHl
はEPMA本体に固定された当りで、カムに1を図より
180°回した位置では突起F1は分光器M1の自重に
よって当りHlに当りカムに1からは離れて、このとき
分光器M1の視点は0点になっている。カムK 1を図
の位置にすると、突起H1がカムに1に押され、分光器
M1の視点は図示A点に位置せしめられる。分光器M2
において、F2.H2′はEPMA本体に固定された当
りで、図のようにカムに2を突起F2から離した位置で
はM2の自重によってF2が当りF2に当接し、このと
き分光器M2の視点は図のB点に位置している。カムに
2をこの位置から約180°回すと突起F2は当りI]
2゛に押し当てられ、このとき分光器M2の視点は正規
の位置Oに位置せしめられるようになっている。Sは試
料でxyzS軸移′動ステージST上にセットされる。
K2 can be turned with a cam from outside the main body of the EPMA, and is in contact with protrusions Fl and F2 that protrude downward from the bases Bl and B2. Hl in the spectrometer Ml
is a hit fixed to the EPMA main body, and when the cam 1 is rotated 180 degrees from the figure, the protrusion F1 hits Hl due to the weight of the spectrometer M1, and is separated from the cam 1. At this time, the point of view of the spectrometer M1 is is 0 points. When the cam K1 is placed in the position shown in the figure, the protrusion H1 is pushed to 1 by the cam, and the viewpoint of the spectrometer M1 is positioned at point A in the figure. Spectrometer M2
In F2. H2' is a hit fixed to the EPMA main body, and when the cam 2 is separated from the protrusion F2 as shown in the figure, F2 comes into contact with the hit F2 due to the weight of M2, and at this time, the viewpoint of the spectrometer M2 is B in the figure. Located at the point. Turn the cam 2 approximately 180 degrees from this position and the protrusion F2 will hit I]
2. At this time, the viewpoint of the spectrometer M2 is positioned at the regular position O. A sample S is set on an xyzS axis movement stage ST.

PMは上記試料ステージを上下方向くZ軸方向)に移動
させるパルスモータで制御装置CPtJにより制御され
る。
The PM is a pulse motor that moves the sample stage in the vertical direction (Z-axis direction) and is controlled by the controller CPtJ.

上述構成で試料位置の自動制御を行う場合、試料をステ
ージST上にセットし、分光器Ml、M2の視点を0点
に置き、夫々の検出波長を試料位置制御用に選んだ元素
例えば試料が鋼なら鉄の特性X線に合わせ、X線検出器
D1.D2の何れかの出力が最大になるように試料の上
下位置を合わせ、このときのDi、D2の出力をCPU
に記憶せしめる。原理的にはこのときDl、D2の出力
は等しい筈であるが、検出器の感度差等により通常両者
は一致しない。次に分光器Ml、M2の検出波長を上記
特性X線の波長より上下に一定量ずらせて夫々の波長に
けおるDi、D2の検出出力をベースラインデータとし
てCPUに記憶させる。CPUはこれら2波長における
Di、D2各々の検出出力から上記特性Xn波長にけお
る夫々のベースライン強度を算出し、特性x1111波
長位置におけるDl、D2の検出出力から引算した値の
比を算出する。この比が分光器M1.M2の上記特性X
!IIIに対する検出強度比である。以上の準備を終わ
って後カムKl、に2を操作して第1図に示すように分
光器M1.M2の視点をA、B点に移し、分析動作をス
タートさせる。分析動作は試料を水平方向に動かして試
料面上の一つの線に沿い分析を行って行くものである。
When automatically controlling the sample position with the above configuration, the sample is set on the stage ST, the viewpoints of the spectrometers Ml and M2 are set at the 0 point, and the respective detection wavelengths are set to the elements selected for sample position control, such as when the sample is For steel, use X-ray detector D1 to match the characteristic X-rays of iron. Align the vertical position of the sample so that the output of either D2 is maximum, and then output the outputs of Di and D2 to the CPU.
to be memorized. In principle, the outputs of Dl and D2 should be equal at this time, but they usually do not match due to differences in sensitivity of the detectors. Next, the detection wavelengths of the spectrometers M1 and M2 are shifted a certain amount above and below the wavelength of the characteristic X-ray, and the detection outputs of Di and D2, which are shifted to the respective wavelengths, are stored in the CPU as baseline data. The CPU calculates the respective baseline intensities at the characteristic Xn wavelength from the detection outputs of Di and D2 at these two wavelengths, and calculates the ratio of the values subtracted from the detection outputs of Dl and D2 at the characteristic x1111 wavelength position. do. This ratio is the spectrometer M1. The above characteristic X of M2
! This is the detection intensity ratio to III. After completing the above preparations, operate the cams Kl and 2 to assemble the spectrometer M1 as shown in FIG. Move M2's viewpoint to points A and B and start the analysis operation. The analysis operation involves moving the sample horizontally and performing analysis along one line on the sample surface.

その間CPUは検出器Di、D2の出力を読込み、先に
記憶させたベースラインデータを引算した値に上記感度
差に基く比率を掛けて感度補正されたDI、D2の検出
出力を比較し、その値が一致するようにパルスモータP
Mを制御する。この間分光器M3によって目的とする元
素の特性X線の検出強度がCPUによって取込まれ、分
析データとしてメモリmに記憶せしめられる。
Meanwhile, the CPU reads the outputs of the detectors Di and D2, and compares the detection outputs of DI and D2, which have been sensitivity-corrected by subtracting the previously stored baseline data and multiplying the value by the ratio based on the sensitivity difference, Pulse motor P so that the values match
Control M. During this time, the detected intensity of characteristic X-rays of the target element is captured by the spectrometer M3 by the CPU, and is stored in the memory m as analysis data.

上述動作では分光器Ml、M2は試料の位置調節用であ
り、M3が試料分析用分光器であるが、Ml、M2はカ
ムKl、に2の操作によって何れも視点を0点に置くこ
とができ、このときはMl、M2とも試料分析に用いる
こ七ができ、従うて、この実施例では3元素同時分析も
可能である。もちろんMl、M2は試料位置制御専用と
して視点をA点、B点に固定したものとしてもよいこと
は云うまでもない。
In the above operation, the spectrometers Ml and M2 are used to adjust the position of the sample, and M3 is used for sample analysis, but the viewpoints of both Ml and M2 can be placed at the zero point by operating the cams Kl and 2. In this case, both Ml and M2 can be used for sample analysis, and therefore, simultaneous analysis of three elements is also possible in this embodiment. Of course, it goes without saying that M1 and M2 may be used exclusively for sample position control, with their viewpoints fixed at points A and B.

また上の説明では分析開始前の準備操作はが稍面倒であ
るが、二つのX線分光器の感度データおよびベースライ
ンデータを予め取込んででCPUに記憶させてお(こと
により、各試料毎に分析前に一々二つのX線分光器の感
度比を測定する手数を省(ことができる。
Also, in the above explanation, the preparation operations before starting the analysis are a bit troublesome, but the sensitivity data and baseline data of the two X-ray spectrometers are imported in advance and stored in the CPU (by this, each sample It is possible to save the trouble of measuring the sensitivity ratio of two X-ray spectrometers before each analysis.

(発明の効果) 本発明によれば試料の位置ずれの方向が検出できるので
、試料の試し移動なしに試料位置調節ができ、試料位置
の変化に連続的に追従して行(ことが可能となるので、
試料面の連続分析の能率が著しく向上する。
(Effects of the Invention) According to the present invention, since the direction of displacement of the sample can be detected, the sample position can be adjusted without trial movement of the sample, and it is possible to continuously follow changes in the sample position. So,
The efficiency of continuous analysis of sample surfaces is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は同実施例
の平面図、第3図は本発明の動作説明図である。 G・・・電子銃、e・・・電子光学系光軸、L・・・対
物レンズ、S・・・試料、ST・・・試料ステージ、P
M・・・パルスモータ、A、B、O・・・X線分光器の
視点、Ml、M2.M3・・・X*分光器、B1.B2
.B3・・・X線分光器のベース、C1,C2・・・分
光結晶、Tl、T2・・・送りねじ、Di、C2・・・
X線検出器、Fl、F2・・・ベースI31.B2から
突出した突器、Kl、に2・・・カム、Hl、H2,H
2’・・・EPMA本体に固定された当り、pl、p2
・・・ベースBl、B2の揺動軸支点、CPU・・・制
御装置。 代理人  弁理士 縣  浩 介
FIG. 1 is a side view of one embodiment of the present invention, FIG. 2 is a plan view of the same embodiment, and FIG. 3 is an explanatory diagram of the operation of the present invention. G...electron gun, e...electron optical system optical axis, L...objective lens, S...sample, ST...sample stage, P
M...Pulse motor, A, B, O...Viewpoint of X-ray spectrometer, Ml, M2. M3...X* spectrometer, B1. B2
.. B3... Base of X-ray spectrometer, C1, C2... Spectroscopic crystal, Tl, T2... Lead screw, Di, C2...
X-ray detector, Fl, F2...Base I31. Projection projecting from B2, Kl, 2... cam, Hl, H2, H
2'... Hit fixed to the EPMA body, pl, p2
... Swing axis fulcrum of base Bl, B2, CPU... control device. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 試料を照射する電子ビームの中心線上に視点を位置させ
た試料分析用X線分光器と共に、電子ビームの中心線上
で上記視点の両側に視点を位置させて配置した二つの試
料位置調節用X線分光器とこれら二つの試料位置調節用
X線分光器の出力を比較して両出力が一定の関係になる
ように試料を電子ビームの中心線方向に駆動する制御手
段を備えたX線分光分析装置。
An X-ray spectrometer for sample analysis whose viewpoint is located on the center line of the electron beam that irradiates the sample, and two X-ray spectrometers for sample position adjustment located on the center line of the electron beam with their viewpoints on either side of the above viewpoint. X-ray spectroscopy equipped with a control means that compares the outputs of the spectrometer and these two X-ray spectrometers for adjusting the sample position and drives the sample in the direction of the center line of the electron beam so that both outputs have a constant relationship Device.
JP63137865A 1988-06-03 1988-06-03 X-ray spectral analyzing device Pending JPH01307148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137865A JPH01307148A (en) 1988-06-03 1988-06-03 X-ray spectral analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137865A JPH01307148A (en) 1988-06-03 1988-06-03 X-ray spectral analyzing device

Publications (1)

Publication Number Publication Date
JPH01307148A true JPH01307148A (en) 1989-12-12

Family

ID=15208545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137865A Pending JPH01307148A (en) 1988-06-03 1988-06-03 X-ray spectral analyzing device

Country Status (1)

Country Link
JP (1) JPH01307148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075323B2 (en) 2004-07-29 2006-07-11 Applied Materials, Inc. Large substrate test system
US7256606B2 (en) 2004-08-03 2007-08-14 Applied Materials, Inc. Method for testing pixels for LCD TFT displays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075323B2 (en) 2004-07-29 2006-07-11 Applied Materials, Inc. Large substrate test system
US7256606B2 (en) 2004-08-03 2007-08-14 Applied Materials, Inc. Method for testing pixels for LCD TFT displays

Similar Documents

Publication Publication Date Title
US5949847A (en) X-ray analyzing apparatus and x-ray irradiation angle setting method
JP2003194744A (en) X-ray diffractometer
JPH056651B2 (en)
JP4147295B2 (en) Techniques for obtaining preferred optical alignment in scanning interferometers
JPH01307148A (en) X-ray spectral analyzing device
JPH05322804A (en) Method and device for measuring reflected profile of x ray
JPH05126767A (en) Radiometric analysis device
JPH0259945B2 (en)
JPH05215898A (en) X-ray collimator
JP3572333B2 (en) X-ray fluorescence analyzer
US6870147B1 (en) Light stability testing device
JP2905448B2 (en) Method and apparatus for setting position of sample stage in X-ray analysis
JPH07140004A (en) Spectroscopic analysis apparatus
JPH01172740A (en) Slit control mechanism of x-ray diffraction apparatus
JPS63102152A (en) Laser microprobe analyzing device
JP3116867B2 (en) Light beam position detecting device and light beam position detecting method
JPH0572149A (en) X-ray measuring device
JP2002350370A (en) X-ray measuring apparatus, system for measuring/forming thin film, and method for measuring/forming thin film
JPH0682309A (en) X-ray spectroscope
JPH0261528A (en) Spectroscopic apparatus
JPH01213944A (en) Analyzing device with electron beam irradiation
JPH0797551B2 (en) X-ray mask alignment method and apparatus
JPH03291554A (en) Method and device for adjusting optical axis of sample fixing type x-ray diffraction device
JPS63148192A (en) Automatic adjusting device for x-ray dosage
KR100299449B1 (en) Apparatus and method for automatically controlling scanning position for measuring degrees of alloying